parquet-converter
commited on
Commit
•
c81f38c
1
Parent(s):
28f5425
Update parquet files
Browse files- README.md +0 -219
- non_commercial/partial-train/0000.parquet +3 -0
- non_commercial/partial-train/0001.parquet +3 -0
- non_commercial/partial-train/0002.parquet +3 -0
- non_commercial/partial-train/0003.parquet +3 -0
- non_commercial/partial-train/0004.parquet +3 -0
- non_commercial/partial-train/0005.parquet +3 -0
- non_commercial/partial-train/0006.parquet +3 -0
- non_commercial/partial-train/0007.parquet +3 -0
- non_commercial/partial-train/0008.parquet +3 -0
- non_commercial/partial-train/0009.parquet +3 -0
- pmc_open_access_xml.py +0 -660
README.md
DELETED
@@ -1,219 +0,0 @@
|
|
1 |
-
---
|
2 |
-
pretty_name: XML-parsed PMC
|
3 |
-
task_categories:
|
4 |
-
- text-classification
|
5 |
-
- summarization
|
6 |
-
- other
|
7 |
-
annotations_creators:
|
8 |
-
- no-annotation
|
9 |
-
language_creators:
|
10 |
-
- expert-generated
|
11 |
-
language:
|
12 |
-
- en
|
13 |
-
size_categories:
|
14 |
-
- 1M<n<10M
|
15 |
-
source_datasets:
|
16 |
-
- original
|
17 |
-
license:
|
18 |
-
- cc0-1.0
|
19 |
-
- cc-by-4.0
|
20 |
-
- cc-by-sa-4.0
|
21 |
-
- cc-by-nc-4.0
|
22 |
-
- cc-by-nd-4.0
|
23 |
-
- cc-by-nc-nd-4.0
|
24 |
-
- cc-by-nc-sa-4.0
|
25 |
-
- unknown
|
26 |
-
- other
|
27 |
-
multilinguality:
|
28 |
-
- monolingual
|
29 |
-
task_ids: []
|
30 |
-
tags:
|
31 |
-
- research papers
|
32 |
-
- biology
|
33 |
-
- medecine
|
34 |
-
---
|
35 |
-
|
36 |
-
# Dataset Card for PMC Open Access XML
|
37 |
-
|
38 |
-
## Table of Contents
|
39 |
-
- [Dataset Description](#dataset-description)
|
40 |
-
- [Dataset Summary](#dataset-summary)
|
41 |
-
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
42 |
-
- [Languages](#languages)
|
43 |
-
- [Dataset Structure](#dataset-structure)
|
44 |
-
- [Data Instances](#data-instances)
|
45 |
-
- [Data Fields](#data-instances)
|
46 |
-
- [Data Splits](#data-instances)
|
47 |
-
- [Dataset Creation](#dataset-creation)
|
48 |
-
- [Curation Rationale](#curation-rationale)
|
49 |
-
- [Source Data](#source-data)
|
50 |
-
- [Annotations](#annotations)
|
51 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
52 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
53 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
54 |
-
- [Discussion of Biases](#discussion-of-biases)
|
55 |
-
- [Other Known Limitations](#other-known-limitations)
|
56 |
-
- [Additional Information](#additional-information)
|
57 |
-
- [Dataset Curators](#dataset-curators)
|
58 |
-
- [Licensing Information](#licensing-information)
|
59 |
-
- [Citation Information](#citation-information)
|
60 |
-
|
61 |
-
## Dataset Description
|
62 |
-
|
63 |
-
- **Homepage:** https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
|
64 |
-
- **Repository:** [Needs More Information]
|
65 |
-
- **Paper:** [Needs More Information]
|
66 |
-
- **Leaderboard:** [Needs More Information]
|
67 |
-
- **Point of Contact:** [Needs More Information]
|
68 |
-
|
69 |
-
### Dataset Summary
|
70 |
-
|
71 |
-
The XML Open Access includes more than 3.4 million journal articles and preprints that are made available under
|
72 |
-
license terms that allow reuse.
|
73 |
-
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
|
74 |
-
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
|
75 |
-
liberal redistribution and reuse than a traditional copyrighted work.
|
76 |
-
The PMC Open Access Subset is one part of the PMC Article Datasets
|
77 |
-
|
78 |
-
This version takes XML version as source, benefiting from the structured text
|
79 |
-
to split the articles in parts, naming the introduction, methods, results,
|
80 |
-
discussion and conclusion, and reference with keywords in the text to external or internal
|
81 |
-
resources (articles, figures, tables, formulas, boxed-text, quotes, code, footnotes, chemicals, graphics, medias).
|
82 |
-
|
83 |
-
The dataset was initially created with relation-extraction tasks in mind, between the references in text and the content of the
|
84 |
-
references (e.g. for PMID, by joining the refered article abstract from the pubmed dataset), but aims in a larger extent to provide
|
85 |
-
a corpus of pre-annotated text for other tasks (e.g. figure caption to graphic, glossary definition detection, summarization).
|
86 |
-
|
87 |
-
### Supported Tasks and Leaderboards
|
88 |
-
|
89 |
-
[Needs More Information]
|
90 |
-
|
91 |
-
### Languages
|
92 |
-
|
93 |
-
[Needs More Information]
|
94 |
-
|
95 |
-
## Dataset Structure
|
96 |
-
|
97 |
-
### Data Fields
|
98 |
-
|
99 |
-
- "accession_id": The PMC ID of the article
|
100 |
-
- "pmid": The PubMed ID of the article
|
101 |
-
- "introduction": List of \<title\> and \<p\> elements in \<body\>, sharing their root with a \<title\> containing "introduction" or "background".
|
102 |
-
- "methods": Same as introduction with "method" keyword.
|
103 |
-
- "results": Same as introduction with "result" keyword.
|
104 |
-
- "discussion": Same as introduction with "discussion" keyword.
|
105 |
-
- "conclusion": Same as introduction with "conclusion" keyword.
|
106 |
-
- "front": List of \<title\> and \<p\> elements in \<front\> after everything else has been searched.
|
107 |
-
- "body": List of \<title\> and \<p\> elements in \<body\> after everything else has been searched.
|
108 |
-
- "back": List of \<title\> and \<p\> elements in \<back\> after everything else has been searched.
|
109 |
-
- "figure": List of \<fig\> elements of the article.
|
110 |
-
- "table": List of \<table-wrap\> and \<array\> elements of the article.
|
111 |
-
- "formula": List of \<disp-formula\> and \<inline-formula\> elements of the article.
|
112 |
-
- "box": List of \<boxed-text\> elements of the article.
|
113 |
-
- "code": List of \<code\> elements of the article.
|
114 |
-
- "quote": List of \<disp-quote\> and \<speech\> elements of the article.
