File size: 18,194 Bytes
f990ff9
40fc9a6
 
 
 
 
 
 
 
 
b81db60
 
 
 
 
 
 
 
 
 
 
f990ff9
40fc9a6
 
 
 
 
 
 
 
 
 
cb66f04
08e911e
c59927f
 
40fc9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb34d83
40fc9a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
<!-- ---
task_categories:
- question-answering
language:
- ms
tags:
- knowledge
pretty_name: MalayMMLU
size_categories:
- 10K<n<100K

configs:
- config_name: default
  data_files:
  - split: eval
    path: 
    - "MalayMMLU_0shot.json"
    - "MalayMMLU_1shot.json"
    - "MalayMMLU_2shot.json"
    - "MalayMMLU_3shot.json"
    
--- -->
# MalayMMLU

Dilancarkan pada 27 September 2024

<h4 align="center">
    <p>
        <a href="https://huggingface.co/datasets/UMxYTLAILabs/MalayMMLU">English</a> |
        <b href="https://huggingface.co/datasets/UMxYTLAILabs/MalayMMLU/blob/main/README_ms.md">Bahasa Melayu</b> 
    <p>
        <p align="center" style="display: flex; flex-direction: row; justify-content: center; align-items: center">
        📄 <a href="https://github.com/UMxYTL-AI-Labs/MalayMMLU/blob/main/MalayMMLU_paper.pdf" target="_blank" style="margin-right: 15px; margin-left: 10px">Penerbitan</a>
        <!-- 🤗 <a href="https://huggingface.co/datasets/UMxYTLAILabs/MalayMMLU" target="_blank" style="margin-left: 10px ; margin-right: 10px">Set Data</a>  • -->
          <img src="https://github.githubassets.com/assets/GitHub-Mark-ea2971cee799.png" alt="GitHub logo" style="width: 25px; height: 25px;margin-left: 5px;margin-right: 10px"><a href="https://github.com/UMxYTL-AI-Labs/MalayMMLU" target="_blank" style="margin-right: 15px;">Kod</a>
        📜  <a href="https://huggingface.co/datasets/UMxYTLAILabs/MalayMMLU/blob/main/MalayMMLU_Poster.pdf" target="_blank" style="margin-left: 10px">Poster</a>     
        </p>
</h4>


## Pengenalan

MalayMMLU ialah tanda aras kefahaman bahasa pelbagai tugas (Massive Multitask Language Understanding (MMLU) dalam Bahasa Inggeris) pertama untuk Bahasa Melayu. Tanda aras ini merangkumi 24,213 soalan yang meliputi peringkat pendidikan rendah (Tahun 1-6) dan menengah (Tingkatan 1-5) di Malaysia, terdiri daripada 5 topik utama yang dibahagikan kepada 22 subjek.

<p align="center">
<img src="imgs/MalayMMLU.png"   width="250" >
</p>

| **Topik**   | **Subjek**                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **STEM**       | Sains Komputer (Menengah), Biologi (Menengah), Kimia (Menengah), Literasi Komputer (Menengah), Matematik (Rendah, Menengah), Matematik Tambahan (Menengah), Reka Bentuk dan Teknologi (Rendah, Menengah), Sains Teras (Rendah, Menengah), Teknologi Maklumat dan Komunikasi (Rendah), Teknologi Automotif (Menengah) |
| **Bahasa**   | Bahasa Melayu (Rendah, Menengah)                                                                                                                                                                                                                                                                                                                                                          |
| **Sains Sosial** | Geografi (Menengah), Kajian Tempatan (Rendah), Sejarah (Rendah, Menengah)                                                                                                                                                                                                                                                                                                               |
| **Lain-lain**     | Kemahiran Hidup (Rendah, Menengah), Prinsip Perakaunan (Menengah), Ekonomi (Menengah), Perniagaan (Menengah), Pertanian (Menengah)                                                                                                                                                                                                                                                  |
| **Kemanusiaan** | Pendidikan Al Quran dan Al Sunnah (Menengah), Pendidikan Islam (Rendah, Menengah), Pengetahuan Sains Sukan (Menengah)  |             

