File size: 5,498 Bytes
56acc4f 390ffce 56acc4f 9beb373 390ffce bd9ef9d 2167bd1 c64db1f bd9ef9d 390ffce bd9ef9d 2167bd1 c64db1f bd9ef9d 390ffce bd9ef9d 2167bd1 c64db1f bd9ef9d 56acc4f 0df06f1 9beb373 0df06f1 9beb373 0df06f1 9beb373 9a0d1b4 9beb373 0df06f1 9beb373 0df06f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
language:
- en
license: cc-by-nc-nd-4.0
task_categories:
- image-to-image
- object-detection
tags:
- code
- biology
dataset_info:
- config_name: video_01
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: shapes
sequence:
- name: track_id
dtype: uint32
- name: label
dtype:
class_label:
names:
'0': dog
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 14990
num_examples: 52
download_size: 313328015
dataset_size: 14990
- config_name: video_02
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: shapes
sequence:
- name: track_id
dtype: uint32
- name: label
dtype:
class_label:
names:
'0': dog
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 19600
num_examples: 58
download_size: 67354761
dataset_size: 19600
- config_name: video_03
features:
- name: id
dtype: int32
- name: name
dtype: string
- name: image
dtype: image
- name: mask
dtype: image
- name: shapes
sequence:
- name: track_id
dtype: uint32
- name: label
dtype:
class_label:
names:
'0': dog
- name: type
dtype: string
- name: points
sequence:
sequence: float32
- name: rotation
dtype: float32
- name: occluded
dtype: uint8
- name: attributes
sequence:
- name: name
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 14126
num_examples: 49
download_size: 148412090
dataset_size: 14126
---
# Dogs Video - Object Detection Dataset
The dataset contains frames extracted from videos with dogs on the streets. Each frame is accompanied by **bounding box** that specifically **tracks the dog** in the image.
# 💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on **[TrainingData](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** to buy the dataset
The dataset provides a valuable resource for advancing computer vision tasks, enabling the development of more accurate and effective solutions for monitoring and understanding dog behavior in urban settings.
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2d6ca1d0561d6eaf77f60743335d4e03%2F3cb2d54c-7dd7-4c05-8764-bf2156e90381.gif?generation=1695301016829163&alt=media)
# Dataset structure
The dataset consists of 3 folders with frames from the video with dogs on the streets.
Each folder includes:
- **images**: folder with original frames from the video,
- **boxes**: visualized data labeling for the images in the previous folder,
- **.csv file**: file with id and path of each frame in the "images" folder,
- **annotations.xml**: contains coordinates of the bounding boxes, created for the original frames
# 💴 Buy the Dataset: This is just an example of the data. Leave a request on **[https://trainingdata.pro/datasets](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** to discuss your requirements, learn about the price and buy the dataset
# Data Format
Each frame from `images` folder is accompanied by an XML-annotation in the `annotations.xml` file indicating the coordinates of the bounding boxes for dogs tracking. For each point, the x and y coordinates are provided.
# Example of the XML-file
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F8efa058042b600f842fbb76da35c4876%2Fcarbon%20(1).png?generation=1695994709378514&alt=media)
# Object tracking might be made in accordance with your requirements.
# **[TrainingData](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** provides high-quality data annotation tailored to your needs
More datasets in TrainingData's Kaggle account: **https://www.kaggle.com/trainingdatapro/datasets**
TrainingData's GitHub: **https://github.com/Trainingdata-datamarket/TrainingData_All_datasets**
*keywords: object movements, dogs behavoir, pets object detection, motion tracking, domestic dogs, stray dogs, object detection, multiple-object tracking, image dataset, labeled web tracking dataset, computer vision, machine learning, cctv, camera detection, surveillance, security camera, security camera object detection, video-based monitoring, smart city, smart city development, smart city vision, smart city deep learning, smart city management, classification, image recognition* |