|
115 |
-
- "chemical": List of \<chem-struct-wrap\> elements of the article.
|
116 |
-
- "supplementary": List of \<supplementary-material\> and \<inline-supplementary-material\> elements of the article.
|
117 |
-
- "footnote": List of \<fn-group\> and \<table-wrap-foot\> elements of the article.
|
118 |
-
- "graphic": List of \<graphic\> and \<inline-graphic\> elements of the article.
|
119 |
-
- "media": List of \<media\> and \<inline-media\> elements of the article.
|
120 |
-
- "glossary": Glossary if found in the XML
|
121 |
-
- "unknown_references": JSON of a dictionnary of each "tag":"text" for the reference that did not indicate a PMID
|
122 |
-
- "n_references": Total number of references and unknown references
|
123 |
-
- "license": The licence of the article
|
124 |
-
- "retracted": If the article was retracted or not
|
125 |
-
- "last_updated": Last update of the article
|
126 |
-
- "citation": Citation of the article
|
127 |
-
- "package_file": path to the folder containing the graphics and media files of the article (to append to the base URL: ftp.ncbi.nlm.nih.gov/pub/pmc/)
|
128 |
-
|
129 |
-
In text, the references are in the form ##KEYWORD##IDX_REF##OLD_TEXT##, with keywords (REF, UREF, FIG, TAB, FORMU, BOX, CODE, QUOTE, CHEM, SUPPL, FOOTN, GRAPH, MEDIA) referencing respectively to "pubmed articles" (external), "unknown_references", "figure", "table", "formula", "box", "code", "quote", "chem", "supplementary", "footnote", "graphic" and "media".
|
130 |
-
### Data Splits
|
131 |
-
|
132 |
-
[Needs More Information]
|
133 |
-
|
134 |
-
## Dataset Creation
|
135 |
-
|
136 |
-
### Curation Rationale
|
137 |
-
|
138 |
-
Internal references (figures, tables, ...) were found using specific tags. Deciding on those tags was done by testing and by looking in the documentation
|
139 |
-
for the different kind of possible usage.
|
140 |
-
Then, to split the article into introduction, methods, results, discussion and conclusion, specific keywords in titles were used. Because there are no rules
|
141 |
-
in this xml to tag those sections, finding the keyword seemed like the most reliable approach to do so. A drawback is that many section do not have those
|
142 |
-
keywords in the titles but could be assimilated to those. However, the huge diversity in the titles makes it harder to label such sections. This could be the
|
143 |
-
work of further versions of this dataset.
|
144 |
-
|
145 |
-
### Source Data
|
146 |
-
|
147 |
-
#### Initial Data Collection and Normalization
|
148 |
-
|
149 |
-
Data was obtained from:
|
150 |
-
- ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_noncomm/xml/
|
151 |
-
- ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_comm/xml/
|
152 |
-
- ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/oa_other/xml/
|
153 |
-
|
154 |
-
Additional content for individual articles (graphics, media) can be obtained from:
|
155 |
-
- ftp.ncbi.nlm.nih.gov/pub/pmc + "package_file"
|
156 |
-
|
157 |
-
#### Who are the source language producers?
|
158 |
-
|
159 |
-
[Needs More Information]
|
160 |
-
|
161 |
-
### Annotations
|
162 |
-
|
163 |
-
#### Annotation process
|
164 |
-
|
165 |
-
[Needs More Information]
|
166 |
-
|
167 |
-
#### Who are the annotators?
|
168 |
-
|
169 |
-
[Needs More Information]
|
170 |
-
|
171 |
-
### Personal and Sensitive Information
|
172 |
-
|
173 |
-
[Needs More Information]
|
174 |
-
|
175 |
-
## Considerations for Using the Data
|
176 |
-
|
177 |
-
### Social Impact of Dataset
|
178 |
-
|
179 |
-
[Needs More Information]
|
180 |
-
|
181 |
-
### Discussion of Biases
|
182 |
-
|
183 |
-
The articles XML are similar accross collections. This means that if a certain collection handles the structure in unusual ways, the whole collection might not be as
|
184 |
-
well annotated than others. This concerns all the sections (intro, methods, ...), the external references (pmids) and the internal references (tables, figures, ...).
|
185 |
-
To illustrate that, references are sometime given as a range (e.g. 10-15). In that case, only reference 10 and 15 are linked. This could potentially be handled in a
|
186 |
-
future version.
|
187 |
-
|
188 |
-
### Other Known Limitations
|
189 |
-
|
190 |
-
[Needs More Information]
|
191 |
-
|
192 |
-
### Preprocessing recommendations
|
193 |
-
|
194 |
-
- Filter out empty contents.
|
195 |
-
- Remove unwanted references from the text, and replace either by the "references_text" or by the reference content itself.
|
196 |
-
- Unescape HTML special characters: `import html; html.unescape(my_text)`
|
197 |
-
- Remove superfluous line break in text.
|
198 |
-
- Remove XML tags (\<italic\>, \<sup\>, \<sub\>, ...), replace by special tokens?
|
199 |
-
- Join the items of the contents' lists.
|
200 |
-
|
201 |
-
## Additional Information
|
202 |
-
|
203 |
-
### Dataset Curators
|
204 |
-
|
205 |
-
[Needs More Information]
|
206 |
-
|
207 |
-
### Licensing Information
|
208 |
-
|
209 |
-
https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
|
210 |
-
|
211 |
-
Within the PMC Open Access Subset, there are three groupings:
|
212 |
-
|
213 |
-
Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
|
214 |
-
Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
|
215 |
-
Other - no machine-readable Creative Commons license, no license, or a custom license.
|
216 |
-
|
217 |
-
### Citation Information
|
218 |
-
|
219 |
-
[Needs More Information]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
non_commercial/partial-train/0000.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc9252ea998ed907ee5e2fc060ab55be88e32f2e78c9355c6c2e2aa3f7aef89a
|
3 |
+
size 212504220
|
non_commercial/partial-train/0001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a24efca564e1b3573aa739bcba53f131c6a31e4683b2e38908d278c4cc85034c
|
3 |
+
size 224176755
|
non_commercial/partial-train/0002.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af66b0afaf5fe278854c521bb794f98a1ba55487901e26fb83de0656792d8c1a
|
3 |
+
size 234243104
|
non_commercial/partial-train/0003.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d7c68c7bf75d74f53f3f79537842afd63dd185f7ecce4b3a6117d8db4e44e8a
|
3 |
+
size 229292455
|
non_commercial/partial-train/0004.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:115eb47159eb222b11a3867b9e618a420d4c9794b45e8fa6f5bbdf327209acf3
|
3 |
+
size 224353264
|
non_commercial/partial-train/0005.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:062fa332166cad5dfe72386ca18520affeeaac6a09e2d9e7f621f6362650757a
|
3 |
+
size 228341905
|
non_commercial/partial-train/0006.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38acb1fb3ac3948a9ba9641cf07485d50f6aebf33dc803197dd85f78ae0964b4
|
3 |
+
size 234984993
|
non_commercial/partial-train/0007.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e2626e95395462aa09cbfdc468e02979f56662cd4a503b6f68b5aac0c57bfd8
|
3 |
+
size 237959350
|
non_commercial/partial-train/0008.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:573ffcd4306e7b31b344512c3461f844dc4043934e023722c69fe23f1ed00dbc
|
3 |
+
size 230268880
|
non_commercial/partial-train/0009.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78627db101d0d58c01330aedf01c451933823bfe7df6e65d210f6e7696a93d77
|
3 |
+
size 173599458
|
pmc_open_access_xml.py
DELETED
@@ -1,660 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
#
|
16 |
-
# This dataset script is based on pmc/open_access.py loading script.
|
17 |
-
|
18 |
-
"""PMC Open Access Subset enriched from XML."""
