File size: 96,241 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 |
{
"paper_id": "W07-0401",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T04:40:36.508309Z"
},
"title": "Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation",
"authors": [
{
"first": "Yuqi",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "[email protected]"
},
{
"first": "Richard",
"middle": [],
"last": "Zens",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "[email protected]"
},
{
"first": "Hermann",
"middle": [],
"last": "Ney",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results are reported for a Chinese-to-English task, showing an improvement of 0.5%-1.8% BLEU score absolute on various test sets and better computational efficiency than reordering during decoding. The experiments also show that the reordering at the chunk-level performs better than at the POS-level.",
"pdf_parse": {
"paper_id": "W07-0401",
"_pdf_hash": "",
"abstract": [
{
"text": "In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results are reported for a Chinese-to-English task, showing an improvement of 0.5%-1.8% BLEU score absolute on various test sets and better computational efficiency than reordering during decoding. The experiments also show that the reordering at the chunk-level performs better than at the POS-level.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In machine translation, reordering is one of the major problems, since different languages have different word order requirements. Many reordering constraints have been used for word reorderings, such as ITG constraints (Wu, 1996) , IBM constraints (Berger et al., 1996) and local constraints (Kanthak et al., 2005) . These approaches do not make use of any linguistic knowledge.",
"cite_spans": [
{
"start": 220,
"end": 230,
"text": "(Wu, 1996)",
"ref_id": "BIBREF23"
},
{
"start": 249,
"end": 270,
"text": "(Berger et al., 1996)",
"ref_id": "BIBREF0"
},
{
"start": 293,
"end": 315,
"text": "(Kanthak et al., 2005)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Several methods have been proposed to use syntactic information to handle the reordering problem, e.g. (Wu, 1997; Yamada and Knight, 2001; Gildea, 2003; Melamed, 2004; Graehl and Knight, 2004; Galley et al., 2006) . One approach makes use of bitext grammars to parse both the source and target languages. Another approach makes use of syntactic information only in the target language. Note that these models have radically different structures and parameterizations than phrase-based models for SMT.",
"cite_spans": [
{
"start": 103,
"end": 113,
"text": "(Wu, 1997;",
"ref_id": "BIBREF24"
},
{
"start": 114,
"end": 138,
"text": "Yamada and Knight, 2001;",
"ref_id": "BIBREF26"
},
{
"start": 139,
"end": 152,
"text": "Gildea, 2003;",
"ref_id": "BIBREF8"
},
{
"start": 153,
"end": 167,
"text": "Melamed, 2004;",
"ref_id": "BIBREF13"
},
{
"start": 168,
"end": 192,
"text": "Graehl and Knight, 2004;",
"ref_id": "BIBREF9"
},
{
"start": 193,
"end": 213,
"text": "Galley et al., 2006)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Another kind of approaches is to use syntactic information in rescoring methods. (Koehn and Knight, 2003) apply a reranking approach to the sub-task of noun-phrase translation. and describe the use of syntactic features in reranking the output of a full translation system, but the syntactic features give very small gains.",
"cite_spans": [
{
"start": 81,
"end": 105,
"text": "(Koehn and Knight, 2003)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we present a strategy to reorder a source sentence using rules based on syntactic chunks. It is possible to integrate reordering rules directly into the search process, but here, we consider a more modular approach: easy to exchange reordering strategy. To avoid hard decisions before SMT, we generate a source-reordering lattice instead of a single reordered source sentence as input to the SMT system. Then, the decoder uses the reordered source language model as an additional feature function. A language model trained on the reordered source-side chunks gives a score for each path in the lattice. The novel ideas in this paper are:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 reordering of the source sentence at the chunk level,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 representing linguistic chunks-reorderings in a lattice.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The rest of this paper is organized as follows. Section 2 presents a review of related work. In Sections 3, we review the phrase-based translation system used in this work and propose the framework of the new reordering method. In Section 4, we introduce the details of the reordering rules, how they are defined and how to extract them. In Section 5, we explain how to apply the rules and how to generate reordering lattice. In Section 6, we present some results that show that the chunk-level source reordering is helpful for phrase-based statistical machine translation. Finally, we conclude this paper and discuss future work in Section 7.