TAT-QA / tatqa_utils.py
FangyuLei's picture
Upload tatqa_utils.py
43cfb4b
import re
import string
from typing import List
import numpy as np
def scale_to_num(scale):
scale = scale.lower()
num = 1
if 'hundred' in scale: # hundred
num = 100
elif 'thousand' in scale: # thousand
num = 1000
elif 'million' in scale: # million
num = 1000000
elif 'billion' in scale: # billion
num = 1000000000
elif 'percent' in scale: # percent
num = 0.01
return num
def extract_one_num_from_str(s):
s = _clean_num(s)
r_num = r"([+-]?\d+(\.\d+)?)|([+-]?\.\d+)"
groups = re.findall(r_num, s)
if len(groups) == 0:
return None
num = groups[0][0]
if num == '':
return None
if '.' in num:
return float(num)
return int(num)
EXCLUDE_IN_NUM = "'\"\\$€£¥%(),[]"
def _clean_num(text:str):
return "".join([ch for ch in str(text) if ch not in EXCLUDE_IN_NUM])
def is_number(text: str) -> bool:
try:
words = " ".join([_clean_num(w) for w in text.split()]).split()
if len(words) == 0:
"""1023 or 1 million"""
return False
num = float(words[0])
if np.isnan(num):
return False
if len(words) >= 2:
if scale_to_num(words[1]) == 1:
return False
return True
except ValueError:
return False
# except AttributeError:
# return False
def negative_num_handle(x):
"""
:param x: transform (134) -> -134
:return:
"""
all = re.findall('(\([\d.\s]+\))', x.strip())
if len(all) > 0:
return -1
return 1
def percent_num_handle(x):
"""
:param x: transform 12% -> 12/100
:return:
"""
all = re.findall('([\d.\s]+%)', x.strip())
if len(all) > 0:
return 0.01
return 1
def word_scale_handle(x):
"""
:param x: 1 million = 1,000,000
:return:
"""
iter = re.finditer('([\d.]+\s?[a-zA-Z]+)', x)
for one in iter:
text = one.group(0).lower()
scale_val = scale_to_num(text)
return scale_val
return 1
def to_number(text:str) -> float:
num = extract_one_num_from_str(text)
scale_val = word_scale_handle(text)
negative_flag = negative_num_handle(text)
percent_flag = percent_num_handle(text)
if num is not None:
return round(num * scale_val * negative_flag * percent_flag, 4)
return None
def remove_articles(text: str) -> str:
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE)
return re.sub(regex, ' ', text)
def white_space_fix(text: str) -> str:
return ' '.join(text.split())
EXCLUDE = set(string.punctuation)
def remove_punc(text: str) -> str:
if not is_number(text):
return ''.join(ch for ch in text if ch not in EXCLUDE)
else:
return text
def lower(text: str) -> str:
return text.lower()
def tokenize(text: str) -> List[str]:
return re.split(" ", text)
def normalize_number(text: str) -> str:
if is_number(text):
return str(to_number(text))
else:
return text
def normalize_answer(text: str) -> str:
"""Lower text and remove punctuation, articles and extra whitespace."""
parts = [white_space_fix(remove_articles(normalize_number(remove_punc(lower(token)))))
for token in tokenize(text)]
parts = [part for part in parts if part.strip()]
normalized = ' '.join(parts).strip()
return normalized
STRIPPED_CHARACTERS = string.punctuation + ''.join([u"‘", u"’", u"´", u"`", "_"])
def ws_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip().lower()
if not text:
return []
text = white_space_fix(text)
tokens = text.split()
tokens = [token.strip(STRIPPED_CHARACTERS) for token in tokens]
return tokens