|
19 |
-
|
20 |
-
import datetime
|
21 |
-
import pandas as pd
|
22 |
-
import numpy as np
|
23 |
-
from itertools import compress, chain
|
24 |
-
from collections import defaultdict
|
25 |
-
import re
|
26 |
-
from lxml import etree
|
27 |
-
import json
|
28 |
-
|
29 |
-
import datasets
|
30 |
-
from datasets.tasks import LanguageModeling
|
31 |
-
|
32 |
-
|
33 |
-
# TODO: Add BibTeX citation
|
34 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
35 |
-
_CITATION = ""
|
36 |
-
|
37 |
-
_DESCRIPTION = """\
|
38 |
-
The PMC Open Access Subset includes more than 3.4 million journal articles and preprints that are made available under
|
39 |
-
license terms that allow reuse.
|
40 |
-
Not all articles in PMC are available for text mining and other reuse, many have copyright protection, however articles
|
41 |
-
in the PMC Open Access Subset are made available under Creative Commons or similar licenses that generally allow more
|
42 |
-
liberal redistribution and reuse than a traditional copyrighted work.
|
43 |
-
The PMC Open Access Subset is one part of the PMC Article Datasets
|
44 |
-
|
45 |
-
This version takes XML version as source, benefiting from the structured text
|
46 |
-
to split the articles in parts, naming the introduction, methods, results,
|
47 |
-
discussion and conclusion, and refers with keywords in the text to external or internal
|
48 |
-
resources (articles, figures, tables, formulas, boxed-text, quotes, code, footnotes, chemicals, graphics, medias).
|
49 |
-
"""
|
50 |
-
|
51 |
-
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/"
|
52 |
-
|
53 |
-
# TODO: Add the licence for the dataset here if you can find it
|
54 |
-
_LICENSE = """
|
55 |
-
https://www.ncbi.nlm.nih.gov/pmc/about/copyright/
|
56 |
-
|
57 |
-
Within the PMC Open Access Subset, there are three groupings:
|
58 |
-
|
59 |
-
Commercial Use Allowed - CC0, CC BY, CC BY-SA, CC BY-ND licenses
|
60 |
-
Non-Commercial Use Only - CC BY-NC, CC BY-NC-SA, CC BY-NC-ND licenses; and
|
61 |
-
Other - no machine-readable Creative Commons license, no license, or a custom license.
|
62 |
-
"""
|
63 |
-
|
64 |
-
_URL_ROOT = "https://ftp.ncbi.nlm.nih.gov/pub/pmc/"
|
65 |
-
_URL = _URL_ROOT+"oa_bulk/{subset}/xml/"
|
66 |
-
|
67 |
-
_SUBSETS = {
|
68 |
-
"commercial": "oa_comm",
|
69 |
-
"non_commercial": "oa_noncomm",
|
70 |
-
"other": "oa_other",
|
71 |
-
}
|
72 |
-
_BASELINE_DATE = "2022-11-18"
|
73 |
-
|
74 |
-
REFS_KEYS = ["pmid_ref", "unknown_pub_ref", "figure_ref", "table_ref", "formula_ref", "box_ref", "code_ref",
|
75 |
-
"quote_ref", "chemical_ref", "supplementary_ref", "footnote_ref", "graphic_ref", "media_ref"]
|
76 |
-
CONTENT_KEYS = ["introduction", "methods", "results", "discussion", "conclusion",
|
77 |
-
"front", "body", "back", "figure", "table", "formula", "box",
|
78 |
-
"code", "quote", "chemical", "supplementary", "footnote"]
|
79 |
-
begin_doc_rgx = re.compile("""<!DOCTYPE.*""")
|
80 |
-
def clean_raw(xml_text):
|
81 |
-
"""
|
82 |
-
Fixes the formating of xml of files and returns it.
|
83 |
-
Some have bad formating but they can be fixed/improved
|
84 |
-
"""
|
85 |
-
#Some XML can't be parsed because they are not starting with the DOCTYPE declaration
|
86 |
-
# Could be disabled if we handle the parsing error (TBD, how many files would be trashed)
|
87 |
-
|
88 |
-
begin_doc = begin_doc_rgx.search(xml_text)
|
89 |
-
xml_text = xml_text[begin_doc.start():]
|
90 |
-
|
91 |
-
#Some XML are poisoned with consecutive tabs and new lines
|
92 |
-
# xml_text = re.sub('\s+',' ',xml_text) # Commented because <code> requires those spacing
|
93 |
-
return xml_text
|
94 |
-
|
95 |
-
# Tag name to "reference type" linking
|
96 |
-
TAG_DIC = {"fig":("FIG","figure_ref"), "table-wrap":("TAB","table_ref"),
|
97 |
-
"array":("TAB","table_ref"), "boxed-text":("BOX","box_ref"),
|
98 |
-
"graphic":("GRAPH","graphic_ref"), "inline-graphic":("GRAPH","graphic_ref"),
|
99 |
-
"media":("MEDIA","media_ref"), "inline-media":("MEDIA","media_ref"),
|
100 |
-
"disp-formula":("FORMU","formula_ref"), "inline-formula":("FORMU","formula_ref"),
|
101 |
-
"table-wrap-foot":("FOOTN","footnote_ref"), "fn-group":("FOOTN","footnote_ref"),
|
102 |
-
"code":("CODE","code_ref"), "chem-struct-wrap":("CHEM","chemical_ref"),
|
103 |
-
"disp-quote":("QUOTE","quote_ref"), "speech":("QUOTE","quote_ref"),
|
104 |
-
"supplementary-material":("SUPPL","supplementary_ref"),
|
105 |
-
"inline-supplementary-material":("SUPPL","supplementary_ref")}
|
106 |
-
|
107 |
-
def get_ref_indexes(ref_el_l, refs_pmid, refs_nonpmid_keys):
|
108 |
-
"""
|
109 |
-
For all the element found as xref, give them an index to be later found in their corresponding section.
