import json import datasets from datasets import DownloadManager, DatasetInfo class WSDMTConfig(datasets.BuilderConfig): def __init__(self, *args, corpus, lang1, lang2, path='data', **kwargs): super().__init__( *args, name=f"{corpus}@{lang1}-{lang2}", **kwargs, ) self.lang1 = lang1 self.lang2 = lang2 self.corpus = corpus self.path = path def path_for(self, split, lang): return f"{self.path}/{self.corpus}/{split}/{lang}.jsonl" class WSDMTDataset(datasets.GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = WSDMTConfig config: WSDMTConfig def _generate_examples(self, path_lang1, path_lang2): with open(path_lang1) as f1, open(path_lang2) as f2: for n, (line1, line2) in enumerate(zip(f1, f2)): sentence1_data = json.loads(line1) sentence2_data = json.loads(line2) texts1, senses1, is_senses1 = zip(*sentence1_data['data']) texts2, senses2, is_senses2 = zip(*sentence2_data['data']) sid1, sid2 = sentence1_data['sid'], sentence2_data['sid'] assert sid1 == sid2, ( f"Different sentence id found for {self.config.lang1} and {self.config.lang2}: " f"{sid1} != {sid2} at line {n}" ) data_dict = { 'sid': sid1, self.config.lang1: dict(tokens=texts1, sense=senses1, identified_as_sense=is_senses1), self.config.lang2: dict(tokens=texts2, sense=senses2, identified_as_sense=is_senses2), } yield n, data_dict def _info(self) -> DatasetInfo: return datasets.DatasetInfo( description="empty description", features=datasets.Features( { "sid": datasets.Value("string"), self.config.lang1: { "tokens": datasets.Sequence(datasets.Value("string")), "sense": datasets.Sequence(datasets.Value("string")), "identified_as_sense": datasets.Sequence(datasets.Value("bool")), }, self.config.lang2: { "tokens": datasets.Sequence(datasets.Value("string")), "sense": datasets.Sequence(datasets.Value("string")), "identified_as_sense": datasets.Sequence(datasets.Value("bool")), } }, ), supervised_keys=None, homepage="no-homepage", citation="no-citation", ) def _split_generators(self, dl_manager: DownloadManager): urls = [ f"data/{self.config.corpus}/{split}/{lang}.jsonl" for split in ['dev'] for lang in (self.config.lang1, self.config.lang2) ] dl_manager.download_and_extract(urls) splits = [ (datasets.Split.TRAIN, 'train'), (datasets.Split.VALIDATION, 'dev'), (datasets.Split('test_2014'), 'test_2014'), (datasets.Split('test_2019'), 'test_2019'), ] return [ datasets.SplitGenerator(name=split, gen_kwargs=dict( path_lang1=self.config.path_for(path, self.config.lang1), path_lang2=self.config.path_for(path, self.config.lang2), )) for split, path in splits ]