import os import datasets import pandas as pd import regex as re class ERRNewsConfig(datasets.BuilderConfig): def __init__(self, data_url, features, recordings_url, **kwargs): super().__init__(version=datasets.Version("1.1.0"), **kwargs) self.data_url = data_url self.recordings_url = recordings_url self.features = features class ERRNews(datasets.GeneratorBasedBuilder): data_url = "https://cs.taltech.ee/staff/heharm/ERRnews/data.zip" recordings_url = "https://cs.taltech.ee/staff/heharm/ERRnews/recordings.tar" features = ["name", "summary", "transcript", "url", "meta"] BUILDER_CONFIGS = [ ERRNewsConfig( name="et", data_url=data_url, recordings_url=None, features=features ), ERRNewsConfig( name="audio", data_url=data_url, recordings_url=recordings_url, features=features + ["audio", "recording_id"] ), ERRNewsConfig( name="et_en", data_url=data_url, recordings_url=None, features=features + ["en_summary", "en_transcript"] ), ERRNewsConfig( name="full", data_url=data_url, recordings_url=recordings_url, features=features + ["audio", "recording_id", "en_summary", "en_transcript"] ) ] DEFAULT_CONFIG_NAME = "et" def _info(self): description = ( "ERRnews is an estonian language summaryzation dataset of ERR News broadcasts scraped from the ERR " "Archive (https://arhiiv.err.ee/err-audioarhiiv). The dataset consists of news story transcripts " "generated by an ASR pipeline paired with the human written summary from the archive. For leveraging " "larger english models the dataset includes machine translated (https://neurotolge.ee/) transcript and " "summary pairs." ) citation = """\ @article{henryabstractive, title={Abstractive Summarization of Broadcast News Stories for {Estonian}}, author={Henry, H{\"a}rm and Tanel, Alum{\"a}e}, journal={Baltic J. Modern Computing}, volume={10}, number={3}, pages={511-524}, year={2022} } """ features = datasets.Features( { "name": datasets.Value("string"), "summary": datasets.Value("string"), "transcript": datasets.Value("string"), "url": datasets.Value("string"), "meta": datasets.Value("string"), }) if self.config.name == "audio": features["audio"] = datasets.features.Audio(sampling_rate=16_000) features["recording_id"] = datasets.Value("int32") if self.config.name == "et_en": features["en_summary"] = datasets.Value("string") features["en_transcript"] = datasets.Value("string") if self.config.name == "full": features["en_summary"] = datasets.Value("string") features["en_transcript"] = datasets.Value("string") features["audio"] = datasets.features.Audio(sampling_rate=16_000) features["recording_id"] = datasets.Value("int32") return datasets.DatasetInfo( description=description, citation=citation, features=features, supervised_keys=None, version=self.config.version, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train = "data/train.csv" test = "data/test.csv" val = "data/val.csv" data_archive = dl_manager.download_and_extract(self.config.data_url) if self.config.recordings_url: recordings = dl_manager.download(self.config.recordings_url) recordings_archive = dl_manager.extract(recordings) if not dl_manager.is_streaming else None audio_files = dl_manager.iter_archive(recordings) else: audio_files = None recordings_archive = None return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "file_path": train, "audio_files": audio_files, "recordings_archive": recordings_archive, "data_archive": data_archive }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "file_path": val, "audio_files": audio_files, "recordings_archive": recordings_archive, "data_archive": data_archive }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "file_path": test, "audio_files": audio_files, "recordings_archive": recordings_archive, "data_archive": data_archive }, ), ] def create_dict(self, data): res = dict() for key in self.config.features: res[key] = data[key] return res def _generate_examples(self, file_path, audio_files, recordings_archive, data_archive): data = pd.read_csv(os.path.join(data_archive, file_path)) if audio_files: for path, f in audio_files: id = re.sub("^recordings\/", "", re.sub(".ogv$", "", path)) row = data.loc[data['recording_id'] == int(id)] if len(row) > 0: result = row.to_dict('records')[0] # set the audio feature and the path to the extracted file path = os.path.join(recordings_archive, path) if recordings_archive else path result["audio"] = {"path": path, "bytes": f.read()} yield row.index[0].item(), self.create_dict(result) else: for row in data.iterrows(): result = row[1].to_dict() yield row[0], self.create_dict(result)