|
110 |
-
Also sort them into the different types of references (eg <array> and <table-wrap> are both
|
111 |
-
labeled as table_ref).
|
112 |
-
"""
|
113 |
-
count_ref_d = defaultdict(lambda:0)
|
114 |
-
reference_d = {}
|
115 |
-
for k, v in refs_pmid.items():
|
116 |
-
reference_d[k] = (v, "REF", "pmid_ref")
|
117 |
-
for i, k in enumerate(refs_nonpmid_keys):
|
118 |
-
reference_d[k] = (i, "UREF", "unknown_pub_ref")
|
119 |
-
|
120 |
-
refs_key_l = []
|
121 |
-
for el in ref_el_l:
|
122 |
-
keyword, ref_name = TAG_DIC[el.tag]
|
123 |
-
idx = count_ref_d[ref_name]
|
124 |
-
key = el.attrib["id"] if "id" in el.attrib.keys() else f"{el.tag}{idx}"
|
125 |
-
reference_d[key] = (idx, keyword, ref_name)
|
126 |
-
refs_key_l.append(key)
|
127 |
-
count_ref_d[ref_name]+=1
|
128 |
-
return reference_d, refs_key_l
|
129 |
-
|
130 |
-
def parseout_el_refs(el, rids):
|
131 |
-
"""
|
132 |
-
Extract the text from the tag opening to its closing, discarding the tail's text.
|
133 |
-
Removes xml namespace from the text for storage savings, such as:
|
134 |
-
- xmlns:xlink="http://www.w3.org/1999/xlink"
|
135 |
-
- xmlns:mml="http://www.w3.org/1998/Math/MathML"
|
136 |
-
|
137 |
-
Extract then from the text all the references founds to the rids dictionnary,
|
138 |
-
and replace them by keywords of the corresponding family (eg "##FIG##4##Doe 2022##" for a figure,
|
139 |
-
"##TAB##0##Table 1##" for a table, or "##MATHS##1##(2)##" for mathematical formulas)
|
140 |
-
|
141 |
-
The range reference (e.g. 1-3 or 15-17) are replaced by their range (1,2,3 or 15,16,17)
|
142 |
-
|
143 |
-
Returns the parsed text
|
144 |
-
"""
|
145 |
-
for xref in el.xpath(".//xref"):
|
146 |
-
inner_text = "".join(xref.itertext())
|
147 |
-
if inner_text == "": # Removing "empty" references
|
148 |
-
tail = xref.tail if xref.tail else ""
|
149 |
-
prev_el = xref.getprevious()
|
150 |
-
parent = xref.getparent()
|
151 |
-
if prev_el is None:
|
152 |
-
parent.text = "".join([(parent.text if parent.text else ""), tail])
|
153 |
-
else:
|
154 |
-
prev_el.tail = "".join([(prev_el.tail if prev_el.tail else ""), tail])
|
155 |
-
parent.remove(xref)
|
156 |
-
|
157 |
-
res_rid = defaultdict(list)
|
158 |
-
res_reftext = defaultdict(list)
|
159 |
-
ref_rstart, ref_rstop = None, None
|
160 |
-
has_ref_range = None
|
161 |
-
for xref in el.xpath(".//xref[not(ancestor::xref)]"): #Ignore innermost of imbricated references
|
162 |
-
inner_text = "".join(xref.itertext())
|
163 |
-
parent = xref.getparent()
|
164 |
-
rid = xref.get("rid")
|
165 |
-
if rid in rids.keys():
|
166 |
-
ref_idx, ref_kword, ref_class = rids[rid]
|
167 |
-
res_rid[ref_class].append(ref_idx)
|
168 |
-
res_reftext[ref_class].append(inner_text)
|
169 |
-
|
170 |
-
tail = xref.tail if xref.tail else ""
|
171 |
-
#### START HANDLING REF RANGE ########
|
172 |
-
try:
|
173 |
-
if has_ref_range is None:
|
174 |
-
if ref_kword in ["UREF", "REF"]: # Otherwise it's a year
|
175 |
-
has_ref_range = res_reftext[ref_class][-1].isnumeric() and int(res_reftext[ref_class][-1]) < 500
|
176 |
-
|
177 |
-
if has_ref_range and ref_kword in ["UREF", "REF"]:
|
178 |
-
if tail=="-":
|
179 |
-
ref_rstart = int(res_reftext[ref_class][-1])
|
180 |
-
tail = ", "
|
181 |
-
elif ref_rstart is not None:
|
182 |
-
ref_rstop = int(res_reftext[ref_class][-1])
|
183 |
-
new_ref_kwords = [f"##{ref_kword}##{ref_idx}##{inner_text}##"]
|
184 |
-
for i in range(ref_rstart+1, ref_rstop):
|
185 |
-
new_rid = re.sub(str(ref_rstop), str(i), rid, count=1)
|
186 |
-
ref_idx_, ref_kword_, ref_class_ = rids[new_rid]
|
187 |
-
res_rid[ref_class_].insert(-1, ref_idx_)
|
188 |
-
res_reftext[ref_class_].insert(-1, str(i))
|
189 |
-
new_ref_kwords.insert(-1, f"##{ref_kword_}##{ref_idx_}##{str(i)}##")
|
190 |
-
ref_kword = ", ".join(new_ref_kwords)
|
191 |
-
ref_rstart = None
|
192 |
-
except (KeyError, ValueError):
|
193 |
-
ref_rstart = None
|
194 |
-
continue # The substitution failed, happen when text don't match the rid
|
195 |
-
#### END HANDLING REF RANGE ########
|
196 |
-
|
197 |
-
prev_el = xref.getprevious()
|
198 |
-
if prev_el is None:
|
199 |
-
parent.text = "".join([(parent.text if parent.text else ""), f"##{ref_kword}##{ref_idx}##{inner_text}##", tail])
|
200 |
-
else:
|
201 |
-
prev_el.tail = "".join([(prev_el.tail if prev_el.tail else ""), f"##{ref_kword}##{ref_idx}##{inner_text}##", tail])
|
202 |
-
parent.remove(xref)
|
203 |
-
|
204 |
-
text = etree.tostring(el, with_tail=False, encoding='unicode', method='xml')
|
205 |
-
#Removing the xml namespace, (otherwise they would be everywhere)
|
206 |
-
tag_start = text.find(">")+1
|
207 |
-
tag_txt = text[:tag_start]
|
208 |
-
|
209 |
-
for k, v in el.nsmap.items():
|
210 |
-
tag_txt = tag_txt.replace(f' xmlns:{k}="{v}"', "", 1)
|
211 |
-
|
212 |
-
text = "".join([tag_txt, text[tag_start:]])
|
213 |
-
|
214 |
-
return text
|
215 |
-
|
216 |
-
|
217 |
-
def get_references(article_tree):
|
218 |
-
"""
|
219 |
-
Retrieve two dictionnaries of the bibr references for that article.
