File size: 5,498 Bytes
56acc4f
390ffce
 
56acc4f
9beb373
 
 
 
 
 
390ffce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9ef9d
2167bd1
c64db1f
bd9ef9d
390ffce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9ef9d
2167bd1
c64db1f
bd9ef9d
390ffce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd9ef9d
2167bd1
c64db1f
bd9ef9d
56acc4f
0df06f1
9beb373
 
 
0df06f1
 
9beb373
 
 
 
 
 
 
 
 
 
 
 
0df06f1
 
9beb373
 
 
 
 
9a0d1b4
9beb373
 
 
0df06f1
9beb373
 
 
0df06f1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
language:
- en
license: cc-by-nc-nd-4.0
task_categories:
- image-to-image
- object-detection
tags:
- code
- biology
dataset_info:
- config_name: video_01
  features:
  - name: id
    dtype: int32
  - name: name
    dtype: string
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: shapes
    sequence:
    - name: track_id
      dtype: uint32
    - name: label
      dtype:
        class_label:
          names:
            '0': dog
    - name: type
      dtype: string
    - name: points
      sequence:
        sequence: float32
    - name: rotation
      dtype: float32
    - name: occluded
      dtype: uint8
    - name: attributes
      sequence:
      - name: name
        dtype: string
      - name: text
        dtype: string
  splits:
  - name: train
    num_bytes: 14990
    num_examples: 52
  download_size: 313328015
  dataset_size: 14990
- config_name: video_02
  features:
  - name: id
    dtype: int32
  - name: name
    dtype: string
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: shapes
    sequence:
    - name: track_id
      dtype: uint32
    - name: label
      dtype:
        class_label:
          names:
            '0': dog
    - name: type
      dtype: string
    - name: points
      sequence:
        sequence: float32
    - name: rotation
      dtype: float32
    - name: occluded
      dtype: uint8
    - name: attributes
      sequence:
      - name: name
        dtype: string
      - name: text
        dtype: string
  splits:
  - name: train
    num_bytes: 19600
    num_examples: 58
  download_size: 67354761
  dataset_size: 19600
- config_name: video_03
  features:
  - name: id
    dtype: int32
  - name: name
    dtype: string
  - name: image
    dtype: image
  - name: mask
    dtype: image
  - name: shapes
    sequence:
    - name: track_id
      dtype: uint32
    - name: label
      dtype:
        class_label:
          names:
            '0': dog
    - name: type
      dtype: string
    - name: points
      sequence:
        sequence: float32
    - name: rotation
      dtype: float32
    - name: occluded
      dtype: uint8
    - name: attributes
      sequence:
      - name: name
        dtype: string
      - name: text
        dtype: string
  splits:
  - name: train
    num_bytes: 14126
    num_examples: 49
  download_size: 148412090
  dataset_size: 14126
---
# Dogs Video - Object Detection Dataset

The dataset contains frames extracted from videos with dogs on the streets. Each frame is accompanied by **bounding box** that specifically **tracks the dog** in the image. 

# 💴 For Commercial Usage: To discuss your requirements, learn about the price and buy the dataset, leave a request on **[TrainingData](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** to buy the dataset

The dataset provides a valuable resource for advancing computer vision tasks, enabling the development of more accurate and effective solutions for monitoring and understanding dog behavior in urban settings.

![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2d6ca1d0561d6eaf77f60743335d4e03%2F3cb2d54c-7dd7-4c05-8764-bf2156e90381.gif?generation=1695301016829163&alt=media)

# Dataset structure
The dataset consists of 3 folders with frames from the video with dogs on the streets. 
Each folder includes:
- **images**: folder with original frames from the video,
- **boxes**: visualized data labeling for the images in the previous folder,
- **.csv file**: file with id and path of each frame in the "images" folder,
- **annotations.xml**: contains coordinates of the bounding boxes, created for the original frames

# 💴 Buy the Dataset: This is just an example of the data. Leave a request on **[https://trainingdata.pro/datasets](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** to discuss your requirements, learn about the price and buy the dataset

# Data Format

Each frame from `images` folder is accompanied by an XML-annotation in the `annotations.xml` file indicating the coordinates of the bounding boxes for dogs tracking. For each point, the x and y coordinates are provided.

# Example of the XML-file 
![](https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F8efa058042b600f842fbb76da35c4876%2Fcarbon%20(1).png?generation=1695994709378514&alt=media)

# Object tracking might be made in accordance with your requirements.

# **[TrainingData](https://trainingdata.pro/datasets/object-tracking?utm_source=huggingface&utm_medium=cpc&utm_campaign=dogs-video-object-tracking-dataset)** provides high-quality data annotation tailored to your needs

More datasets in TrainingData's Kaggle account: **https://www.kaggle.com/trainingdatapro/datasets**

TrainingData's GitHub: **https://github.com/Trainingdata-datamarket/TrainingData_All_datasets**

*keywords: object movements, dogs behavoir, pets object detection, motion tracking, domestic dogs, stray dogs, object detection, multiple-object tracking, image dataset, labeled web tracking dataset, computer vision, machine learning, cctv, camera detection, surveillance, security camera, security camera object detection, video-based monitoring, smart city, smart city development, smart city vision, smart city deep learning, smart city management, classification, image recognition*