import datasets import pandas as pd _CITATION = """\ @InProceedings{huggingface:dataset, title = {pose_estimation}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset is primarly intended to dentify and predict the positions of major joints of a human body in an image. It consists of people's photographs with body part labeled with keypoints. """ _NAME = 'pose_estimation' _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "cc-by-nc-nd-4.0" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" class PoseEstimation(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo(description=_DESCRIPTION, features=datasets.Features({ 'image_id': datasets.Value('uint32'), 'image': datasets.Image(), 'mask': datasets.Image(), 'shapes': datasets.Value('string') }), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) def _split_generators(self, dl_manager): images = dl_manager.download(f"{_DATA}images.tar.gz") masks = dl_manager.download(f"{_DATA}masks.tar.gz") annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") images = dl_manager.iter_archive(images) masks = dl_manager.iter_archive(masks) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "masks": masks, 'annotations': annotations }), ] def _generate_examples(self, images, masks, annotations): annotations_df = pd.read_csv(annotations, sep=',') for idx, ((image_path, image), (mask_path, mask)) in enumerate(zip(images, masks)): file_name = int(image_path.split('.')[0].split('/')[-1]) yield idx, { 'image_id': annotations_df.loc[annotations_df['image_id'] == file_name] ['image_id'].values[0], "image": { "path": image_path, "bytes": image.read() }, "mask": { "path": mask_path, "bytes": mask.read() }, 'shapes': annotations_df.loc[annotations_df['image_id'] == file_name] ['shapes'].values[0], }