from xml.etree import ElementTree as ET import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {silicone-masks-biometric-attacks}, author = {TrainingDataPro}, year = {2023} } """ _DESCRIPTION = """\ The dataset consists of videos of individuals and attacks with printed 2D masks and silicone masks . Videos are filmed in different lightning conditions (*in a dark room, daylight, light room and nightlight*). Dataset includes videos of people with different attributes (*glasses, mask, hat, hood, wigs and mustaches for men*). """ _NAME = "silicone-masks-biometric-attacks" _HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" _LICENSE = "" _DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" _LABELS = ["real", "silicone", "mask"] class SiliconeMasksBiometricAttacks(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("int32"), "video_name": datasets.Value("string"), "video_path": datasets.Value("string"), "label": datasets.ClassLabel( num_classes=len(_LABELS), names=_LABELS, ), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): videos = dl_manager.download(f"{_DATA}videos.tar.gz") videos = dl_manager.iter_archive(videos) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "videos": videos, }, ), ] def _generate_examples(self, videos): for idx, ((video_path, video)) in enumerate(videos): for lbl in _LABELS: if lbl in video_path: label = lbl yield idx, { "id": idx, "video_name": video_path.split("/")[-1], "video_path": video_path, "label": label, }