NeoKish commited on
Commit
f73d7e7
1 Parent(s): 2a75596

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -100
README.md CHANGED
@@ -12,7 +12,8 @@ tags:
12
  - fiftyone
13
  - image
14
  - object-detection
15
- dataset_summary: '
 
16
 
17
 
18
 
@@ -20,13 +21,14 @@ dataset_summary: '
20
 
21
 
22
 
23
- This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1555 samples.
 
24
 
25
 
26
  ## Installation
27
 
28
 
29
- If you haven''t already, install FiftyOne:
30
 
31
 
32
  ```bash
@@ -48,7 +50,7 @@ dataset_summary: '
48
 
49
  # Load the dataset
50
 
51
- # Note: other available arguments include ''max_samples'', etc
52
 
53
  dataset = fouh.load_from_hub("NeoKish/Total-Text-Dataset")
54
 
@@ -58,15 +60,11 @@ dataset_summary: '
58
  session = fo.launch_app(dataset)
59
 
60
  ```
61
-
62
- '
63
  ---
64
 
65
  # Dataset Card for Total-Text-Dataset
66
 
67
- <!-- Provide a quick summary of the dataset. -->
68
-
69
-
70
 
71
 
72
  ![image/png](dataset_preview.jpg)
@@ -96,135 +94,98 @@ dataset = fouh.load_from_hub("NeoKish/Total-Text-Dataset")
96
  session = fo.launch_app(dataset)
97
  ```
98
 
99
-
100
  ## Dataset Details
101
 
102
  ### Dataset Description
103
 
104
  <!-- Provide a longer summary of what this dataset is. -->
105
 
106
-
107
-
108
- - **Curated by:** [More Information Needed]
109
- - **Funded by [optional]:** [More Information Needed]
110
- - **Shared by [optional]:** [More Information Needed]
111
  - **Language(s) (NLP):** en
112
  - **License:** bsd-3-clause
113
 
114
- ### Dataset Sources [optional]
115
 
116
  <!-- Provide the basic links for the dataset. -->
117
 
118
- - **Repository:** [More Information Needed]
119
- - **Paper [optional]:** [More Information Needed]
120
- - **Demo [optional]:** [More Information Needed]
121
 
122
  ## Uses
123
 
124
- <!-- Address questions around how the dataset is intended to be used. -->
125
-
126
- ### Direct Use
127
-
128
- <!-- This section describes suitable use cases for the dataset. -->
129
-
130
- [More Information Needed]
131
-
132
- ### Out-of-Scope Use
133
-
134
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
135
-
136
- [More Information Needed]
137
 
138
  ## Dataset Structure
139
 
140
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
141
-
142
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
143
 
144
  ## Dataset Creation
145
 
146
  ### Curation Rationale
147
 
148
- <!-- Motivation for the creation of this dataset. -->
149
-
150
- [More Information Needed]
151
-
152
- ### Source Data
153
-
154
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
155
-
156
- #### Data Collection and Processing
157
-
158
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
159
-
160
- [More Information Needed]
161
-
162
- #### Who are the source data producers?
163
-
164
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
165
-
166
- [More Information Needed]
167
-
168
- ### Annotations [optional]
169
-
170
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
171
 
172
  #### Annotation process
173
 
174
  <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
 
 
 
 
 
 
 
175
 
176
- [More Information Needed]
 
 
 
 
177
 
178
  #### Who are the annotators?
179
 
180
  <!-- This section describes the people or systems who created the annotations. -->
181
 
182
- [More Information Needed]
183
-
184
- #### Personal and Sensitive Information
185
-
186
- <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
187
-
188
- [More Information Needed]
189
-
190
- ## Bias, Risks, and Limitations
191
-
192
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
193
-
194
- [More Information Needed]
195
-
196
- ### Recommendations
197
-
198
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
199
 
200
- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
201
-
202
- ## Citation [optional]
203
 
204
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
205
 
206
  **BibTeX:**
207
 
208
- [More Information Needed]
209
-
210
- **APA:**
211
-
212
- [More Information Needed]
213
-
214
- ## Glossary [optional]
215
-
216
- <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
217
-
218
- [More Information Needed]
219
-
220
- ## More Information [optional]
221
-
222
- [More Information Needed]
223
-
224
- ## Dataset Card Authors [optional]
225
-
226
- [More Information Needed]
227
 
228
- ## Dataset Card Contact
229
 
230
- [More Information Needed]
 
12
  - fiftyone
13
  - image
14
  - object-detection
15
+ - text-detection
16
+ dataset_summary: >
17
 
18
 
19
 
 
21
 
22
 
23
 
24
+ This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 1555
25
+ samples.
26
 
27
 
28
  ## Installation
29
 
30
 
31
+ If you haven't already, install FiftyOne:
32
 
33
 
34
  ```bash
 