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Beside the reordering methods during decoding, an alternative approach is to reorder the input source sentence to match the word order of the target sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Some reordering methods are carried out on syntactic source trees. (Collins et al., 2005 ) describe a method for reordering German for German-to-English translation, where six transformations are applied to the surface string of the parsed source sentence. (Xia and McCord, 2004) propose an approach for translation from French-to-English. This approach automatically extracts rewrite patterns by parsing the source and target sides of the training corpus. These rewrite patterns can be applied to any input source sentence so that the rewritten source and target sentences have similar word order. Both methods need a parser to generate trees of source sentences and are applied only as a preprocessing step.",
"cite_spans": [
{
"start": 67,
"end": 88,
"text": "(Collins et al., 2005",
"ref_id": "BIBREF3"
},
{
"start": 257,
"end": 279,
"text": "(Xia and McCord, 2004)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Another kind of source reordering methods besides full parsing is based on Part-Of-Speech (POS) tags or word classes. (Costa-juss\u00e0 and Fonollosa, 2006) view the source reordering as a translation task that translate the source language into a reordered source language. Then, the reordered source sentence is taken as the single input to the standard SMT system. (Chen et al., 2006) automatically extract rules from word alignments. These rules are defined at the POS level and the scores of matching rules are used as additional feature functions during rescor-ing. (Crego and Mari\u00f1o, 2006) integrate source-side reordering into SMT decoding. They automatically learn rewrite patterns from word alignment and represent the patterns with POS tags. To our knowledge no work is reported on the reordering with shallow parsing.",
"cite_spans": [
{
"start": 118,
"end": 151,
"text": "(Costa-juss\u00e0 and Fonollosa, 2006)",
"ref_id": "BIBREF4"
},
{
"start": 363,
"end": 382,
"text": "(Chen et al., 2006)",
"ref_id": "BIBREF2"
},
{
"start": 567,
"end": 591,
"text": "(Crego and Mari\u00f1o, 2006)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Decoding lattices were already used in (Zens et al., 2002; Kanthak et al., 2005) . Those approaches used linguistically uninformed word-level reorderings.",
"cite_spans": [
{
"start": 39,
"end": 58,
"text": "(Zens et al., 2002;",
"ref_id": "BIBREF27"
},
{
"start": 59,
"end": 80,
"text": "Kanthak et al., 2005)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In this section, we will describe the phrase-based SMT system which we use for the experiments. Then, we will give an outline of the extentions with the chunk-level source reordering model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "System Overview",
"sec_num": "3"
},
{
"text": "In statistical machine translation, we are given a source language sentence f J 1 = f 1 . . . f j . . . f J , which is to be translated into a target language sentence e I 1 = e 1 . . . e i . . . e I . Among all possible target language sentences, we will choose the sentence with the highest probability:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "e\u00ce 1 = argmax I,e I 1 P r(e I 1 |f J 1 ) (1) = argmax I,e I 1 P r(e I 1 ) \u2022 P r(f J 1 |e I 1 )",
"eq_num": "(2)"
}
],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "This decomposition into two knowledge sources is known as the source-channel approach to statistical machine translation (Brown et al., 1990) . It allows an independent modeling of the target language model P r(e I 1 ) and the translation model P r(f J 1 |e I 1 ). The target language model describes the well-formedness of the target language sentence. The translation model links the source language sentence to the target language sentence. The argmax operation denotes the search problem, i.e., the generation of the output sentence in the target language.",
"cite_spans": [
{
"start": 121,
"end": 141,
"text": "(Brown et al., 1990)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "A generalization of the classical source-channel approach is the direct modeling of the posterior probability P r(e I 1 |f J 1 ). Using a log-linear model , we obtain:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "P r(e I 1 |f J 1 ) = exp M m=1 \u03bb m h m (e I 1 , f J 1 ) I \u2032 ,e \u2032I \u2032 1 exp M m=1 \u03bb m h m (e \u2032 I \u2032 1 , f J 1 )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "(3) The denominator represents a normalization factor that depends only on the source sentence f J",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "1 . Therefore, we can omit it during the search process. As a decision rule, we obtain:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "e\u00ce 1 = argmax I,e I 1 M m=1 \u03bb m h m (e I 1 , f J 1 ) (4)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "The log-linear model has the advantage that additional models h(\u2022) can be easily integrated into the overall system. The model scaling factors \u03bb M 1 are trained according to the maximum entropy principle, e.g., using the GIS algorithm. Alternatively, one can train them with respect to the final translation quality measured by an error criterion (Och, 2003) .",
