hc4-corpus / hc4-corpus.py
crystina-z's picture
Update hc4-corpus.py
ee09f88
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import json
import datasets
from dataclasses import dataclass
_CITATION = '''
@article{Lawrie2022HC4,
author = {Dawn Lawrie and James Mayfield and Douglas W. Oard and Eugene Yang},
title = {HC4: A New Suite of Test Collections for Ad Hoc CLIR},
booktitle = {{Advances in Information Retrieval. 44th European Conference on IR Research (ECIR 2022)},
year = {2022},
month = apr,
publisher = {Springer},
series = {Lecture Notes in Computer Science},
site = {Stavanger, Norway},
url = {https://arxiv.org/abs/2201.09992}
}
'''
# Note: this dataset requires to download HC4 collection based on the requirement of ir-datasets
import ir_datasets
langs = [
'fa', 'ru', 'zh'
]
_DESCRIPTION = 'dataset load script for HC4 Corpus'
class HC4Corpus(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
version=datasets.Version('1.0.0'),
name=lang,
description=f'HC4 Corpus'
) for lang in langs
]
def _info(self):
features = datasets.Features({
'docid': datasets.Value('string'),
'title': datasets.Value('string'),
'text': datasets.Value('string'),
})
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
supervised_keys=None,
# Homepage of the dataset for documentation
homepage='https://github.com/hltcoe/HC4',
# License for the dataset if available
license='',
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.name
splits = [
datasets.SplitGenerator(
name='train',
gen_kwargs={
'lang': lang,
},
),
]
return splits
def _generate_examples(self, lang):
if lang not in {"fa", "ru", "zh"}:
raise ValueError(f"Unexpected language: {lang}")
dataset = ir_datasets.load(f'hc4/{lang}')
for doc in dataset.docs_iter():
yield doc.doc_id, {'docid': doc.doc_id, 'title': doc.title, 'text': doc.text}