|
import os |
|
import re |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
TXT_PATTERN = r"^.*\.txt$" |
|
|
|
_CITATION = """\ |
|
@misc{https://doi.org/10.48550/arxiv.2210.06345, |
|
doi = {10.48550/ARXIV.2210.06345}, |
|
|
|
url = {https://arxiv.org/abs/2210.06345}, |
|
|
|
author = {Liévin, Valentin and Motzfeldt, Andreas Geert and Jensen, Ida Riis and Winther, Ole}, |
|
|
|
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences, I.2.7; H.3.3; I.2.1}, |
|
|
|
title = {Variational Open-Domain Question Answering}, |
|
|
|
publisher = {arXiv}, |
|
|
|
year = {2022}, |
|
|
|
copyright = {arXiv.org perpetual, non-exclusive license} |
|
} |
|
""" |
|
|
|
_VERSION = "0.0.1" |
|
_HOMEPAGE = "https://github.com/VodLM" |
|
|
|
_DESCRIPTION = """\ |
|
The MedWiki corpus, which is distributed under the MIT license, |
|
consists of a subset of 4.5% of the English Wikipedia articles |
|
and has been specifically curated for the MedMCQA and USMLE datasets. |
|
The collection was created by utilizing the Wikipedia API to search |
|
for articles related to each answer option present in the MedMCQA and |
|
USMLE datasets. The top ten Wikipedia articles for each answer option |
|
were selected and included in the final corpus. This subset covers a |
|
wide range of topics in the field of medicine that could be relevant |
|
for answering questions in this domain. |
|
questions. |
|
""" |
|
|
|
_URL = "https://f001.backblazeb2.com/file/FindZebraData/fz-openqa/datasets/medwiki_v6.zip" |
|
|
|
|
|
class MedWikipediaCorpusConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the MedQa English Corpus objecxt.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for the Corpus object. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MedWikipediaCorpusConfig, self).__init__(**kwargs) |
|
|
|
class MedWikipediaCorpusGenerator(datasets.GeneratorBasedBuilder): |
|
"""MedWikipediaCorpus Dataset. Version 0.0.1""" |
|
|
|
BUILDER_CONFIGS = [ |
|
MedWikipediaCorpusConfig( |
|
name="plain_text", |
|
version=datasets.Version(_VERSION, ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"document.idx": datasets.Value("int32"), |
|
"document.text": datasets.Value("string"), |
|
"document.title": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
if not Path(downloaded_file).is_dir(): |
|
raise Exception( |
|
f"Could not download the dataset Content of `downloaded_file`:" |
|
f"{open(downloaded_file, 'r').read()}" |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"output_dir": Path(downloaded_file)}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, output_dir: str): |
|
logger.info("generating examples from = %s", output_dir) |
|
paths = [ |
|
p |
|
for p in Path(output_dir).iterdir() |
|
if p.is_dir() and (p.name.startswith("med_x_wiki") or p.name.startswith("wikipedia")) |
|
] |
|
assert len(paths) == 1, f"Found {len(paths)} directories in {output_dir}: {paths}" |
|
path = paths[0] |
|
|
|
|
|
data_files = [os.path.join(path, p) for p in os.listdir(path) if re.findall(TXT_PATTERN, p)] |
|
|
|
|
|
for i, fn in enumerate(data_files): |
|
with open(fn, "r") as f: |
|
|
|
title = f.readline() |
|
text = f.read() |
|
yield i, {"document.text": text, "document.idx": i, "document.title": title} |