"cite_spans": [
{
"start": 347,
"end": 358,
"text": "(Och, 2003)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "The log-linear model is a natural framework to integrate many models. The baseline system uses the following models:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "\u2022 phrase translation model \u2022 distortion model (assigning costs based on the jump width)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "All the experiments in the paper are evaluated without rescoring. More details about the baseline system can be found in (Mauser et al., 2006) ",
"cite_spans": [
{
"start": 121,
"end": 142,
"text": "(Mauser et al., 2006)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The Baseline Phrase-based SMT System",
"sec_num": "3.1"
},
{
"text": "Encouraged by the work of (Xia and McCord, 2004) and (Crego and Mari\u00f1o, 2006) , we also reorder the source language side. Compared to reordering on the target language side, one advantage is the efficiency since the reordering lattice can be translated monotonically as in (Zens et al., 2002) . Another advantage is that there is correct sentence information for the reordering methods, because the source sentences are always given. Syntactic reordering on target language is difficult, since the methods will degrade much because of the errors in hypothesis. We apply reordering at the syntactic chunk level which can been seen as an intermediate level between full parsing and POS tagging. Figure 1 shows the differences between the new translation framework and the standard translation process. A reordering lattice replaces the original source sentence as the input to the translation system. The use of a lattice avoids hard decisions before translation. To generate the reordering lattice, the source sentence is first POS tagged and chunk parsed. Then, reordering rules are applied to the chunks to generate the reordering lattice.",
"cite_spans": [
{
"start": 26,
"end": 48,
"text": "(Xia and McCord, 2004)",
"ref_id": "BIBREF25"
},
{
"start": 53,
"end": 77,
"text": "(Crego and Mari\u00f1o, 2006)",
"ref_id": "BIBREF5"
},
{
"start": 273,
"end": 292,
"text": "(Zens et al., 2002)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 693,
"end": 701,
"text": "Figure 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Source Sentence Reordering Framework",
"sec_num": "3.2"
},
{
"text": "Reordering rules are the key information for source reordering. They are automatically learned from the training data. The details of these two modules will be introduced in Section 5.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Source Sentence Reordering Framework",
"sec_num": "3.2"
},
{
"text": "There has been much work on learning and applying reordering rules on source language, such as (Nie\u00dfen and Ney, 2001; Xia and McCord, 2004; Collins et al., 2005; Chen et al., 2006; Crego and Mari\u00f1o, 2006; Popovi\u0107 and Ney, 2006) . The reordering rules could be composed of words, POS tags or syntactic tags of phrases. In our work, a rule is composed of chunk tags and POS tags. There is no. lhs rhs 1.",
"cite_spans": [
{
"start": 95,
"end": 117,
"text": "(Nie\u00dfen and Ney, 2001;",
"ref_id": "BIBREF14"
},
{
"start": 118,
"end": 139,
"text": "Xia and McCord, 2004;",
"ref_id": "BIBREF25"
},
{
"start": 140,
"end": 161,
"text": "Collins et al., 2005;",
"ref_id": "BIBREF3"
},
{
"start": 162,
"end": 180,
"text": "Chen et al., 2006;",
"ref_id": "BIBREF2"
},
{
"start": 181,
"end": 204,
"text": "Crego and Mari\u00f1o, 2006;",
"ref_id": "BIBREF5"
},
{
"start": 205,
"end": 227,
"text": "Popovi\u0107 and Ney, 2006)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "N P 0 P P 1 u 2 n 3 0 1 2 3 2.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "N P 0 P P 1 u 2 n 3 3 0 1 2 3.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "DN P 0 N P 1 V P 2 0 1 2 4. DN P 0 N P 1 V P 2 1 0 2 5. DN P 0 N P 1 m 2 0 1 2 6.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "DN P 0 N P 1 m 2 ad 3 3 0 1 2 7.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "DN P 0 N P 1 m 2 ad 3 v 4 4 3 0 1 2 no hierarchical structure in a rule.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering Rules",
"sec_num": "4"
},
{
"text": "First, we show some rule examples in Table 1 . A reordering rule consists of a left-hand-side (lhs) and a right-hand-side (rhs). The left-hand-side is a syntactic rule (chunk or POS tags), while the righthand-side is the reordering positions of the rule. Different rules can share the same left-hand-side, such as rules no. 1, 2 and no. 3, 4. The rules record not only the real reordered chunk sequence, but also the monotone chunk sequences, like no. 1, 3 and 5. Note that the same tag sequence can appear multiple times according to different contexts, such as DN P 0 N P 1 m 2 # 0 1 2 in rules no. 5, 6, 7.",
"cite_spans": [],
"ref_spans": [
{
"start": 37,
"end": 44,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Definition of Reordering Rules",
"sec_num": "4.1"
},
{
"text": "The extraction of reordering rules is based on the word alignment and the source sentence chunks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Extraction of Reordering Rules",
"sec_num": "4.2"
},
{
