Vishwas1 commited on
Commit
6852a87
1 Parent(s): e23439c

Upload dataset_chunk_3.csv with huggingface_hub

Browse files
Files changed (1) hide show
  1. dataset_chunk_3.csv +2 -0
dataset_chunk_3.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ text
2
+ ".10 transformers for images . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 12.11 summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 13 graph neural networks 240 13.1 what is a graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 13.2 graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 13.3 graph neural networks, tasks, and loss functions. . . . . . . . . . . . . . 245 13.4 graph convolutional networks . . . . . . . . . . . . . . . . . . . . . . . . 248 13.5 example: graph classification . . . . . . . . . . . . . . . . . . . . . . . . 251 13.6 inductive vs. transductive models . . . . . . . . . . . . . . . . . . . . . . 252 13.7 example: node classification . . . . . . . . . . . . . . . . . . . . . . . . . 253 13.8 layers for graph convolutional networks . . . . . . . . . . . . . . . . . . 256 13.9 edge graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 13.10 summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 14 unsupervised learning 268 14.1 taxonomy of unsupervised learning models . . . . . . . . . . . . . . . . . 268 14.2 what makes a good generative model? . . . . . . . . . . . . . . . . . . . 269 14.3 quantifying performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 14.4 summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 15 generative adversarial networks 275 draft: please send errata to [email protected] contents 15.1 discrimination as a signal . . . . . . . . . . . . . . . . . . . . . . . . . . 275 15.2 improving stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 15.3 progressive growing, minibatch discrimination, and truncation . . . . . . 286 15.4 conditional generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 15.5 image translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 15.6 stylegan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 15.7 summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 16 normalizing flows 303 16.1 1d example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 16.2 general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 16.3 invertible network layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 16.4 multi-scale flows. . . . . . . . . . . . . . . . . . . . . . . . . . ."