--- annotations_creators: [] language: en license: cc-by-nc-2.0 size_categories: - 10K ![image/png](dataset_preview.jpg) This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929 samples. ## Installation If you haven't already, install FiftyOne: ```bash pip install -U fiftyone ``` ## Usage ```python import fiftyone as fo import fiftyone.utils.huggingface as fouh # Load the dataset # Note: other available arguments include 'max_samples', etc dataset = fouh.load_from_hub("NeoKish/DensePose-COCO") # dataset = fouh.load_from_hub("NeoKish/DensePose-COCO", max_samples=1000) # Launch the App session = fo.launch_app(dataset) ``` --- # Dataset Card for DensePose-COCO DensePose-COCO is a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on COCO images. ![image/png](dataset_preview.jpg) This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 33929 samples. ## Installation If you haven't already, install FiftyOne: ```bash pip install -U fiftyone ``` ## Usage ```python import fiftyone as fo import fiftyone.utils.huggingface as fouh # Load the dataset # Note: other available arguments include 'max_samples', etc dataset = fouh.load_from_hub("NeoKish/DensePose-COCO") # Launch the App session = fo.launch_app(dataset) ``` ## Dataset Details ### Dataset Description - **Curated by:** Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos - **Language(s) (NLP):** en - **License:** cc-by-nc-2.0 ### Dataset Sources - **Repository:** https://github.com/facebookresearch/Densepose - **Paper :** https://arxiv.org/abs/1802.00434 - **Homepage:** http://densepose.org/ ## Uses Dense human pose estimation ## Dataset Structure ```plaintext Name: DensePoseCOCO Media type: image Num samples: 33929 Persistent: False Tags: [] Sample fields: id: fiftyone.core.fields.ObjectIdField filepath: fiftyone.core.fields.StringField tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField) metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata) detections: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections) segmentations: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections) keypoints: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Keypoints) ``` The dataset has 2 splits: "train" and "val". Samples are tagged with their split. ## Dataset Creation ### Curation Rationale Please refer the homepage and the paper for the curation rationale. #### Annotation process Please refer the github repo for the annotation process. ## Citation **BibTeX:** ```bibtex @InProceedings{Guler2018DensePose, title={DensePose: Dense Human Pose Estimation In The Wild}, author={R\{i}za Alp G\"uler, Natalia Neverova, Iasonas Kokkinos}, journal={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2018} } ``` ## Dataset Card Authors [Kishan Savant](https://huggingface.co/NeoKish)