|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Medical Dialog dataset in english and chinese""" |
|
|
|
|
|
import copy |
|
import json |
|
import os |
|
import re |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{chen2020meddiag, |
|
title={MedDialog: a large-scale medical dialogue dataset}, |
|
author={Chen, Shu and Ju, Zeqian and Dong, Xiangyu and Fang, Hongchao and Wang, Sicheng and Yang, Yue and Zeng, Jiaqi and Zhang, Ruisi and Zhang, Ruoyu and Zhou, Meng and Zhu, Penghui and Xie, Pengtao}, |
|
journal={arXiv preprint arXiv:2004.03329}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
The MedDialog dataset (English) contains conversations (in English) between doctors and patients.\ |
|
It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. \ |
|
The raw dialogues are from healthcaremagic.com and icliniq.com.\ |
|
|
|
All copyrights of the data belong to healthcaremagic.com and icliniq.com. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/UCSD-AI4H/Medical-Dialogue-System" |
|
|
|
_LICENSE = "Unknown" |
|
|
|
|
|
_URLS = { |
|
"en": { |
|
"train": "https://drive.google.com/uc?export=download&id=1ria4E6IdTIPsikL4Glm3uy1tFKJKw0W8", |
|
"validation": "https://drive.google.com/uc?export=download&id=1KAZneuwdfEVQQM6euCX4pMDP-9DQpiB5", |
|
"test": "https://drive.google.com/uc?export=download&id=10izqL71kcgnteYsf87Vh6j_mZ8sZM2Rc", |
|
}, |
|
"zh": { |
|
"train": "https://drive.google.com/uc?export=download&id=1AaDJoHaiHAwEZwtskRH8oL1UP4FRgmgx", |
|
"validation": "https://drive.google.com/uc?export=download&id=1TvfZCmQqP1kURIfEinOcj5VOPelTuGwI", |
|
"test": "https://drive.google.com/uc?export=download&id=1pmmG95Yl6mMXRXDDSRb9-bYTxOE7ank5", |
|
}, |
|
} |
|
|
|
|
|
class MedicalDialog(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("2.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="en", description="The raw dataset of medical dialogs in English.", version=VERSION |
|
), |
|
datasets.BuilderConfig( |
|
name="zh", description="The raw dataset of medical dialogs in Chinese.", version=VERSION |
|
), |
|
datasets.BuilderConfig( |
|
name="processed.en", description="The processed dataset of medical dialogs in English.", version=VERSION |
|
), |
|
datasets.BuilderConfig( |
|
name="processed.zh", description="The processed dataset of medical dialogs in Chinese.", version=VERSION |
|
), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
*processed, _ = self.config.name.split(".") |
|
return ( |
|
None |
|
if processed |
|
else """\ |
|
\n For English:\nYou need to go to https://drive.google.com/drive/folders/1g29ssimdZ6JzTST6Y8g6h-ogUNReBtJD?usp=sharing,\ |
|
and manually download the dataset from Google Drive. Once it is completed, |
|
a file named Medical-Dialogue-Dataset-English-<timestamp-info>.zip will appear in your Downloads folder( |
|
or whichever folder your browser chooses to save files to). Unzip the folder to obtain |
|
a folder named "Medical-Dialogue-Dataset-English" several text files. |
|
|
|
Now, you can specify the path to this folder for the data_dir argument in the |
|
datasets.load_dataset(...) option. |
|
The <path/to/folder> can e.g. be "/Downloads/Medical-Dialogue-Dataset-English". |
|
The data can then be loaded using the below command:\ |
|
`datasets.load_dataset("medical_dialog", name="en", data_dir="/Downloads/Medical-Dialogue-Dataset-English")`. |
|
|
|
\n For Chinese:\nFollow the above process. Change the 'name' to 'zh'.The download link is https://drive.google.com/drive/folders/1r09_i8nJ9c1nliXVGXwSqRYqklcHd9e2 |
|
|
|
**NOTE** |
|
- A caution while downloading from drive. It is better to download single files since creating a zip might not include files <500 MB. This has been observed mutiple times. |
|
- After downloading the files and adding them to the appropriate folder, the path of the folder can be given as input tu the data_dir path. |
|
""" |
|
) |
|
|
|
def _info(self): |
|
if self.config.name == "zh": |
|
features = datasets.Features( |
|
{ |
|
"file_name": datasets.Value("string"), |
|
"dialogue_id": datasets.Value("int32"), |
|
"dialogue_url": datasets.Value("string"), |
|
"dialogue_turns": datasets.Sequence( |
|
{ |
|
"speaker": datasets.ClassLabel(names=["病人", "医生"]), |
|
"utterance": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
elif self.config.name == "en": |
|
features = datasets.Features( |
|
{ |
|
"file_name": datasets.Value("string"), |
|
"dialogue_id": datasets.Value("int32"), |
|
"dialogue_url": datasets.Value("string"), |
|
"dialogue_turns": datasets.Sequence( |
|
{ |
|
"speaker": datasets.ClassLabel(names=["Patient", "Doctor"]), |
|
"utterance": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
elif self.config.name == "processed.en": |
|
features = datasets.Features( |
|
{ |
|
"description": datasets.Value("string"), |
