matinf / matinf.py
system's picture
system HF staff
Update files from the datasets library (from 1.16.0)
bc4b059
import csv
import os
import datasets
_CITATION = """\
@inproceedings{xu-etal-2020-matinf,
title = "{MATINF}: A Jointly Labeled Large-Scale Dataset for Classification, Question Answering and Summarization",
author = "Xu, Canwen and
Pei, Jiaxin and
Wu, Hongtao and
Liu, Yiyu and
Li, Chenliang",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-main.330",
pages = "3586--3596",
}
"""
_DESCRIPTION = """\
MATINF is the first jointly labeled large-scale dataset for classification, question answering and summarization.
MATINF contains 1.07 million question-answer pairs with human-labeled categories and user-generated question
descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification,
question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to
inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the
merits held by MATINF.
"""
class MatinfConfig(datasets.BuilderConfig):
"""BuilderConfig for MATINF."""
def __init__(
self,
text_features,
label_column,
label_classes=None,
**kwargs,
):
"""BuilderConfig for MATINF.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
**kwargs: keyword arguments forwarded to super.
"""
super(MatinfConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
class Matinf(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
MatinfConfig(
name="age_classification",
text_features=["question", "description"],
label_column="class",
label_classes=["0-1岁", "1-2岁", "2-3岁"],
),
MatinfConfig(
name="topic_classification",
text_features=["question", "description"],
label_column="class",
label_classes=[
"产褥期保健",
"儿童过敏",
"动作发育",
"婴幼保健",
"婴幼心理",
"婴幼早教",
"婴幼期喂养",
"婴幼营养",
"孕期保健",
"家庭教育",
"幼儿园",
"未准父母",
"流产和不孕",
"疫苗接种",
"皮肤护理",
"宝宝上火",
"腹泻",
"婴幼常见病",
],
),
MatinfConfig(
name="summarization",
text_features=["description", "question"],
label_column=None,
),
MatinfConfig(
name="qa",
text_features=["question", "answer"],
label_column=None,
),
]
@property
def manual_download_instructions(self):
return (
"To use MATINF you have to download it manually. Please fill this google form ("
"https://forms.gle/nkH4LVE4iNQeDzsc9). You will receive a download link and a password once you "
"complete the form. Please extract all files in one folder and load the dataset with: "
"`datasets.load_dataset('matinf', data_dir='path/to/folder/folder_name')`"
)
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
features["id"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage="https://github.com/WHUIR/MATINF",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('matinf', data_dir=...)` that includes files unzipped from the MATINF zip. Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": os.path.join(data_dir, "train.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "test.csv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "dev.csv")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
label_classes = self.config.label_classes
with open(filepath, encoding="utf8") as f:
reader = csv.DictReader(f)
for n, row in enumerate(reader):
example = {feat: row[feat] for feat in self.config.text_features}
example["id"] = row["id"]
if self.config.label_column:
label = row[self.config.label_column]
if label_classes and label not in label_classes:
continue # Split age/topic classification
example["label"] = label
# Filter out corrupted rows.
for value in example.values():
if value is None:
break
else:
yield example["id"], example