## Keputusan

#### Keputusan Penilaian Zero-shot untuk MalayMMLU (Ketepatan token pertama)

<table>
    <thead>
        <tr>
            <th rowspan="2">Organisasi</th>
            <th rowspan="2">Model</th>
            <th rowspan="2">Visual</th>
            <th colspan="7">Ketepatan</th>
        </tr>
        <tr>
            <th>Bahasa</th>
            <th>Kemanusiaan</th>
            <th>STEM</th>
            <th>Sains Sosial</th>
            <th>Lain-lain</th>
            <th>Purata</th>
        </tr>
    </thead>
    <tbody>
        <tr>
            <td></td>
            <td>Rawak</td>
            <td></td>
            <td>38.01</td>
            <td>42.09</td>
            <td>36.31</td>
            <td>36.01</td>
            <td>38.07</td>
            <td>38.02</td>
        </tr>
        <tr>
            <td rowspan="4">OpenAI</td>
            <td>GPT-4o</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td><strong>87.12</strong></td>
            <td><strong>88.12</strong></td>
            <td><strong>83.83</strong></td>
            <td><strong>82.58</strong></td>
            <td><strong>83.09</strong></td>
            <td><strong>84.98</strong></td>
        </tr>
        <tr>
            <td>GPT-4</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td><ins>82.90</ins></td>
            <td><ins>83.91</ins></td>
            <td>78.80</td>
            <td><ins>77.29</ins></td>
            <td><ins>77.33</ins></td>
            <td><ins>80.11</ins></td>
        </tr>
        <tr>
            <td>GPT-4o mini</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td>82.03</td>
            <td>81.50</td>
            <td>78.51</td>
            <td>75.67</td>
            <td>76.30</td>
            <td>78.78</td>
        </tr>
        <tr>
            <td>GPT-3.5</td>
            <td></td>
            <td>69.62</td>
            <td>71.01</td>
            <td>67.17</td>
            <td>66.70</td>
            <td>63.73</td>
            <td>67.78</td>
        </tr>
        <tr>
            <td rowspan="7">Meta</td>
            <td>LLaMA-3.1 (70B)</td>
            <td></td>
            <td>78.75</td>
            <td>82.59</td>
            <td>78.96</td>
            <td>77.20</td>
            <td>75.32</td>
            <td>78.44</td>
        </tr>
        <tr>
            <td>LLaMA-3.1 (8B)</td>
            <td></td>
            <td>65.47</td>
            <td>67.17</td>
            <td>64.10</td>
            <td>62.59</td>
            <td>62.13</td>
            <td>64.24</td>
        </tr>
        <tr>
            <td>LLaMA-3 (8B)</td>
            <td></td>
            <td>63.93</td>
            <td>66.21</td>
            <td>62.26</td>
            <td>62.97</td>
            <td>61.38</td>
            <td>63.46</td>
        </tr>
        <tr>
            <td>LLaMA-2 (13B)</td>
            <td></td>
            <td>45.58</td>
            <td>50.72</td>
            <td>44.13</td>
            <td>44.55</td>
            <td>40.87</td>
            <td>45.26</td>
        </tr>
        <tr>
            <td>LLaMA-2 (7B)</td>
            <td></td>
            <td>47.47</td>
            <td>52.74</td>
            <td>48.71</td>
            <td>50.72</td>
            <td>48.19</td>
            <td>49.61</td>
        </tr>
        <tr>
            <td>LLaMA-3.2 (3B)</td>
            <td></td>
            <td>58.52</td>
            <td>60.66</td>
            <td>56.65</td>
            <td>54.06</td>
            <td>52.75</td>
            <td>56.45</td>
        </tr>
        <tr>
            <td>LLaMA-3.2 (1B)</td>
            <td></td>
            <td>38.88</td>
            <td>43.30</td>
            <td>40.65</td>
            <td>40.56</td>
            <td>39.55</td>
            <td>40.46</td>
        </tr>
        <tr>
            <td rowspan="8">Qwen (Alibaba)</td>
            <td>Qwen 2.5 (72B)</td>
            <td></td>
            <td>79.09</td>
            <td>79.95</td>
            <td><ins>80.88</ins></td>
            <td>75.80</td>
            <td>75.05</td>
            <td>77.79</td>
        </tr>
        <tr>
            <td>Qwen-2.5 (32B)</td>
            <td></td>
            <td>76.96</td>
            <td>76.70</td>
            <td>79.74</td>
            <td>72.35</td>
            <td>70.88</td>
            <td>74.83</td>
        </tr>
        <tr>
            <td>Qwen-2-VL (7B)</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td>68.16</td>
            <td>63.62</td>
            <td>67.58</td>