|
220 |
-
The first has the references' PMID for those having one.
|
221 |
-
The second contains the <ref> tag fields, that could be identified to retrieve the
|
222 |
-
referenced documents (some have PMID that could be found from the title and authors of a document).
|
223 |
-
"""
|
224 |
-
references_pmid = {}
|
225 |
-
references_nonpmid = []
|
226 |
-
references_nonpmid_keys = []
|
227 |
-
refs = article_tree.find(".//ref-list")
|
228 |
-
if refs is None: #Some don't have any references
|
229 |
-
return {}, [], []
|
230 |
-
refs = refs.findall("ref")
|
231 |
-
for i, ref in enumerate(refs):
|
232 |
-
pmid = None
|
233 |
-
for pubid in ref.findall(".//pub-id"):
|
234 |
-
if pubid.get("pub-id-type") == "pmid":
|
235 |
-
pmid = int(pubid.text)
|
236 |
-
break
|
237 |
-
if pmid is not None and pmid<100000000:
|
238 |
-
#In an article (oa_comm:PMC2679651), broken PMID were found (>10e9).
|
239 |
-
#May be several of those. Not sure what to do with them, and what threshold to use
|
240 |
-
#Keeping them would result in loosing info about the reference (article title, authors, ...)
|
241 |
-
|
242 |
-
#Only the PMID is kept, as it links to the documents in pubmed abstract dataset.
|
243 |
-
references_pmid[ref.attrib["id"]] = str(pmid)
|
244 |
-
else:
|
245 |
-
ref_key = ref.attrib["id"] if "id" in ref.attrib.keys() else f"URef{i+1}"
|
246 |
-
citation_d = defaultdict(list)
|
247 |
-
#Authors are the only elements that can come in multiples (I could be wrong)
|
248 |
-
for el in ref.iterdescendants():
|
249 |
-
if isinstance(el.text, str) and isinstance(el.tag, str):
|
250 |
-
citation_d[el.tag].append(el.text)
|
251 |
-
references_nonpmid.append(dict(citation_d))
|
252 |
-
references_nonpmid_keys.append(ref_key)
|
253 |
-
return references_pmid, references_nonpmid, references_nonpmid_keys
|
254 |
-
|
255 |
-
def construct_datadict(article_tree):
|
256 |
-
"""
|
257 |
-
Where the magic happens. A long script that:
|
258 |
-
- Get the external references (from pmid if present)
|
259 |
-
- Get glossary and remove it from the document
|
260 |
-
- Find internal references (figures, tables, ...) and build a xref dictionary
|
261 |
-
- Extract paragraphs and titles with their path in the document
|
262 |
-
- Titles are used to identify ["introduction", "methods", "results" and "discussion"]
|
263 |
-
- The path are then used to group paragraphs and titles into corresponding content.
|
264 |
-
- Remaining p and title are put in three other section: front, body, back
|
265 |
-
|
266 |
-
Returns:
|
267 |
-
- content_d: Dictionnary with the content result
|
268 |
-
- reference_d: The references of each kind (figure, table, ...) for each content type (intro, figure caption, ...)
|
269 |
-
- reference_text_d: The replaced text by the keywords of the references, with keys matching reference_d.
|
270 |
-
- reference_count: The count of unique external-document references.
|
271 |
-
|
272 |
-
Useful information about the tags can be found here: https://jats.nlm.nih.gov/archiving/tag-library/1.3/
|
273 |
-
"""
|
274 |
-
res_content_d = {}
|
275 |
-
|
276 |
-
refs_pmid, refs_nonpmid, refs_nonpmid_keys = get_references(article_tree)
|
277 |
-
reference_count = len(refs_pmid)+len(refs_nonpmid)
|
278 |
-
|
279 |
-
res_content_d["unknown_pub"] = json.dumps(refs_nonpmid)
|
280 |
-
refs_el = article_tree.find(".//ref-list")
|
281 |
-
if refs_el is not None:
|
282 |
-
refs_el.getparent().remove(refs_el)
|
283 |
-
|
284 |
-
# Extracts the glossary if exists, and removes it from the tree
|
285 |
-
glossary = {}
|
286 |
-
def search_def(el):
|
287 |
-
for item in el.findall(".//def-item"):
|
288 |
-
abbrev = item.find(".//term")
|
289 |
-
if abbrev is None:
|
290 |
-
continue
|
291 |
-
k = "".join(abbrev.itertext())
|
292 |
-
definition = item.find(".//def")
|
293 |
-
definition = "".join(definition.itertext()) if definition is not None else ""
|
294 |
-
glossary[k] = definition
|
295 |
-
|
296 |
-
for el in article_tree.findall(".//glossary"):
|
297 |
-
search_def(el)
|
298 |
-
el.getparent().remove(el)
|
299 |
-
for el in article_tree.findall(".//def-list"):
|
300 |
-
search_def(el) #There may be still more def-list outside of a glossary
|
301 |
-
el.getparent().remove(el)
|
302 |
-
res_content_d["glossary"] = glossary
|
303 |
-
|
304 |
-
# After testing, no question were found in the dataset, so I commented that part
|
305 |
-
# question_l = []
|
306 |
-
# for el in article_tree.xpath(".//question-preamble|.//question|.//answer|.//explanation"):
|
307 |
-
# text = parseout_el_refs(el, {})
|
308 |
-
# question_l.append(text)
|
309 |
-
# res_content_d["question"] = "\n".join(question_l)
|
310 |
-
# for el in article_tree.xpath(".//question-wrap-group|.//question-wrap|.//answer-set|.//explanation"):
|
311 |
-
# el.getparent().remove(el)
|
312 |
-
|
313 |
-
# One big query is faster than multiple small ones
|
314 |
-
ref_el_l = article_tree.xpath(".//fig|.//table-wrap|.//array|.//supplementary-material\
|
315 |
-
|.//inline-supplementary-material|.//disp-formula\
|
316 |
-
|.//inline-formula|.//graphic|.//inline-graphic\
|
317 |
-
|.//media|.//inline-media|.//boxed-text\
|
318 |
-
|.//table-wrap-foot|.//fn-group|.//chem-struct-wrap\
|
319 |
-
|.//code|.//disp-quote|.//speech")
|
320 |
-
rids, key_l = get_ref_indexes(ref_el_l, refs_pmid, refs_nonpmid_keys)
|
321 |
-
text_l_d = defaultdict(list)
|
322 |
-
for el, key in zip(ref_el_l[::-1], key_l[::-1]):
|
323 |
-
#The iteration is done backward to always process first the most inner reference,
|
324 |
-
# it makes the processing is agnostic to structure rules differences between articles
|
325 |
-
new_text = parseout_el_refs(el, rids)
|
326 |
-
|
327 |
-
ref_class = rids[key][2]
|
328 |
-
text_l_d[ref_class].insert(0, new_text)
|
329 |
-
|
330 |
-
repl_xref = etree.Element("xref", attrib={"rid":key})
|
331 |
-
repl_xref.tail = el.tail
|
332 |
-
el.addprevious(repl_xref)
|
333 |
-
el.getparent().remove(el)
|
334 |
-
|
335 |
-
# Finally, the discovered references and text are added to the result
|
336 |
-
for ref_k in REFS_KEYS[2:]: #Slicing from 2, to not add pmid and unknown ref here
|
337 |
-
res_content_d[ref_k[:-4]] = text_l_d[ref_k]#"\n".join(text_l_d[ref_k])
|
338 |
-
|
339 |
-
path_l, text_l = [], []
|
340 |
-
t_paths, t_texts_lowcase = [], []
|
341 |
-
for part in ["front", "body", "back"]: #Iterate parts and insert first front and back
|
342 |
-
tmp_path_l, tmp_text_l = [], []
|
343 |
-
tmp_t_paths, tmp_t_texts_lowcase = [], []
|
344 |
-
part_el = article_tree.find(".//"+part)
|
345 |
-
if part_el is None:
|
346 |
-
res_content_d[part] = []
|
347 |
-
continue
|
348 |
-
#Only the outermost p are kept, to prevent duplication.