"text": "Here, we train word alignments in both directions with GIZA++ (Och and Ney, 2003) . To get alignment with high accuracy, we use the intersection alignment here. For a given word-aligned sentence pair (f J 1 , e I 1 , a J 1 ), the source word sequence f J 1 is first parsed into a chunk sequence F K 1 . Accordingly, the word-to-word alignment a J 1 is changed to a chunk-to-word alignment\u00e3 K 1 which is the combination of the target words aligned to the source words in a chunk. It is defined as: Here, j k denotes the position of the first source word in k th chunk. The new alignment is 1 : m from source chunks to target words. It also means\u00e3 k is a set of positions of target words.",
"cite_spans": [
{
"start": 62,
"end": 81,
"text": "(Och and Ney, 2003)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Extraction of Reordering Rules",
"sec_num": "4.2"
},
{
"text": "a k = {i|i = a j \u2227 j \u2208 [j k , j k+1 \u2212 1]}",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Extraction of Reordering Rules",
"sec_num": "4.2"
},
{
"text": "We apply the standard phrase extraction algorithm (Zens et al., 2002) to (F K 1 , e I 1 ,\u00e3 K 1 ). Discarding the cross phrases, we keep the other phrases as rules. In a cross phrase, at least two chunk-word alignments overlap on the target language side. An example of a cross phrase is illustrated in Figure 2(c) . Figure 2(a) and (b) illustrate the phrases for reordering rules, which could be monotone phrases or reordering phrases.",
"cite_spans": [
{
"start": 50,
"end": 69,
"text": "(Zens et al., 2002)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 302,
"end": 313,
"text": "Figure 2(c)",
"ref_id": "FIGREF2"
},
{
"start": 316,
"end": 327,
"text": "Figure 2(a)",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Extraction of Reordering Rules",
"sec_num": "4.2"
},
{
"text": "The first step of chunk parsing is word segmentation. Then, a POS tagger is usually needed for further syntactic analysis. In our experiments, we use the tool of \"Inst. of Computing Tech., Chinese Lexical Analysis System (ICTCLAS)\" (Zhang et al., 2003) , which does the two tasks in one pass.",
"cite_spans": [
{
"start": 232,
"end": 252,
"text": "(Zhang et al., 2003)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Parsing the Source Sentence",
"sec_num": "5.1"
},
{
"text": "Referring to the description of the chunking task in CoNLL-2000 1 , instead of English, a Chinese chunker is processed and evaluated. Each word is assigned a chunk tag, which contains the name of the chunk type and \"B\" for the first word of the chunk and \"I\" for each other word in the chunk. The \"O\" chunk tag is used for tokens which are not part of any chunk. We use the maximum entropy tool YAS- MET 2 to learn the chunking model. The model is based on a combination of word and POS tags. Since specific training and test data are not available for Chinese chunking, we convert subtrees of the Chinese treebank (LDC2005T01) into chunks. As there are many ways to choose a subtree, we uses the minimum subtree with the following constraints:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parsing the Source Sentence",
"sec_num": "5.1"
},
{
"text": "\u2022 a subtree has more than one child,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parsing the Source Sentence",
"sec_num": "5.1"
},
{
"text": "\u2022 the children of a subtree are all leaves.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parsing the Source Sentence",
"sec_num": "5.1"
},
{
"text": "Compared to chunking of English as in CoNLL-2000, there are more chunk types (24 instead of 6) and no single-word chunks. These two aspects make chunking for Chinese harder.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Parsing the Source Sentence",
"sec_num": "5.1"
},
{
"text": "First, we search the reordering rules, in which the chunk sequence matches any tag sequence in the input sentence. A source sentence has many paths generated by the rules . For a word uncovered by any rules, its POS tag is used. Each path corresponds to one sentence permutation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Applying Reordering Rules",
"sec_num": "5.2"
},
{
"text": "The left part of the Figure 3 shows seven possible coverages, the right part is the reordering for each coverage. Some of the reorderings are identical, like the permutations in line 1, 3 and 5. That is because one word sequence is memorized by several rules in different contexts.",
"cite_spans": [],
"ref_spans": [
{
"start": 21,
"end": 29,
"text": "Figure 3",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Applying Reordering Rules",
"sec_num": "5.2"
},
{
"text": "All reorderings of an input sentence S are compressed and stored in a lattice. Each path is a possi-ble reordering S \u2032 and is given a weight W . In this paper, the weight is computed using a source language model p(S \u2032 ). The weight is used directly in the decoder, integrated into Equation (4). There is also a scaling factor for this weight, which is optimized together with other scaling factors on the development data. The probability of the reordered source sentence is calculated as follows: for a reordered source sentence w 1 w 2 ...w n , the trigram language model is:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice Weighting",