            <td>60.38</td>
            <td>59.08</td>
            <td>63.49</td>
        </tr>
        <tr>
            <td>Qwen-2-VL (2B)</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td>58.22</td>
            <td>55.56</td>
            <td>57.51</td>
            <td>53.67</td>
            <td>55.10</td>
            <td>55.83</td>
        </tr>
        <tr>
            <td>Qwen-1.5 (14B)</td>
            <td></td>
            <td>64.47</td>
            <td>60.64</td>
            <td>61.97</td>
            <td>57.66</td>
            <td>58.05</td>
            <td>60.47</td>
        </tr>
        <tr>
            <td>Qwen-1.5 (7B)</td>
            <td></td>
            <td>60.13</td>
            <td>59.14</td>
            <td>58.62</td>
            <td>54.26</td>
            <td>54.67</td>
            <td>57.18</td>
        </tr>
        <tr>
            <td>Qwen-1.5 (4B)</td>
            <td></td>
            <td>48.39</td>
            <td>52.01</td>
            <td>51.37</td>
            <td>50.00</td>
            <td>49.10</td>
            <td>49.93</td>
        </tr>
        <tr>
            <td>Qwen-1.5 (1.8B)</td>
            <td></td>
            <td>42.70</td>
            <td>43.37</td>
            <td>43.68</td>
            <td>43.12</td>
            <td>44.42</td>
            <td>43.34</td>
        </tr>
        <tr>
            <td rowspan="5">Zhipu</td>
            <td>GLM-4-Plus</td>
            <td></td>
            <td>78.04</td>
            <td>75.63</td>
            <td>77.49</td>
            <td>74.07</td>
            <td>72.66</td>
            <td>75.48</td>
        </tr>
        <tr>
            <td>GLM-4-Air</td>
            <td></td>
            <td>67.88</td>
            <td>69.56</td>
            <td>70.20</td>
            <td>66.06</td>
            <td>66.18</td>
            <td>67.60</td>
        </tr>
        <tr>
            <td>GLM-4-Flash</td>
            <td></td>
            <td>63.52</td>
            <td>65.69</td>
            <td>66.31</td>
            <td>63.21</td>
            <td>63.59</td>
            <td>64.12</td>
        </tr>
        <tr>
            <td>GLM-4</td>
            <td></td>
            <td>63.39</td>
            <td>56.72</td>
            <td>54.40</td>
            <td>57.24</td>
            <td>55.00</td>
            <td>58.07</td>
        </tr>
        <tr>
            <td>GLM-4<sup>††</sup> (9B)</td>
            <td></td>
            <td>58.51</td>
            <td>60.48</td>
            <td>56.32</td>
            <td>55.04</td>
            <td>53.97</td>
            <td>56.87</td>
        </tr>
        <tr>
            <td rowspan="3">Google</td>
            <td>Gemma-2 (9B)</td>
            <td></td>
            <td>75.83</td>
            <td>72.83</td>
            <td>75.07</td>
            <td>69.72</td>
            <td>70.33</td>
            <td>72.51</td>
        </tr>
        <tr>
            <td>Gemma (7B)</td>
            <td></td>
            <td>45.53</td>
            <td>50.92</td>
            <td>46.13</td>
            <td>47.33</td>
            <td>46.27</td>
            <td>47.21</td>
        </tr>
        <tr>
            <td>Gemma (2B)</td>
            <td></td>
            <td>46.50</td>
            <td>51.15</td>
            <td>49.20</td>
            <td>48.06</td>
            <td>48.79</td>
            <td>48.46</td>
        </tr>
        <tr>
            <td rowspan="2">SAIL (Sea)</td>
            <td>Sailor<sup></sup> (14B)</td>
            <td></td>
            <td>78.40</td>
            <td>72.88</td>
            <td>69.63</td>
            <td>69.47</td>
            <td>68.67</td>
            <td>72.29</td>
        </tr>
        <tr>
            <td>Sailor<sup></sup> (7B)</td>
            <td></td>
            <td>74.54</td>
            <td>68.62</td>
            <td>62.79</td>
            <td>64.69</td>
            <td>63.61</td>
            <td>67.58</td>
        </tr>
        <tr>
            <td>Cohere for AI</td>
            <td>Command R (32B)</td>
            <td></td>
            <td>71.68</td>
            <td>71.49</td>
            <td>66.68</td>
            <td>67.19</td>
            <td>63.64</td>
            <td>68.47</td>
        </tr>
        <tr>
            <td>OpenGVLab</td>
            <td>InternVL2 (40B)</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td>70.36</td>
            <td>68.49</td>
            <td>64.88</td>
            <td>65.93</td>
            <td>60.54</td>