|
349 |
-
#Also seen title with p inside. not(ancestor::title) prevents duplication of that p
|
350 |
-
for el in part_el.xpath(".//p[not(ancestor::p) and not(ancestor::title)]| .//title[not(ancestor::p) and not(ancestor::title)]"):
|
351 |
-
new_text = parseout_el_refs(el, rids)
|
352 |
-
tmp_path_l.append(article_tree.getelementpath(el))
|
353 |
-
tmp_text_l.append(new_text)
|
354 |
-
if el.tag=="title":
|
355 |
-
tmp_t_paths.append(tmp_path_l[-1])
|
356 |
-
tmp_t_texts_lowcase.append(new_text.lower())
|
357 |
-
if part=="body": #We keep the body for processing right bellow.
|
358 |
-
path_l, text_l = tmp_path_l, tmp_text_l
|
359 |
-
t_paths, t_texts_lowcase = tmp_t_paths, tmp_t_texts_lowcase
|
360 |
-
else:
|
361 |
-
res_content_d[part] = tmp_text_l
|
362 |
-
|
363 |
-
# Figuring from the titles which are the different categories
|
364 |
-
mask_intro = np.array(["introduction" in t_text or "background" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
365 |
-
mask_metho = np.array(["method" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
366 |
-
mask_resul = np.array(["result" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
367 |
-
mask_discu = np.array(["discussion" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
368 |
-
mask_concl = np.array(["conclusion" in t_text for t_text in t_texts_lowcase]).astype(bool)
|
369 |
-
processed_mask = np.zeros(len(text_l), dtype="bool")
|
370 |
-
for mask, name_section in zip([mask_intro, mask_metho, mask_resul, mask_discu, mask_concl],
|
371 |
-
["introduction", "methods", "results", "discussion", "conclusion"]):
|
372 |
-
if not np.any(mask):
|
373 |
-
res_content_d[name_section] = []
|
374 |
-
continue
|
375 |
-
|
376 |
-
filtered_path_l = list(compress(t_paths, mask))
|
377 |
-
levels = np.array([len(path.split("/")) for path in filtered_path_l])
|
378 |
-
root_path = filtered_path_l[np.argmin(levels)]
|
379 |
-
root_path = root_path[:root_path.rindex("/")]
|
380 |
-
mask_contents = np.array([path.startswith(root_path) for path in path_l]).astype(bool)
|
381 |
-
processed_mask |= mask_contents
|
382 |
-
res_content_d[name_section] = list(compress(text_l, mask_contents))
|
383 |
-
|
384 |
-
processed_mask = ~processed_mask #Finally, add the body part as everything that don't belong to previous categories
|
385 |
-
res_content_d["body"] = list(compress(text_l, processed_mask))
|
386 |
-
|
387 |
-
return (res_content_d, reference_count)
|
388 |
-
|
389 |
-
class OpenAccessXMLConfig(datasets.BuilderConfig):
|
390 |
-
"""BuilderConfig for the PMC Open Access Subset."""
|
391 |
-
|
392 |
-
def __init__(self, subsets=None, **kwargs):
|
393 |
-
"""BuilderConfig for the PMC Open Access Subset.
|
394 |
-
Args:
|
395 |
-
subsets (:obj:`List[str]`): List of subsets/groups to load.
|
396 |
-
**kwargs: Keyword arguments forwarded to super.
|
397 |
-
"""
|
398 |
-
subsets = [subsets] if isinstance(subsets, str) else subsets
|
399 |
-
super().__init__(
|
400 |
-
name="+".join(subsets), **kwargs,
|
401 |
-
)
|
402 |
-
self.subsets = subsets if self.name != "all" else list(_SUBSETS.keys())
|
403 |
-
|
404 |
-
|
405 |
-
class OpenAccessXML(datasets.GeneratorBasedBuilder):
|
406 |
-
"""PMC Open Access Subset enriched from XML files."""