|
"utterances": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
elif self.config.name == "processed.zh": |
|
features = datasets.Features( |
|
{ |
|
"utterances": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
*processed, lang = self.config.name.split(".") |
|
if processed: |
|
data_dir = dl_manager.download(_URLS[lang]) |
|
splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST] |
|
return [datasets.SplitGenerator(name=split, gen_kwargs={"filepaths": data_dir[split]}) for split in splits] |
|
else: |
|
path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
if not os.path.exists(path_to_manual_file): |
|
raise FileNotFoundError( |
|
f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('medical_dialog', data_dir=...)`. Manual download instructions: {self.manual_download_instructions})" |
|
) |
|
|
|
filepaths = [ |
|
os.path.join(path_to_manual_file, txt_file_name) |
|
for txt_file_name in sorted(os.listdir(path_to_manual_file)) |
|
if txt_file_name.endswith("txt") |
|
] |
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths})] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""Yields examples. Iterates over each file and give the creates the corresponding features. |
|
|
|
NOTE: |
|
- The code makes some assumption on the structure of the raw .txt file. |
|
- There are some checks to separate different id's. Hopefully, should not cause further issues later when more txt files are added. |
|
""" |
|
*processed, data_lang = self.config.name.split(".") |
|
if processed: |
|
with open(filepaths, encoding="utf-8") as f: |
|
if self.config.name == "processed.en": |
|
data = json.load(f) |
|
for idx, item in enumerate(data): |
|
yield idx, item |
|
elif self.config.name == "processed.zh": |
|
idx = 0 |
|
array = "" |
|
for line in f: |
|
if line[0] not in ["[", "]"]: |
|
if line != " ],\n": |
|
array += line |
|
else: |
|
array += "]" |
|
item = json.loads(array) |
|
yield idx, {"utterances": item} |
|
idx += 1 |
|
array = "" |
|
else: |
|
id_ = -1 |
|
for filepath in filepaths: |
|
with open(filepath, encoding="utf-8") as f_in: |
|
|
|
last_part = "" |
|
last_dialog = {} |
|
last_list = [] |
|
last_user = "" |
|
check_list = [] |
|
|
|
|
|
|
|
|
|
conv_flag = False |
|
des_flag = False |
|
|
|
while True: |
|
line = f_in.readline() |
|
if not line: |
|
break |
|
|
|
|
|
if line[:2] == "id": |
|
|
|
|
|
|
|
try: |
|
dialogue_id = int(re.findall(r"\d+", line)[0]) |
|
except IndexError: |
|
continue |
|
|
|
|
|
if line[:4] == "http": |
|
dialogue_url = line.rstrip() |
|
|
|
|
|
if line[:11] == "Description": |
|
last_part = "description" |
|
last_dialog = {} |
|
last_list = [] |
|
last_user = "" |
|
last_conv = {"speaker": "", "utterance": ""} |
|
while True: |
|
line = f_in.readline() |
|
if (not line) or (line in ["\n", "\n\r"]): |
|
break |
|
else: |
|
if data_lang == "zh": |
|
if line[:5] == "病情描述:": |
|
last_user = "病人" |
|
sen = f_in.readline().rstrip() |
|
des_flag = True |
|
|
|
if data_lang == "en": |
|
last_user = "Patient" |
|
sen = line.rstrip() |
|
des_flag = True |
|
|
|
if des_flag: |
|
if sen == "": |
|
continue |
|
if sen in check_list: |
|
last_conv["speaker"] = "" |
|
last_conv["utterance"] = "" |
|
else: |
|
last_conv["speaker"] = last_user |
|
last_conv["utterance"] = sen |
|
check_list.append(sen) |
|
des_flag = False |
|
break |
|
|
|
elif line[:8] == "Dialogue": |
|
if last_part == "description" and len(last_conv["utterance"]) > 0: |
|
last_part = "dialogue" |
|
if data_lang == "zh": |
|
last_user = "病人" |
|
|
|
if data_lang == "en": |
|
last_user = "Patient" |
|
|
|
while True: |
|
line = f_in.readline() |
|
if (not line) or (line in ["\n", "\n\r"]): |
|
conv_flag = False |
|
last_user = "" |
|
last_list.append(copy.deepcopy(last_conv)) |
|
|
|
|
|
last_turn = len(last_list) |
|
if int(last_turn / 2) > 0: |
|
temp = int(last_turn / 2) |
|
id_ += 1 |
|
last_dialog["file_name"] = filepath |
|
last_dialog["dialogue_id"] = dialogue_id |
|
last_dialog["dialogue_url"] = dialogue_url |
|
last_dialog["dialogue_turns"] = last_list[: temp * 2] |
|
yield id_, last_dialog |
|
break |
|
|
|
if data_lang == "zh": |
|
if line[:3] == "病人:" or line[:3] == "医生:": |
|
user = line[:2] |
|
line = f_in.readline() |
|
conv_flag = True |
|
|
|
|
|
|
|
if data_lang == "en": |
|
if line.strip() == "Patient:" or line.strip() == "Doctor:": |
|
user = line.replace(":", "").rstrip() |
|
line = f_in.readline() |
|
conv_flag = True |
|
elif line[:2] != "id": |
|
conv_flag = True |
|
|
|
|
|
if conv_flag: |
|
sen = line.rstrip() |
|
if sen == "": |
|
continue |
|
|
|
if user == last_user: |
|
last_conv["utterance"] = last_conv["utterance"] + sen |
|
else: |
|
last_user = user |
|
last_list.append(copy.deepcopy(last_conv)) |
|
last_conv["utterance"] = sen |
|
last_conv["speaker"] = user |
|
|