            <td>66.51</td>
        </tr>
        <tr>
            <td>Damo (Alibaba)</td>
            <td>SeaLLM-v2.5<sup></sup> (7B)</td>
            <td></td>
            <td>69.75</td>
            <td>67.94</td>
            <td>65.29</td>
            <td>62.66</td>
            <td>63.61</td>
            <td>65.89</td>
        </tr>
        <tr>
            <td rowspan="4">Mistral</td>
            <td>Pixtral (12B)</td>
            <td style="color: green; text-align: center"><b>&#10003</b></td>
            <td>64.81</td>
            <td>62.68</td>
            <td>64.72</td>
            <td>63.93</td>
            <td>59.49</td>
            <td>63.25</td>
        </tr>
        <tr>
            <td>Mistral Small (22B)</td>
            <td></td>
            <td>65.19</td>
            <td>65.03</td>
            <td>63.36</td>
            <td>61.58</td>
            <td>59.99</td>
            <td>63.05</td>
        </tr>
        <tr>
            <td>Mistral-v0.3 (7B)</td>
            <td></td>
            <td>56.97</td>
            <td>59.29</td>
            <td>57.14</td>
            <td>58.28</td>
            <td>56.56</td>
            <td>57.71</td>
        </tr>
        <tr>
            <td>Mistral-v0.2 (7B)</td>
            <td></td>
            <td>56.23</td>
            <td>59.86</td>
            <td>57.10</td>
            <td>56.65</td>
            <td>55.22</td>
            <td>56.92</td>
        </tr>
        <tr>
            <td rowspan="2">Microsoft</td>
            <td>Phi-3 (14B)</td>
            <td></td>
            <td>60.07</td>
            <td>58.89</td>
            <td>60.91</td>
            <td>58.73</td>
            <td>55.24</td>
            <td>58.72</td>
        </tr>
        <tr>
            <td>Phi-3 (3.8B)</td>
            <td></td>
            <td>52.24</td>
            <td>55.52</td>
            <td>54.81</td>
            <td>53.70</td>
            <td>51.74</td>
            <td>53.43</td>
        </tr>
        <tr>
            <td>01.AI</td>
            <td>Yi-1.5 (9B)</td>
            <td></td>
            <td>56.20</td>
            <td>53.36</td>
            <td>57.47</td>
            <td>50.53</td>
            <td>49.75</td>
            <td>53.08</td>
        </tr>
        <tr>
            <td rowspan="2">Stability AI</td>
            <td>StableLM 2 (12B)</td>
            <td></td>
            <td>53.40</td>
            <td>54.84</td>
            <td>51.45</td>
            <td>51.79</td>
            <td>50.16</td>
            <td>52.45</td>
        </tr>
        <tr>
            <td>StableLM 2 (1.6B)</td>
            <td></td>
            <td>43.92</td>
            <td>51.10</td>
            <td>45.27</td>
            <td>46.14</td>
            <td>46.75</td>
            <td>46.48</td>
        </tr>
        <tr>
            <td>Baichuan</td>
            <td>Baichuan-2 (7B)</td>
            <td></td>
            <td>40.41</td>
            <td>47.35</td>
            <td>44.37</td>
            <td>46.33</td>
            <td>43.54</td>
            <td>44.30</td>
        </tr>
        <tr>
            <td>Mesolitica</td>
            <td>MaLLaM-v2<sup></sup> (5B)</td>
            <td></td>
            <td>42.57</td>
            <td>46.44</td>
            <td>42.24</td>
            <td>40.82</td>
            <td>38.74</td>
            <td>42.08</td>
        </tr>
        <tr>
            <td>Yellow.ai</td>
            <td>Komodo<sup></sup> (7B)</td>
            <td></td>
            <td>43.62</td>
            <td>45.53</td>
            <td>39.34</td>
            <td>39.75</td>
            <td>39.48</td>
            <td>41.72</td>
        </tr>
    </tbody>
</table>
Markah tertinggi telah <strong>ditebalkan</strong> dan markah kedua tertinggi telah <ins>digariskan</ins>. 
† menunjukkan LLM yang dilatih dengan dataset Asia Tenggara.
†† menunjukkan GLM-4 sumber terbuka.


## Rujukan

```bibtex
@InProceedings{MalayMMLU2024,
    author    = {Poh, Soon Chang and Yang, Sze Jue and Tan, Jeraelyn Ming Li and Chieng, Lawrence Leroy Tze Yao and Tan, Jia Xuan and Yu, Zhenyu and Foong, Chee Mun and Chan, Chee Seng},
    title     = {MalayMMLU: A Multitask Benchmark for the Low-Resource Malay Language},
    booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2024},
    month     = {November},
    year      = {2024},
}
```

## Maklumbalas 
Cadangan dan pendapat (sama ada positif atau negatif) amat dialu-alukan. Sila hubungi dengan menghantar emel ke `cs.chan di um.edu.my`.