Datasets:

Languages:
English
ArXiv:
License:
xujz0703 commited on
Commit
732c478
1 Parent(s): 7b19835

Update ImageRewardDB.py

Browse files
Files changed (1) hide show
  1. ImageRewardDB.py +86 -30
ImageRewardDB.py CHANGED
@@ -110,23 +110,40 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
110
  BUILDER_CONFIGS.append(
111
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
112
  )
 
 
 
113
 
114
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
115
 
116
  def _info(self):
117
- features = datasets.Features(
118
- {
119
- "image": datasets.Image(),
120
- "prompt_id": datasets.Value("string"),
121
- "prompt": datasets.Value("string"),
122
- "classification": datasets.Value("string"),
123
- "image_amount_in_total": datasets.Value("int8"),
124
- "rank": datasets.Value("int8"),
125
- "overall_rating": datasets.Value("int8"),
126
- "image_text_alignment_rating": datasets.Value("int8"),
127
- "fidelity_rating": datasets.Value("int8")
128
- }
129
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  return datasets.DatasetInfo(
131
  # This is the description that will appear on the datasets page.
132
  description=_DESCRIPTION,
@@ -199,21 +216,60 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
199
  assert num_data_dirs == len(json_paths)
200
 
201
  #Iterate throug all extracted zip folders for images
 
202
  for index, json_path in enumerate(json_paths):
203
- json_data = json.load(open(json_path, "r", encoding="utf-8"))
204
- for example in json_data:
205
- image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
206
- yield example["image_path"], {
207
- "image": {
208
- "path": image_path,
209
- "bytes": open(image_path, "rb").read()
210
- },
211
- "prompt_id": example["prompt_id"],
212
- "prompt": example["prompt"],
213
- "classification": example["classification"],
214
- "image_amount_in_total": example["image_amount_in_total"],
215
- "rank": example["rank"],
216
- "overall_rating": example["overall_rating"],
217
- "image_text_alignment_rating": example["image_text_alignment_rating"],
218
- "fidelity_rating": example["fidelity_rating"]
219
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  BUILDER_CONFIGS.append(
111
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
112
  )
113
+ BUILDER_CONFIGS.append(
114
+ ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale group of ImageRewardDB")
115
+ )
116
 
117
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
118
 
119
  def _info(self):
120
+ if "group" in self.config.name:
121
+ features = datasets.Features(
122
+ {
123
+ "prompt_id": datasets.Value("string"),
124
+ "prompt": datasets.Value("string"),
125
+ "classification": datasets.Value("string"),
126
+ "image": datasets.Sequence(datasets.Image()),
127
+ "rank": datasets.Sequence(datasets.Value("int8")),
128
+ "overall_rating": datasets.Sequence(datasets.Value("int8")),
129
+ "image_text_alignment_rating": datasets.Sequence(datasets.Value("int8")),
130
+ "fidelity_rating": datasets.Sequence(datasets.Value("int8"))
131
+ }
132
+ )
133
+ else:
134
+ features = datasets.Features(
135
+ {
136
+ "image": datasets.Image(),
137
+ "prompt_id": datasets.Value("string"),
138
+ "prompt": datasets.Value("string"),
139
+ "classification": datasets.Value("string"),
140
+ "image_amount_in_total": datasets.Value("int8"),
141
+ "rank": datasets.Value("int8"),
142
+ "overall_rating": datasets.Value("int8"),
143
+ "image_text_alignment_rating": datasets.Value("int8"),
144
+ "fidelity_rating": datasets.Value("int8")
145
+ }
146
+ )
147
  return datasets.DatasetInfo(
148
  # This is the description that will appear on the datasets page.
149
  description=_DESCRIPTION,
 
216
  assert num_data_dirs == len(json_paths)
217
 
218
  #Iterate throug all extracted zip folders for images
219
+ metadata_table = pd.read_parquet(metadata_path)
220
  for index, json_path in enumerate(json_paths):
221
+ json_data = json.load(open(json_path, "r", encoding="utf-8"))
222
+ if "group" in self.config.name:
223
+ group_num = 0
224
+ image_path = []
225
+ rank = []
226
+ overall_rating, image_text_alignment_rating, fidelity_rating = [], [], []
227
+ for sample in json_data:
228
+ if group_num == 0:
229
+ image_path.clear()
230
+ rank.clear()
231
+ overall_rating.clear()
232
+ image_text_alignment_rating.clear()
233
+ fidelity_rating.clear()
234
+ prompt_id = sample["prompt_id"]
235
+ prompt = sample["prompt"]
236
+ classification = sample["classification"]
237
+ image_amount_in_total = sample["image_amount_in_total"]
238
+ image_path.append(sample["image_path"])
239
+ rank.append(sample["rank"])
240
+ overall_rating.append(sample["overall_rating"])
241
+ image_text_alignment_rating.append(sample["image_text_alignment_rating"])
242
+ fidelity_rating.append(sample["fidelity_rating"])
243
+ group_num += 1
244
+ if group_num == image_amount_in_total:
245
+ group_num = 0
246
+ yield prompt_id, ({
247
+ "prompt_id": prompt_id,
248
+ "prompt": prompt,
249
+ "classification": classification,
250
+ "image": [{
251
+ "path": image_path[idx],
252
+ "bytes": open(image_path[idx], "rb").read()
253
+ } for idx in range(image_amount_in_total)],
254
+ "rank": rank,
255
+ "overall_rating": overall_rating,
256
+ "image_text_alignment_rating": image_text_alignment_rating,
257
+ "fidelity_rating": fidelity_rating,
258
+ })
259
+ else:
260
+ for example in json_data:
261
+ image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
262
+ yield example["image_path"], {
263
+ "image": {
264
+ "path": image_path,
265
+ "bytes": open(image_path, "rb").read()
266
+ },
267
+ "prompt_id": example["prompt_id"],
268
+ "prompt": example["prompt"],
269
+ "classification": example["classification"],
270
+ "image_amount_in_total": example["image_amount_in_total"],
271
+ "rank": example["rank"],
272
+ "overall_rating": example["overall_rating"],
273
+ "image_text_alignment_rating": example["image_text_alignment_rating"],
274
+ "fidelity_rating": example["fidelity_rating"]
275
+ }