|
import re |
|
import string |
|
from typing import List |
|
import numpy as np |
|
|
|
def scale_to_num(scale): |
|
scale = scale.lower() |
|
num = 1 |
|
if 'hundred' in scale: |
|
num = 100 |
|
elif 'thousand' in scale: |
|
num = 1000 |
|
elif 'million' in scale: |
|
num = 1000000 |
|
elif 'billion' in scale: |
|
num = 1000000000 |
|
elif 'percent' in scale: |
|
num = 0.01 |
|
return num |
|
|
|
def extract_one_num_from_str(s): |
|
s = _clean_num(s) |
|
r_num = r"([+-]?\d+(\.\d+)?)|([+-]?\.\d+)" |
|
groups = re.findall(r_num, s) |
|
if len(groups) == 0: |
|
return None |
|
num = groups[0][0] |
|
if num == '': |
|
return None |
|
if '.' in num: |
|
return float(num) |
|
return int(num) |
|
|
|
EXCLUDE_IN_NUM = "'\"\\$€£¥%(),[]" |
|
def _clean_num(text:str): |
|
return "".join([ch for ch in str(text) if ch not in EXCLUDE_IN_NUM]) |
|
|
|
|
|
def is_number(text: str) -> bool: |
|
try: |
|
words = " ".join([_clean_num(w) for w in text.split()]).split() |
|
if len(words) == 0: |
|
"""1023 or 1 million""" |
|
return False |
|
num = float(words[0]) |
|
if np.isnan(num): |
|
return False |
|
if len(words) >= 2: |
|
if scale_to_num(words[1]) == 1: |
|
return False |
|
return True |
|
except ValueError: |
|
return False |
|
|
|
|
|
|
|
def negative_num_handle(x): |
|
""" |
|
:param x: transform (134) -> -134 |
|
:return: |
|
""" |
|
all = re.findall('(\([\d.\s]+\))', x.strip()) |
|
if len(all) > 0: |
|
return -1 |
|
return 1 |
|
|
|
def percent_num_handle(x): |
|
""" |
|
:param x: transform 12% -> 12/100 |
|
:return: |
|
""" |
|
all = re.findall('([\d.\s]+%)', x.strip()) |
|
if len(all) > 0: |
|
return 0.01 |
|
return 1 |
|
|
|
def word_scale_handle(x): |
|
""" |
|
:param x: 1 million = 1,000,000 |
|
:return: |
|
""" |
|
iter = re.finditer('([\d.]+\s?[a-zA-Z]+)', x) |
|
for one in iter: |
|
text = one.group(0).lower() |
|
scale_val = scale_to_num(text) |
|
return scale_val |
|
return 1 |
|
|
|
def to_number(text:str) -> float: |
|
num = extract_one_num_from_str(text) |
|
scale_val = word_scale_handle(text) |
|
negative_flag = negative_num_handle(text) |
|
percent_flag = percent_num_handle(text) |
|
if num is not None: |
|
return round(num * scale_val * negative_flag * percent_flag, 4) |
|
return None |
|
|
|
def remove_articles(text: str) -> str: |
|
regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) |
|
return re.sub(regex, ' ', text) |
|
|
|
def white_space_fix(text: str) -> str: |
|
return ' '.join(text.split()) |
|
|
|
EXCLUDE = set(string.punctuation) |
|
def remove_punc(text: str) -> str: |
|
if not is_number(text): |
|
return ''.join(ch for ch in text if ch not in EXCLUDE) |
|
else: |
|
return text |
|
|
|
def lower(text: str) -> str: |
|
return text.lower() |
|
|
|
def tokenize(text: str) -> List[str]: |
|
return re.split(" ", text) |
|
|
|
|
|
def normalize_number(text: str) -> str: |
|
if is_number(text): |
|
return str(to_number(text)) |
|
else: |
|
return text |
|
|
|
def normalize_answer(text: str) -> str: |
|
"""Lower text and remove punctuation, articles and extra whitespace.""" |
|
parts = [white_space_fix(remove_articles(normalize_number(remove_punc(lower(token))))) |
|
for token in tokenize(text)] |
|
parts = [part for part in parts if part.strip()] |
|
normalized = ' '.join(parts).strip() |
|
return normalized |
|
|
|
|
|
STRIPPED_CHARACTERS = string.punctuation + ''.join([u"‘", u"’", u"´", u"`", "_"]) |
|
def ws_tokenize(text): |
|
"""Runs basic whitespace cleaning and splitting on a piece of text.""" |
|
text = text.strip().lower() |
|
if not text: |
|
return [] |
|
text = white_space_fix(text) |
|
tokens = text.split() |
|
tokens = [token.strip(STRIPPED_CHARACTERS) for token in tokens] |
|
return tokens |
|
|
|
|