"""Comments from Jigsaw Toxic Comment Classification Kaggle Competition """ import json import pandas as pd import datasets _DESCRIPTION = """\ This dataset consists of a large number of Wikipedia comments translated to Finnish which have been labeled by human raters for toxic behavior. """ _HOMEPAGE = "https://turkunlp.org/" _URLS = { "train": "https://huggingface.co/datasets/TurkuNLP/wikipedia-toxicity-data-fi/resolve/main/train_fi_deepl.jsonl.bz2", "test": "https://huggingface.co/datasets/TurkuNLP/wikipedia-toxicity-data-fi/resolve/main/test_fi_deepl.jsonl.bz2" } class JigsawToxicityPred(datasets.GeneratorBasedBuilder): """This is a dataset of comments from Wikipedia’s talk page edits which have been labeled by human raters for toxic behavior.""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=datasets.Features( { "text": datasets.Value("string"), "label_toxicity": datasets.ClassLabel(names=["false", "true"]), "label_severe_toxicity": datasets.ClassLabel(names=["false", "true"]), "label_obscene": datasets.ClassLabel(names=["false", "true"]), "label_threat": datasets.ClassLabel(names=["false", "true"]), "label_insult": datasets.ClassLabel(names=["false", "true"]), "label_identity_attack": datasets.ClassLabel(names=["false", "true"]), } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": downloaded_files["train"]} ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": downloaded_files["test"], }, ), ] def _generate_examples(self, filepath): """Yields examples.""" # This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method. # It is in charge of opening the given file and yielding (key, example) tuples from the dataset # The key is not important, it's more here for legacy reason (legacy from tfds) # read the json into dictionaries with open(filepath, 'r') as json_file: json_list = list(json_file) lines = [json.loads(jline) for jline in json_list] for data in lines: example = {} example["text"] = data["text"] for label in ["label_toxicity", "label_severe_toxicity", "label_obscene", "label_threat", "label_insult", "label_identity_attack"]: example[label] = int(data[label]) yield (data["id"], example)