File size: 4,428 Bytes
0066e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a74adc2
 
 
0066e73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32db9da
6d72368
32db9da
 
0066e73
 
32db9da
0066e73
b858392
0066e73
32db9da
0066e73
 
 
37a7d5b
0066e73
37a7d5b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Wikipedia NQ dataset."""

import json

import datasets

_CITATION = """
@inproceedings{karpukhin-etal-2020-dense,
    title = "Dense Passage Retrieval for Open-Domain Question Answering",
    author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov,
     Sergey and Chen, Danqi and Yih, Wen-tau",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.550",
    doi = "10.18653/v1/2020.emnlp-main.550",
    pages = "6769--6781",
}
"""

_DESCRIPTION = "dataset load script for Wikipedia NQ"

_DATASET_URLS = {
    'train': "https://huggingface.co/datasets/Tevatron/wikipedia-nq/resolve/main/nq-train.jsonl.gz",
    'dev': "https://huggingface.co/datasets/Tevatron/wikipedia-nq/resolve/main/nq-dev.jsonl.gz",
    'test': "https://huggingface.co/datasets/Tevatron/wikipedia-nq/resolve/main/nq-test.jsonl.gz",
}


class WikipediaNq(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("0.0.1")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(version=VERSION,
                               description="Wikipedia NQ train/dev/test datasets"),
    ]

    def _info(self):
        features = datasets.Features({
            'query_id': datasets.Value('string'),
            'query': datasets.Value('string'),
            'answers': [datasets.Value('string')],
            'positive_passages': [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string'),
                 'title': datasets.Value('string')}
            ],
            'negative_passages': [
                {'docid': datasets.Value('string'), 'text': datasets.Value('string'),
                 'title': datasets.Value('string')}
            ],
        })
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage="",
            # License for the dataset if available
            license="",
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        if self.config.data_files:
            downloaded_files = self.config.data_files
        else:
            downloaded_files = dl_manager.download_and_extract(_DATASET_URLS)
        splits = [
            datasets.SplitGenerator(
                name=split,
                gen_kwargs={
                    "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split],
                },
            ) for split in downloaded_files
        ]
        return splits

    def _generate_examples(self, files):
        """Yields examples."""
        for filepath in files:
            with open(filepath, encoding="utf-8") as f:
                for line in f:
                    data = json.loads(line)
                    if data.get('negative_passages') is None:
                        data['negative_passages'] = []
                    if data.get('positive_passages') is None:
                        data['positive_passages'] = []
                    if data.get('answers') is None:
                        data['answers'] = []
                    yield data['query_id'], data