50
 
51
  # Load the dataset
52
 
53
+ # Note: other available arguments include 'max_samples', etc
54
 
55
  dataset = fouh.load_from_hub("NeoKish/Total-Text-Dataset")
56
 
 
60
  session = fo.launch_app(dataset)
61
 
62
  ```
 
 
63
  ---
64
 
65
  # Dataset Card for Total-Text-Dataset
66
 
67
+ The Total-Text consists of 1555 images with more than 3 different text orientations: Horizontal, Multi-Oriented, and Curved
 
 
68
 
69
 
70
  ![image/png](dataset_preview.jpg)
 
94
  session = fo.launch_app(dataset)
95
  ```
96
 
 
97
  ## Dataset Details
98
 
99
  ### Dataset Description
100
 
101
  <!-- Provide a longer summary of what this dataset is. -->
102
 
103
+ - **Curated by :** Chee-Kheng Ch’ng1, Chee Seng Chan1, Cheng-Lin Liu2
104
+ - **Funded by :** Fundamental Research Grant Scheme (FRGS) MoHE (Grant No. FP004-2016) and Postgraduate Research Grant (PPP) (Grant No. PG350-2016A).
 
 
 
105
  - **Language(s) (NLP):** en
106
  - **License:** bsd-3-clause
107
 
108
+ ### Dataset Sources
109
 
110
  <!-- Provide the basic links for the dataset. -->
111
 
112
+ - **Repository :** https://github.com/cs-chan/Total-Text-Dataset
113
+ - **Paper :** https://arxiv.org/abs/1710.10400
 
114
 
115
  ## Uses
116
 
117
+ - curved text detection problems
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
  ## Dataset Structure
120
 
121
+ ```
122
+ Name: Total-Text-Dataset
123
+ Media type: image
124
+ Num samples: 1555
125
+ Persistent: False
126
+ Tags: []
127
+ Sample fields:
128
+ id: fiftyone.core.fields.ObjectIdField
129
+ filepath: fiftyone.core.fields.StringField
130
+ tags: fiftyone.core.fields.ListField(fiftyone.core.fields.StringField)
131
+ metadata: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.metadata.ImageMetadata)
132
+ ground_truth_polylines: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Polylines)
133
+ ground_truth: fiftyone.core.fields.EmbeddedDocumentField(fiftyone.core.labels.Detections)
134
+ ```
135
 
136
  ## Dataset Creation
137
 
138
  ### Curation Rationale
139
 
140
+ At present, text orientation is not diverse enough in the existing scene text datasets. Specifically, curve-orientated text is
141
+ largely out-numbered by horizontal and multi-oriented text, hence, it has received minimal attention from the community so
142
+ far. Motivated by this phenomenon, the authors collected a new scene text dataset, Total-Text, which emphasized on text orientations
143
+ diversity. It is the first relatively large scale scene text dataset that features three different text orientations: horizontal, multioriented,
144
+ and curve-oriented.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  #### Annotation process
147
 
148
  <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
149
+ Initial version of Total-Text’s polygon annotation was carried out with the mindset of covering text instances tightly with
150
+ the least amount of vertices. As a result, the uncontrolled length of polygon vertices is not practical to train a regression
151
+ network. The authors refined the Total-Text annotation using the following scheme. Apart from setting the number
152
+ of polygon vertices to 10 (empirically, 10 vertices are found to be sufficient in covering all the word-level text instances
153
+ tightly in our dataset), they used a guidance concept inspired by Curved scene text detection via transverse and longitudinal
154
+ sequence connection paper by Liu, et al. which was introduced to remove human annotators’ bias and in turn producing a more consistent ground truth.
155
+ The process for other annotations can be referred from paper.
156
 
157
+ The authors have mentioned in the paper that the human annotator was given the freedom to take a break whenever he feels like to,
158
+ ensuring that he will not suffer from fatigue which in turn introduces bias to the experiment. Both time and annotation quality
159
+ were measured internally (within the script) and individually to each image.
160
+
161
+ The authors have also proposed aided scene text detection annotation tool, T3, could help in providing a better scene text dataset in terms of quality and scale.
162
 
163
  #### Who are the annotators?
164
 
165
  <!-- This section describes the people or systems who created the annotations. -->
166
 
167
+ Chee-Kheng Ch’ng1, Chee Seng Chan1, Cheng-Lin Liu2 and Chun Chet Ng
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168
 
169
+ ## Citation
 
 
170
 
171
  <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
172
 
173
  **BibTeX:**
174
 
175
+ ```bibtex
176
+ @article{CK2019,
177
+ author = {Chee Kheng Ch’ng and
178
+ Chee Seng Chan and
179
+ Chenglin Liu},
180
+ title = {Total-Text: Towards Orientation Robustness in Scene Text Detection},
181
+ journal = {International Journal on Document Analysis and Recognition (IJDAR)},
182
+ volume = {23},
183
+ pages = {31-52},
184
+ year = {2020},
185
+ doi = {10.1007/s10032-019-00334-z},
186
+ }
187
+ ```
 
 
 
 
 
 
188
 
189
+ ## Dataset Card Authors
190
 
191
+ [Kishan Savant](https://huggingface.co/NeoKish)