Datasets:

Modalities:
Text
Formats:
parquet
Tags:
code
DOI:
Libraries:
Datasets
Dask
License:
File size: 6,359 Bytes
0432c1e
aaf94bb
0617d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0432c1e
733b9e6
0432c1e
 
 
 
 
 
 
 
 
accb4e6
 
 
0617d8f
accb4e6
733b9e6
 
 
 
 
 
 
 
 
 
04f79ad
 
 
0617d8f
04f79ad
0d4b93d
 
 
 
 
 
 
 
 
 
9557b20
 
 
0617d8f
9557b20
4af3d5b
 
 
 
 
 
 
 
 
 
2346fa4
 
 
0617d8f
2346fa4
0c1585a
 
 
 
 
 
 
 
 
 
2af175f
 
 
0617d8f
2af175f
27ac9ae
 
 
 
 
 
 
 
 
 
96410a1
 
 
0617d8f
96410a1
4fc7df4
 
 
 
 
 
 
 
 
 
0617d8f
4fc7df4
4542c7a
 
 
 
 
 
 
 
 
 
1b5220a
 
 
0617d8f
1b5220a
92c3f3e
 
 
 
 
 
 
 
 
 
61be079
 
 
0617d8f
61be079
bd5a716
 
 
 
 
 
 
 
 
 
bf8f26f
 
 
0617d8f
bf8f26f
7dd0952
 
 
 
 
 
 
 
 
 
4549a19
 
 
0617d8f
4549a19
0432c1e
 
 
 
 
accb4e6
 
733b9e6
 
 
 
04f79ad
 
0d4b93d
 
 
 
9557b20
 
4af3d5b
 
 
 
2346fa4
 
0c1585a
 
 
 
2af175f
 
27ac9ae
 
 
 
96410a1
 
4fc7df4
 
 
 
4542c7a
 
 
 
1b5220a
 
92c3f3e
 
 
 
61be079
 
bd5a716
 
 
 
bf8f26f
 
7dd0952
 
 
 
4549a19
 
a8cd03d
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
license: cc-by-sa-4.0
tags:
- code
extra_gated_prompt: >-
  You agree to not use the model to conduct experiments that cause harm to human
  subjects or generate malicious code.
extra_gated_fields:
  Company: text
  Country: country
  Specific date: date_picker
  I want to use this model for:
    type: select
    options:
    - Research
    - Education
    - label: Other
      value: other
  I agree to use this model for non-commercial use ONLY: checkbox
task_categories:
- text-generation
size_categories:
- 1M<n<10M
dataset_info:
- config_name: C
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 3383884149
    num_examples: 341419
  - name: Size_Optimized
    num_bytes: 2528286566
    num_examples: 341785
  download_size: 1323447636
  dataset_size: 5912170715
- config_name: C++
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 116351369851
    num_examples: 2898509
  - name: Size_Optimized
    num_bytes: 92572469724
    num_examples: 2916655
  download_size: 51690627847
  dataset_size: 208923839575
- config_name: D
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 2320830137
    num_examples: 7000
  - name: Size_Optimized
    num_bytes: 3271276765
    num_examples: 11054
  download_size: 1316382832
  dataset_size: 5592106902
- config_name: Fortran
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 357741835
    num_examples: 6327
  - name: Size_Optimized
    num_bytes: 2320830137
    num_examples: 7000
  download_size: 563853972
  dataset_size: 2678571972
- config_name: Go
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 819560767
    num_examples: 3913
  - name: Size_Optimized
    num_bytes: 741733997
    num_examples: 3925
  download_size: 317182680
  dataset_size: 1561294764
- config_name: Haskell
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 3838556743
    num_examples: 27892
  - name: Size_Optimized
    num_bytes: 3667186152
    num_examples: 28203
  download_size: 1736729352
  dataset_size: 7505742895
- config_name: Nim
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Size_Optimized
    num_bytes: 106424381
    num_examples: 215
  download_size: 22506456
  dataset_size: 106424381
- config_name: Objective-C
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 1729045
    num_examples: 283
  - name: Size_Optimized
    num_bytes: 1433377
    num_examples: 283
  download_size: 707508
  dataset_size: 3162422
- config_name: Python
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 13118428652
    num_examples: 154507
  - name: Size_Optimized
    num_bytes: 13118428652
    num_examples: 154507
  download_size: 6511950536
  dataset_size: 26236857304
- config_name: Rust
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 5859467468
    num_examples: 38323
  - name: Size_Optimized
    num_bytes: 8695405064
    num_examples: 32720
  download_size: 5326634011
  dataset_size: 14554872532
- config_name: Swift
  features:
  - name: Source_Code
    dtype: string
  - name: IR_Original
    dtype: string
  splits:
  - name: Perf_Optimized
    num_bytes: 260013963
    num_examples: 2003
  - name: Size_Optimized
    num_bytes: 266356839
    num_examples: 2015
  download_size: 144113584
  dataset_size: 526370802
configs:
- config_name: C
  data_files:
  - split: Perf_Optimized
    path: C/Perf_Optimized-*
  - split: Size_Optimized
    path: C/Size_Optimized-*
- config_name: C++
  data_files:
  - split: Perf_Optimized
    path: C++/Perf_Optimized-*
  - split: Size_Optimized
    path: C++/Size_Optimized-*
- config_name: D
  data_files:
  - split: Perf_Optimized
    path: D/Perf_Optimized-*
  - split: Size_Optimized
    path: D/Size_Optimized-*
- config_name: Fortran
  data_files:
  - split: Perf_Optimized
    path: Fortran/Perf_Optimized-*
  - split: Size_Optimized
    path: Fortran/Size_Optimized-*
- config_name: Go
  data_files:
  - split: Perf_Optimized
    path: Go/Perf_Optimized-*
  - split: Size_Optimized
    path: Go/Size_Optimized-*
- config_name: Haskell
  data_files:
  - split: Perf_Optimized
    path: Haskell/Perf_Optimized-*
  - split: Size_Optimized
    path: Haskell/Size_Optimized-*
- config_name: Nim
  data_files:
  - split: Size_Optimized
    path: Nim/Size_Optimized-*
- config_name: Objective-C
  data_files:
  - split: Perf_Optimized
    path: Objective-C/Perf_Optimized-*
  - split: Size_Optimized
    path: Objective-C/Size_Optimized-*
- config_name: Python
  data_files:
  - split: Perf_Optimized
    path: Python/Perf_Optimized-*
  - split: Size_Optimized
    path: Python/Size_Optimized-*
- config_name: Rust
  data_files:
  - split: Perf_Optimized
    path: Rust/Perf_Optimized-*
  - split: Size_Optimized
    path: Rust/Size_Optimized-*
- config_name: Swift
  data_files:
  - split: Perf_Optimized
    path: Swift/Perf_Optimized-*
  - split: Size_Optimized
    path: Swift/Size_Optimized-*
---

The dataset consists of source code and LLVM IR pairs generated from accepted and de-duped programming contest solutions. The dataset is divided into language configs and mode splits. The language can be one of `C`, `C++`, `D`, `Fortran`, `Go`, `Haskell`, `Nim`, `Objective-C`, `Python`, `Rust` and `Swift`, indicating the source files' languages. The mode split indicates the compilation mode, which can be wither `Size_Optimized` or `Perf_Optimized`.

Once you have submitted an access request which has been approved, loading the dataset can be done as follows:
>
```python
from datasets import load_dataset

dataset = load_dataset("UKPLab/SLTrans", "C", split="Size_Optimized")
```
>