|
407 |
-
|
408 |
-
VERSION = datasets.Version("1.0.0")
|
409 |
-
BUILDER_CONFIG_CLASS = OpenAccessXMLConfig
|
410 |
-
BUILDER_CONFIGS = [OpenAccessXMLConfig(subsets="all")] + [OpenAccessXMLConfig(subsets=subset) for subset in _SUBSETS]
|
411 |
-
DEFAULT_CONFIG_NAME = "all"
|
412 |
-
|
413 |
-
def _info(self):
|
414 |
-
return datasets.DatasetInfo(
|
415 |
-
description=_DESCRIPTION,
|
416 |
-
features=datasets.Features(
|
417 |
-
{
|
418 |
-
"accession_id": datasets.Value("string"),
|
419 |
-
"pmid": datasets.Value("string"),
|
420 |
-
|
421 |
-
"introduction": datasets.features.Sequence(datasets.Value("string")),
|
422 |
-
"methods": datasets.features.Sequence(datasets.Value("string")),
|
423 |
-
"results": datasets.features.Sequence(datasets.Value("string")),
|
424 |
-
"discussion": datasets.features.Sequence(datasets.Value("string")),
|
425 |
-
"conclusion": datasets.features.Sequence(datasets.Value("string")),
|
426 |
-
|
427 |
-
"front": datasets.features.Sequence(datasets.Value("string")),
|
428 |
-
"body": datasets.features.Sequence(datasets.Value("string")),
|
429 |
-
"back": datasets.features.Sequence(datasets.Value("string")),
|
430 |
-
|
431 |
-
"figure": datasets.features.Sequence(datasets.Value("string")),
|
432 |
-
"table": datasets.features.Sequence(datasets.Value("string")),
|
433 |
-
"formula": datasets.features.Sequence(datasets.Value("string")),
|
434 |
-
"box": datasets.features.Sequence(datasets.Value("string")),
|
435 |
-
"code": datasets.features.Sequence(datasets.Value("string")),
|
436 |
-
"quote": datasets.features.Sequence(datasets.Value("string")),
|
437 |
-
"chemical": datasets.features.Sequence(datasets.Value("string")),
|
438 |
-
"supplementary": datasets.features.Sequence(datasets.Value("string")),
|
439 |
-
"footnote": datasets.features.Sequence(datasets.Value("string")),
|
440 |
-
"graphic": datasets.features.Sequence(datasets.Value("string")),
|
441 |
-
"media": datasets.features.Sequence(datasets.Value("string")),
|
442 |
-
|
443 |
-
"unknown_pub": datasets.Value("string"),
|
444 |
-
# "question": datasets.Value("string"),
|
445 |
-
"glossary": datasets.features.Sequence(
|
446 |
-
{"acronym": datasets.Value("string"), "definition": datasets.Value("string")}
|
447 |
-
),
|
448 |
-
"n_references": datasets.Value("int32"),
|
449 |
-
"license": datasets.Value("string"),
|
450 |
-
"retracted": datasets.Value("string"),
|
451 |
-
"last_updated": datasets.Value("string"),
|
452 |
-
"citation": datasets.Value("string"),
|
453 |
-
"package_file": datasets.Value("string"),
|
454 |
-
}
|
455 |
-
),
|
456 |
-
homepage=_HOMEPAGE,
|
457 |
-
license=_LICENSE,
|
458 |
-
citation=_CITATION,
|
459 |
-
task_templates=[LanguageModeling(text_column="content")],
|
460 |
-
)
|
461 |
-
|
462 |
-
def _split_generators(self, dl_manager):
|
463 |
-
|
464 |
-
incremental_paths = {
|
465 |
-
"incremental_file_lists": [],
|
466 |
-
"incremental_archives": []
|
467 |
-
}
|
468 |
-
|
469 |
-
baseline_package_list = dl_manager.download(f"{_URL_ROOT}oa_file_list.csv")
|
470 |
-
|
471 |
-
baseline_file_lists = []
|
472 |
-
baseline_archives = []
|
473 |
-
for subset in self.config.subsets:
|
474 |
-
url = _URL.format(subset=_SUBSETS[subset])
|
475 |
-
basename = f"{_SUBSETS[subset]}_xml."
|
476 |
-
# Baselines
|
477 |
-
baselines = [f"PMC00{i}xxxxxx.baseline.{_BASELINE_DATE}" for i in range(9)]
|
478 |
-
|
479 |
-
for baseline in baselines:
|
480 |
-
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
|
481 |
-
baseline_archive_url = f"{url}{basename}{baseline}.tar.gz"
|
482 |
-
try:
|
483 |
-
baseline_file_list = dl_manager.download(baseline_file_list_url)
|
484 |
-
baseline_archive = dl_manager.download(baseline_archive_url)
|
485 |
-
except FileNotFoundError: # non-commercial PMC000xxxxxx baseline does not exist
|
486 |
-
continue
|
487 |
-
|
488 |
-
baseline_file_lists.append(baseline_file_list)
|
489 |
-
baseline_archives.append(baseline_archive)
|
490 |
-
|
491 |
-
baseline_file_list_url = f"{url}{basename}{baseline}.filelist.csv"
|
492 |
-
|
493 |
-
# Incremental commented because some articles are already in the main parts (updates?)
|
494 |
-
# Need to find a way to add them to the dataset without duplicating the articles.
|
495 |
-
# Also adding them would mean that each new day the dataset is loaded, the whole dataset is recreated.
|
496 |
-
date_delta = datetime.date.today() - datetime.date.fromisoformat(_BASELINE_DATE)
|
497 |
-
incremental_dates = [
|
498 |
-
(datetime.date.fromisoformat(_BASELINE_DATE) + datetime.timedelta(days=i + 1)).isoformat()
|
499 |
-
for i in range(date_delta.days)
|
500 |
-
]
|
501 |
-
incrementals = [f"incr.{date}" for date in incremental_dates]
|
502 |
-
for incremental in incrementals:
|
503 |
-
incremental_file_list_url = f"{url}{basename}{incremental}.filelist.csv"
|
504 |
-
incremental_archive_url = f"{url}{basename}{incremental}.tar.gz"
|
505 |
-
try:
|
506 |
-
incremental_file_list = dl_manager.download(incremental_file_list_url)
|
507 |
-
incremental_archive = dl_manager.download(incremental_archive_url)
|
508 |
-
except FileNotFoundError: # Some increment might not exist
|
509 |
-
continue
|
510 |
-
incremental_paths["incremental_file_lists"].append(incremental_file_list)
|
511 |
-
incremental_paths["incremental_archives"].append(incremental_archive)
|
512 |
-
|
513 |
-
return [
|
514 |
-
datasets.SplitGenerator(
|
515 |
-
name=datasets.Split.TRAIN,
|
516 |
-
gen_kwargs={
|
517 |
-
"baseline_file_lists": baseline_file_lists,
|
518 |
-
"baseline_archives": [dl_manager.iter_archive(archive) for archive in baseline_archives],
|
519 |
-
"baseline_package_list": baseline_package_list,
|
520 |
-
"incremental_file_lists": incremental_paths["incremental_file_lists"],
|
521 |
-
"incremental_archives": [dl_manager.iter_archive(archive) for archive in incremental_paths["incremental_archives"]],
|
522 |
-
},
|
523 |
-
),
|
524 |
-
]
|
525 |
-
|
526 |
-
def _generate_examples(self, baseline_file_lists, baseline_archives, baseline_package_list, incremental_file_lists, incremental_archives):
