--- license: mit dataset_info: features: - name: newspaper_name dtype: string - name: newspaper_arkindex_id dtype: string - name: page_arkindex_id dtype: string - name: page_index dtype: int64 - name: page_image dtype: image - name: zone_arkindex_ids sequence: string - name: zone_polygons sequence: sequence: sequence: float64 - name: zone_texts sequence: string - name: zone_classes sequence: class_label: names: '0': HEADER-TITLE '1': HEADER-TEXT '2': ARTICLE-ILLUSTRATION '3': ADVERTISEMENT '4': ANNOUNCEMENT '5': ARTICLE-TITLE '6': ARTICLE-TEXT '7': ARTICLE-SUBTITLE '8': ARTICLE-INSIDEHEADING '9': CAPTION '10': AUTHOR '11': ARTICLE-TABLE '12': SECTION-TITLE - name: zone_orders sequence: int64 - name: article_id sequence: int64 splits: - name: train num_bytes: 911036067.0 num_examples: 623 - name: val num_bytes: 75099123.0 num_examples: 50 - name: test num_bytes: 71901518.0 num_examples: 48 download_size: 1038604332 dataset_size: 1058036708.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* --- # Newspaper segmentation dataset: Finlam ## Dataset Description - **Homepage:** [Finlam](https://finlam.projets.litislab.fr/) - **Point of Contact:** [TEKLIA](https://teklia.com) ## Dataset Summary The Finlam dataset includes 149 French newspapers from the 19th to 20th centuries. Each newspaper contains multiple pages. Page images are resized to a fixed height of 2000 pixels. Each page contains multiple zones, with different information such as polygon, text, class, and order. ### Split | set | images | newspapers | | ----- | ------:| ----------:| | train | 623 | 129 | | val | 50 | 10 | | test | 48 | 10 | ### Languages Most newspapers in the dataset are French, some English. ## Dataset Structure ### Data Fields - `newspaper_name`: The name of the newspaper. - `newspaper_arkindex_id`: The Arkindex element id corresponding to the current newspaper. - `page_arkindex_id`: The Arkindex element id corresponding to the current page. - `page_index`: The index of the current page in the current newspaper. - `page_image`: a PIL.Image object containing the page image. Note that when accessing the image column (using dataset[0]["page_image"]), the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["page_image"] should always be preferred over dataset["page_image"][0]. - `zone_arkindex_ids`: the list of Arkindex element ids corresponding to the zones in the page. - `zone_polygons`: the list of zone coordinates in the current page. - `zone_texts`: the list of zone texts in the current page. - `zone_classes`: the list of zone classes in the current page. - `zone_orders`: the list of zone indexes in the current page, defining the reading order. - `article_id`: the list of article indexes defining in which article in the current newspaper the current zone is located.