"sec_num": "5.3"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p(S \u2032 ) = N n=1 p(w n |w n\u22122 , w n\u22121 )",
"eq_num": "(5)"
}
],
"section": "Lattice Weighting",
"sec_num": "5.3"
},
{
"text": "Beside a word N-gram language model, a POS tag N-gram model or a chunk tag N-gram model could be used as well.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice Weighting",
"sec_num": "5.3"
},
{
"text": "In this paper, we use a word trigram model. The model is trained on reordered training source sentences. A training source sentence is parsed into chunks. In the same way as described in Section 4.2, word-to-word alignments is converted to chunkto-word alignments. We reorder the source chunks to monotonize the chunk-to-word alignments. The chunk boundaries are kept when this reordering is done.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice Weighting",
"sec_num": "5.3"
},
{
"text": "In this section, we report results for chunk parsing. The annotation of the data is derived from the Chinese treebank (LDC2005T01). The corpus is split into two parts: 1000 sentences are randomly se- lected as test data. The remaining part is used for training. The corpus is from the newswire domain. Table 2 shows the corpus statistics. For the 4 680 chunks in the test set, the chunker has found 4 414 chunks, of which 2 879 are correct. Following the criteria of CoNLL-2000, the chunker is evaluated using the F-score, which is a combination of precision and recall. The result is shown in Table 3 .",
"cite_spans": [],
"ref_spans": [
{
"start": 302,
"end": 309,
"text": "Table 2",
"ref_id": "TABREF1"
},
{
"start": 594,
"end": 601,
"text": "Table 3",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Chunking Result",
"sec_num": "6.1"
},
{
"text": "The accuracy is evaluated at the word level, the other three metrics are evaluated at the chunk level. The results at the chunk level are worse than at the word level, because a chunk is counted as correct only if the chunk tag and the chunk boundaries are both correct.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Chunking Result",
"sec_num": "6.1"
},
{
"text": "For the translation experiments, we report the two accuracy measures BLEU (Papineni et al., 2002) and NIST (Doddington, 2002) as well as the two error rates word error rate (WER) and positionindependent word error rate (PER).",
"cite_spans": [
{
"start": 74,
"end": 97,
"text": "(Papineni et al., 2002)",
"ref_id": "BIBREF19"
},
{
"start": 107,
"end": 125,
"text": "(Doddington, 2002)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Translation Results",
"sec_num": "6.2"
},
{
"text": "We perform translation experiments on the Basic Traveling Expression Corpus (BTEC) for the Chinese-English task. It is a speech translation task in the domain of tourism-related information. We report results on the IWSLT 2004 IWSLT , 2005 IWSLT and 2006 evaluation test sets. There are 16 reference translations for the IWSLT 2004 and 2005 tasks and 7 reference translations for the IWSLT 2006 task. Table 4 shows the corpus statistics of the task. A training corpus is used to train the translation model, the language model and to obtain the reordering (Zhang et al., 2003) . The translation is evaluated case-insensitive and without punctuation marks.",
"cite_spans": [
{
"start": 216,
"end": 226,
"text": "IWSLT 2004",
"ref_id": null
},
{
"start": 227,
"end": 239,
"text": "IWSLT , 2005",
"ref_id": null
},
{
"start": 240,
"end": 254,
"text": "IWSLT and 2006",
"ref_id": null
},
{
"start": 556,
"end": 576,
"text": "(Zhang et al., 2003)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [
{
"start": 401,
"end": 408,
"text": "Table 4",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Translation Results",
"sec_num": "6.2"
},
{
"text": "The translation results are presented in Table 5 . The baseline system is a non-monotone translation system, in which the decoder does reordering on the target language side. Compared to the baseline system, the source reordering method improves the BLEU score by 0.5% \u2212 1.8% absolute. It also achieves a better WER. Note that the used chunker here is out-of-domain 3 . An improvement is achieved even with a low F-measure for chunking. So, we could hope that larger improvement is possible using a high-accuracy chunker.",
"cite_spans": [],
"ref_spans": [
{
"start": 41,
"end": 48,
"text": "Table 5",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Translation Results",
"sec_num": "6.2"
},
{
"text": "Though the input is a lattice, the source reordering is still faster than the reordering during decoding, e.g. for the IWSLT 2006 test set, the baseline system took 17.5 minutes and the source reordering system took 12.3 minutes. The result also indicates that the non-monotone decoding hurts the performance in a source reordering framework. A similar conclusion is also presented in (Xia and McCord, 2004) .",
"cite_spans": [
{
"start": 385,
"end": 407,
"text": "(Xia and McCord, 2004)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Translation Results",
"sec_num": "6.2"
},
{
