|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
import regex as re |
|
|
|
|
|
class ERRNewsConfig(datasets.BuilderConfig): |
|
def __init__(self, data_url, features, recordings_url, **kwargs): |
|
super().__init__(version=datasets.Version("1.1.0"), **kwargs) |
|
self.data_url = data_url |
|
self.recordings_url = recordings_url |
|
self.features = features |
|
|
|
|
|
class ERRNews(datasets.GeneratorBasedBuilder): |
|
data_url = "https://cs.taltech.ee/staff/heharm/ERRnews/data.zip" |
|
recordings_url = "https://cs.taltech.ee/staff/heharm/ERRnews/recordings.tar" |
|
features = ["name", "summary", "transcript", "url", "meta"] |
|
|
|
BUILDER_CONFIGS = [ |
|
ERRNewsConfig( |
|
name="et", |
|
data_url=data_url, |
|
recordings_url=None, |
|
features=features |
|
), |
|
ERRNewsConfig( |
|
name="audio", |
|
data_url=data_url, |
|
recordings_url=recordings_url, |
|
features=features + ["audio", "recording_id"] |
|
), |
|
ERRNewsConfig( |
|
name="et_en", |
|
data_url=data_url, |
|
recordings_url=None, |
|
features=features + ["en_summary", "en_transcript"] |
|
), |
|
ERRNewsConfig( |
|
name="full", |
|
data_url=data_url, |
|
recordings_url=recordings_url, |
|
features=features + ["audio", "recording_id", "en_summary", "en_transcript"] |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "et" |
|
|
|
def _info(self): |
|
description = ( |
|
"ERRnews is an estonian language summaryzation dataset of ERR News broadcasts scraped from the ERR " |
|
"Archive (https://arhiiv.err.ee/err-audioarhiiv). The dataset consists of news story transcripts " |
|
"generated by an ASR pipeline paired with the human written summary from the archive. For leveraging " |
|
"larger english models the dataset includes machine translated (https://neurotolge.ee/) transcript and " |
|
"summary pairs." |
|
) |
|
|
|
citation = """\ |
|
@article{henryabstractive, |
|
title={Abstractive Summarization of Broadcast News Stories for {Estonian}}, |
|
author={Henry, H{\"a}rm and Tanel, Alum{\"a}e}, |
|
journal={Baltic J. Modern Computing}, |
|
volume={10}, |
|
number={3}, |
|
pages={511-524}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
features = datasets.Features( |
|
{ |
|
"name": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"transcript": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"meta": datasets.Value("string"), |
|
}) |
|
|
|
if self.config.name == "audio": |
|
features["audio"] = datasets.features.Audio(sampling_rate=16_000) |
|
features["recording_id"] = datasets.Value("int32") |
|
|
|
if self.config.name == "et_en": |
|
features["en_summary"] = datasets.Value("string") |
|
features["en_transcript"] = datasets.Value("string") |
|
|
|
if self.config.name == "full": |
|
features["en_summary"] = datasets.Value("string") |
|
features["en_transcript"] = datasets.Value("string") |
|
features["audio"] = datasets.features.Audio(sampling_rate=16_000) |
|
features["recording_id"] = datasets.Value("int32") |
|
|
|
return datasets.DatasetInfo( |
|
description=description, |
|
citation=citation, |
|
features=features, |
|
supervised_keys=None, |
|
version=self.config.version, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train = "data/train.csv" |
|
test = "data/test.csv" |
|
val = "data/val.csv" |
|
|
|
data_archive = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
if self.config.recordings_url: |
|
recordings = dl_manager.download(self.config.recordings_url) |
|
recordings_archive = dl_manager.extract(recordings) if not dl_manager.is_streaming else None |
|
audio_files = dl_manager.iter_archive(recordings) |
|
else: |
|
audio_files = None |
|
recordings_archive = None |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"file_path": train, |
|
"audio_files": audio_files, |
|
"recordings_archive": recordings_archive, |
|
"data_archive": data_archive |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"file_path": val, |
|
"audio_files": audio_files, |
|
"recordings_archive": recordings_archive, |
|
"data_archive": data_archive |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"file_path": test, |
|
"audio_files": audio_files, |
|
"recordings_archive": recordings_archive, |
|
"data_archive": data_archive |
|
}, |
|
), |
|
] |
|
|
|
def create_dict(self, data): |
|
res = dict() |
|
for key in self.config.features: |
|
res[key] = data[key] |
|
return res |
|
|
|
def _generate_examples(self, file_path, audio_files, recordings_archive, data_archive): |
|
data = pd.read_csv(os.path.join(data_archive, file_path)) |
|
|
|
if audio_files: |
|
for path, f in audio_files: |
|
id = re.sub("^recordings\/", "", re.sub(".ogv$", "", path)) |
|
row = data.loc[data['recording_id'] == int(id)] |
|
if len(row) > 0: |
|
result = row.to_dict('records')[0] |
|
|
|
path = os.path.join(recordings_archive, path) if recordings_archive else path |
|
result["audio"] = {"path": path, "bytes": f.read()} |
|
yield row.index[0].item(), self.create_dict(result) |
|
else: |
|
for row in data.iterrows(): |
|
result = row[1].to_dict() |
|
yield row[0], self.create_dict(result) |
|
|