import datasets import json import numpy import tarfile import io _FEATURES = datasets.Features( { "id": datasets.Value("string"), "prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"), "video": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float32")), "description": datasets.Value("string"), "videourl": datasets.Value("string"), "categories": datasets.Value("string"), "duration": datasets.Value("float"), "full_metadata": datasets.Value("string"), } ) class FunkLoaderStream(datasets.GeneratorBasedBuilder): """TempoFunk Dataset""" def _info(self): return datasets.DatasetInfo( description="TempoFunk Dataset", features=_FEATURES, homepage="tempofunk.github.io", citation=""" @misc{TempoFunk2023, author = {Lopho, Carlos Chavez}, title = {TempoFunk: Extending latent diffusion image models to Video}, url = {tempofunk.github.io}, month = {5}, year = {2023} } """, license="AGPL v3" ) def _split_generators(self, dl_manager): # Load the chunk list. print("PATH:", dl_manager.download("lists/chunk_list.json")) thing = json.load(open(dl_manager.download("lists/chunk_list.json"), 'rb')) _CHUNK_LIST = thing # Create a list to hold the downloaded chunks. _list = [] # Download each chunk file. for chunk in _CHUNK_LIST: _list.append(dl_manager.download(f"data/{chunk}.tar")) # Return the list of downloaded chunks. return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "chunks": _list, }, ), ] def _generate_examples(self, chunks): """Generate images and labels for splits.""" for chunk in chunks: tar_data = open(chunk, 'rb') tar_bytes = tar_data.read() tar_bytes_io = io.BytesIO(tar_bytes) response_dict = {} with tarfile.open(fileobj=tar_bytes_io, mode='r') as tar: for file_info in tar: if file_info.isfile(): file_name = file_info.name #filename format is typ_id.ext file_type = file_name.split('_')[0] file_id = file_name.split('_')[1].split('.')[0] file_ext = file_name.split('_')[1].split('.')[1] file_contents = tar.extractfile(file_info).read() if file_id not in response_dict: response_dict[file_id] = {} if file_type == 'txt' or file_type == 'vid': response_dict[file_id][file_type] = numpy.load(io.BytesIO(file_contents)) elif file_type == 'jso': response_dict[file_id][file_type] = json.loads(file_contents) for key, value in response_dict.items(): yield key, { "id": key, "description": value['jso']['description'], "prompt": value['txt'], "video": value['vid'], "videourl": value['jso']['videourl'], "categories": value['jso']['categories'], "duration": value['jso']['duration'], "full_metadata": value['jso'] }