"text": "Additional experiments we carried out to compare POS-level and chunk-level reorderings. We delete the chunk information and keep the POS tags. Then, we rerun the source reordering system on the IWSLT 2004 test set. The translation results are shown in Table 6 . Though the accuracy of chunking is low, the chunk-level method gets better results than POSlevel method. With POS tags, we get more reordering rules and more paths in the lattice, since the sentence length is longer than with chunks. The statistics are shown in Table 7 .",
"cite_spans": [],
"ref_spans": [
{
"start": 252,
"end": 259,
"text": "Table 6",
"ref_id": null
},
{
"start": 524,
"end": 531,
"text": "Table 7",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Translation Results",
"sec_num": "6.2"
},
{
"text": "This paper presents a source-side reordering method which is based on syntactic chunks. The reordering rules are automatically learned from bilingual data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "7"
},
{
"text": "To avoid hard decision before decoding, a reordering lattice representing all possible reorderings is used instead of single source sentence for decoding. The experiments demonstrate that even with a very poor chunker, the chunk-level source reordering is still helpful for a state-of-the-art statistical translation system and it has better performance than the POS-level source reordering and target-side reordering. There are some directions for future work. First, we would like to try this method on larger data sets and other language pairs. Second, we are going to improve the chunking accuracy. Third, we would reduce the number of rules and prune the lattice.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "7"
},
{
"text": "http://www.cnts.ua.ac.be/conll2000/chunking/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www-i6.informatik.rwth-aachen.de/web/Software /index.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "The chunker is trained on newswire data, but the test data is from the tourism domain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This material is partly based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-06-C-0023, and was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under the project \"Statistische Text\u00fcbersetzung\" (Ne572/5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A maximum entropy approach to natural language processing",
"authors": [
{
"first": "A",
"middle": [
"L"
],
"last": "Berger",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Della Pietra",
"suffix": ""
},
{
"first": "V",
"middle": [
"J"
],
"last": "Della Pietra",
"suffix": ""
}
],
"year": 1996,
"venue": "Computational Linguistics",
"volume": "22",
"issue": "1",
"pages": "39--72",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-72, March.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "A statistical approach to machine translation",
"authors": [
{
"first": "P",
"middle": [
"F"
],
"last": "Brown",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Cocke",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Della Pietra",
"suffix": ""
},
{
"first": "V",
"middle": [
"J"
],
"last": "Della Pietra",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Jelinek",
"suffix": ""
},
{
"first": "J",
"middle": [
"D"
],
"last": "Lafferty",
"suffix": ""
},
{
"first": "R",
"middle": [
"L"
],
"last": "Mercer",
"suffix": ""
},
{
"first": "P",
"middle": [
"S"
],
"last": "Roossin",
"suffix": ""
}
],
"year": 1990,
"venue": "Computational Linguistics",
"volume": "16",
"issue": "2",
"pages": "79--85",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin. 1990. A statistical approach to machine translation. Com- putational Linguistics, 16(2):79-85, June.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Reordering rules for phrase-based statistical machine translation",
"authors": [
{
"first": "B",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Cettolo",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Federico",
"suffix": ""
}
],
"year": 2006,
"venue": "Int. Workshop on Spoken Language Translation Evaluation Campaign on Spoken Language Translation",
"volume": "",
"issue": "",
"pages": "1--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. Chen, M. Cettolo, and M. Federico. 2006. Reordering rules for phrase-based statistical machine translation. In Int. Workshop on Spoken Language Translation Evaluation Campaign on Spoken Language Translation, pages 1-15, Kyoto, Japan, November.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Clause restructuring for statistical machine translation",
"authors": [
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Kucerova",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "531--540",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Collins, P. Koehn, and I. Kucerova. 2005. Clause restructur- ing for statistical machine translation. In Proc. of the 43rd Annual Meeting of the Association for Computational Lin- guistics (ACL), pages 531-540, Ann Arbor, Michigan, June.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Statistical machine reordering",
"authors": [
{
"first": "M",
"middle": [
"R"
],
"last": "Costa-Juss\u00e0",
"suffix": ""
},
{
"first": "J",
"middle": [
"A R"
],