|
527 |
-
#Loading the file listing folders of individual PMC Article package (with medias and graphics)
|
528 |
-
oa_package_list = pd.read_csv(baseline_package_list, index_col="Accession ID")
|
529 |
-
oa_package_list = oa_package_list[["File"]]
|
530 |
-
oa_package_list.sort_index(inplace=True)
|
531 |
-
processed_ids = set()
|
532 |
-
|
533 |
-
# Incrementals
|
534 |
-
if incremental_file_lists:
|
535 |
-
for incremental_file_list, incremental_archive in zip(incremental_file_lists[::-1], incremental_archives[::-1]):
|
536 |
-
try:
|
537 |
-
incrementals = pd.read_csv(incremental_file_list, index_col="AccessionID")
|
538 |
-
except FileNotFoundError: # File not found can happen here in stream mode
|
539 |
-
continue
|
540 |
-
incrementals = incrementals.join(oa_package_list).reset_index().set_index("Article File")
|
541 |
-
incrementals.File = incrementals.File.fillna('')
|
542 |
-
incrementals = incrementals.to_dict(orient="index")
|
543 |
-
|
544 |
-
for path, file in incremental_archive:
|
545 |
-
data = incrementals.pop(path)
|
546 |
-
pmcid = data["AccessionID"]
|
547 |
-
if pmcid in processed_ids: #oa_package_list.loc[pmcid, "yet_processed"]:
|
548 |
-
continue
|
549 |
-
content = file.read()
|
550 |
-
try:
|
551 |
-
text = content.decode("utf-8").strip()
|
552 |
-
except UnicodeDecodeError as e:
|
553 |
-
text = content.decode("latin-1").strip()
|
554 |
-
text = clean_raw(text)
|
555 |
-
try:
|
556 |
-
article_tree = etree.ElementTree(etree.fromstring(text))
|
557 |
-
except etree.XMLSyntaxError: #In some files, xml is broken
|
558 |
-
continue
|
559 |
-
|
560 |
-
content_d, n_ref = construct_datadict(article_tree)
|
561 |
-
glossary = np.array([[k,v] for k,v in content_d["glossary"].items()])
|
562 |
-
data = {
|
563 |
-
"introduction": content_d["introduction"],
|
564 |
-
"methods": content_d["methods"],
|
565 |
-
"results": content_d["results"],
|
566 |
-
"discussion": content_d["discussion"],
|
567 |
-
"conclusion": content_d["conclusion"],
|
568 |
-
"front": content_d["front"],
|
569 |
-
"body": content_d["body"],
|
570 |
-
"back": content_d["back"],
|
571 |
-
"figure": content_d["figure"],
|
572 |
-
"table": content_d["table"],
|
573 |
-
"formula": content_d["formula"],
|
574 |
-
"box": content_d["box"],
|
575 |
-
"code": content_d["code"],
|
576 |
-
"quote": content_d["quote"],
|
577 |
-
"chemical": content_d["chemical"],
|
578 |
-
"supplementary": content_d["supplementary"],
|
579 |
-
"footnote": content_d["footnote"],
|
580 |
-
"graphic": content_d["graphic"],
|
581 |
-
"media": content_d["media"],
|
582 |
-
# "question": content_d["question"],
|
583 |
-
"unknown_pub": content_d["unknown_pub"],
|
584 |
-
"glossary": {"acronym":glossary[:,0], "definition":glossary[:,1]} if len(glossary)>0 else {"acronym":[], "definition":[]},
|
585 |
-
"n_references": n_ref,
|
586 |
-
"pmid": data["PMID"],
|
587 |
-
"accession_id": pmcid,
|
588 |
-
"license": data["License"],
|
589 |
-
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
590 |
-
"retracted": data["Retracted"],
|
591 |
-
"citation": data["Article Citation"],
|
592 |
-
"package_file": data["File"],
|
593 |
-
}
|
594 |
-
processed_ids.add(pmcid)
|
595 |
-
yield pmcid, data
|
596 |
-
|
597 |
-
# Baselines
|
598 |
-
for baseline_file_list, baseline_archive in zip(baseline_file_lists, baseline_archives):
|
599 |
-
|
600 |
-
#try:
|
601 |
-
baselines = pd.read_csv(baseline_file_list, index_col="AccessionID")
|
602 |
-
baselines = baselines.join(oa_package_list).reset_index().set_index("Article File")
|
603 |
-
baselines.File = baselines.File.fillna('')
|
604 |
-
baselines = baselines.to_dict(orient="index")
|
605 |
-
|
606 |
-
for path, file in baseline_archive:
|
607 |
-
data = baselines.pop(path)
|
608 |
-
pmcid = data["AccessionID"]
|
609 |
-
if pmcid in processed_ids:
|
610 |
-
continue
|
611 |
-
content = file.read()
|
612 |
-
try:
|
613 |
-
text = content.decode("utf-8").strip()
|
614 |
-
except UnicodeDecodeError as e:
|
615 |
-
text = content.decode("latin-1").strip()
|
616 |
-
text = clean_raw(text)
|
617 |
-
try:
|
618 |
-
article_tree = etree.ElementTree(etree.fromstring(text))
|
619 |
-
except etree.XMLSyntaxError: #In some files, xml is broken
|
620 |
-
continue
|
621 |
-
|
622 |
-
content_d, n_ref = construct_datadict(article_tree)
|
623 |
-
glossary = np.array([[k,v] for k,v in content_d["glossary"].items()])
|
624 |
-
data = {
|
625 |
-
"introduction": content_d["introduction"],
|
626 |
-
"methods": content_d["methods"],
|
627 |
-
"results": content_d["results"],
|
628 |
-
"discussion": content_d["discussion"],
|
629 |
-
"conclusion": content_d["conclusion"],
|
630 |
-
"front": content_d["front"],
|
631 |
-
"body": content_d["body"],
|
632 |
-
"back": content_d["back"],
|
633 |
-
"figure": content_d["figure"],
|
634 |
-
"table": content_d["table"],
|
635 |
-
"formula": content_d["formula"],
|
636 |
-
"box": content_d["box"],
|
637 |
-
"code": content_d["code"],
|
638 |
-
"quote": content_d["quote"],
|
639 |
-
"chemical": content_d["chemical"],
|
640 |
-
"supplementary": content_d["supplementary"],
|
641 |
-
"footnote": content_d["footnote"],
|
642 |
-
"graphic": content_d["graphic"],
|
643 |
-
"media": content_d["media"],
|
644 |
-
# "question": content_d["question"],
|
645 |
-
"unknown_pub": content_d["unknown_pub"],
|
646 |
-
"glossary": {"acronym":glossary[:,0], "definition":glossary[:,1]} if len(glossary)>0 else {"acronym":[], "definition":[]},
|
647 |
-
"n_references": n_ref,
|
648 |
-
"pmid": data["PMID"],
|
649 |
-
"accession_id": pmcid,
|
650 |
-
"license": data["License"],
|
651 |
-
"last_updated": data["LastUpdated (YYYY-MM-DD HH:MM:SS)"],
|
652 |
-
"retracted": data["Retracted"],
|
653 |
-
"citation": data["Article Citation"],
|
654 |
-
"package_file": data["File"],
|
655 |
-
}
|
656 |
-
processed_ids.add(pmcid)
|
657 |
-
yield pmcid, data
|
658 |
-
|
659 |
-
#except FileNotFoundError: # non-commercial PMC000xxxxxx baseline does not exist
|
660 |
-
# continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|