"last": "Fonollosa",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of the Conf. on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "70--76",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. R. Costa-juss\u00e0 and J. A. R. Fonollosa. 2006. Statistical ma- chine reordering. In Proc. of the Conf. on Empirical Meth- ods in Natural Language Processing, pages 70-76, Sydney, Australia, July.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Integration of postagbased source reordering into SMT decoding by an extended search graph",
"authors": [
{
"first": "J",
"middle": [
"M"
],
"last": "Crego",
"suffix": ""
},
{
"first": "J",
"middle": [
"B"
],
"last": "Mari\u00f1o",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of AMTA06",
"volume": "",
"issue": "",
"pages": "29--36",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. M. Crego and J. B. Mari\u00f1o. 2006. Integration of postag- based source reordering into SMT decoding by an extended search graph. In Proc. of AMTA06, pages 29-36, Mas- sachusetts, USA, August.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
"authors": [
{
"first": "G",
"middle": [],
"last": "Doddington",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. ARPA Workshop on Human Language Technology",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Doddington. 2002. Automatic evaluation of machine trans- lation quality using n-gram co-occurrence statistics. In Proc. ARPA Workshop on Human Language Technology.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Scalable inference and training of context-rich syntactic translation models",
"authors": [
{
"first": "M",
"middle": [],
"last": "Galley",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Graehl",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Marcu",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Deneefe",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Thayer",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of the 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "961--968",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang, and I. Thayer. 2006. Scalable inference and train- ing of context-rich syntactic translation models. In Proc. of the 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the Association for Computational Lin- guistics, pages 961-968, Sydney, Australia, July.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Loosely tree-based alignment for machine translation",
"authors": [
{
"first": "D",
"middle": [],
"last": "Gildea",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "80--87",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Gildea. 2003. Loosely tree-based alignment for machine translation. In Proc. of the 41th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 80-87, Sapporo, Japan, July.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Training tree transducers",
"authors": [
{
"first": "J",
"middle": [],
"last": "Graehl",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2004,
"venue": "HLT-NAACL 2004: Main Proc",
"volume": "",
"issue": "",
"pages": "105--112",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Graehl and K. Knight. 2004. Training tree transducers. In HLT-NAACL 2004: Main Proc., pages 105-112, Boston, Massachusetts, USA, May 2 -May 7.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Novel reordering approaches in phrase-based statistical machine translation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Kanthak",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Vilar",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Matusov",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2005,
"venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
"volume": "",
"issue": "",
"pages": "167--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney. 2005. Novel reordering approaches in phrase-based statistical ma- chine translation. In 43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pages 167-174, Ann Arbor, Michigan, June.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Empirical methods for compound splitting",
"authors": [
{
"first": "P",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. 10th Conf. of the Europ. Chapter of the Assoc. for Computational Linguistics (EACL)",
"volume": "",
"issue": "",
"pages": "347--354",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Koehn and K. Knight. 2003. Empirical methods for com- pound splitting. In Proc. 10th Conf. of the Europ. Chapter of the Assoc. for Computational Linguistics (EACL), pages 347-354, Budapest, Hungary, April.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mauser",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Matusov",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Hasan",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of the Int. Workshop on Spoken Language Translation",
"volume": "",
"issue": "",
"pages": "103--110",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney. 2006. The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation. In Proc. of the Int. Workshop on Spoken Language Translation, pages 103-110, Kyoto, Japan.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Statistical machine translation by parsing",
"authors": [
{
"first": "I",
"middle": [],
"last": "Melamed",
"suffix": ""
}
],
"year": 2004,
"venue": "The Companion Volume to the Proc. of 42nd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "653--660",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "I. Melamed. 2004. Statistical machine translation by parsing. In The Companion Volume to the Proc. of 42nd Annual Meet- ing of the Association for Computational Linguistics, pages 653-660.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Morpho-syntactic analysis for reordering in statistical machine translation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Nie\u00dfen",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2001,
"venue": "Proc. of MT Summit VIII",
"volume": "",
"issue": "",
"pages": "247--252",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Nie\u00dfen and H. Ney. 2001. Morpho-syntactic analysis for reordering in statistical machine translation. In Proc. of MT Summit VIII, pages 247-252.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Discriminative training and maximum entropy models for statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "295--302",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och and H. Ney. 2002. Discriminative training and max- imum entropy models for statistical machine translation. In Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), pages 295-302, Philadelphia, PA, July.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "A systematic comparison of various statistical alignment models",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2003,
"venue": "Computational Linguistics",
"volume": "29",
"issue": "1",
"pages": "19--51",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och and H. Ney. 2003. A systematic comparison of vari- ous statistical alignment models. Computational Linguistics, 29(1):19-51, March.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A smorgasbord of features for statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Khudanpur",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sarkar",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Yamada",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Fraser",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Eng",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Jain",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Jin",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Radev",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. 2004 Human Language Technology Conf. / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL)",
"volume": "",
"issue": "",
"pages": "161--168",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, and D. Radev. 2004. A smorgasbord of features for statistical machine translation. In Proc. 2004 Human Lan- guage Technology Conf. / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL), pages 161-168, Boston,MA.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Minimum error rate training in statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "160--167",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och. 2003. Minimum error rate training in statistical ma- chine translation. In Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL), pages 160-167, Sapporo, Japan, July.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Bleu: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "K",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "W",
"middle": [
"J"
],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), pages 311-318, Philadelphia, PA, July.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "POS-based word reorderings for statistical machine translation",
"authors": [
{
"first": "M",
"middle": [],
"last": "Popovi\u0107",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of the Fifth Int. Conf. on Language Resources and Evaluation (LREC)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Popovi\u0107 and H. Ney. 2006. POS-based word reorderings for statistical machine translation. In Proc. of the Fifth Int. Conf. on Language Resources and Evaluation (LREC).",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Discriminative reranking for machine translation",
"authors": [
{
"first": "L",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sarkar",
"suffix": ""
},
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
}
],
"year": 2004,
"venue": "HLT-NAACL 2004: Main Proc",
"volume": "",
"issue": "",
"pages": "177--184",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Shen, A. Sarkar, and F. J. Och. 2004. Discriminative rerank- ing for machine translation. In HLT-NAACL 2004: Main Proc., pages 177-184, Boston, Massachusetts, USA, May 2 -May 7.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A DPbased search using monotone alignments in statistical translation",
"authors": [
{
"first": "C",
"middle": [],
"last": "Tillmann",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Vogel",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Zubiaga",
"suffix": ""
}
],
"year": 1997,
"venue": "Proc. 35th Annual Conf. of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "289--296",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. Tillmann, S. Vogel, H. Ney, and A. Zubiaga. 1997. A DP- based search using monotone alignments in statistical trans- lation. In Proc. 35th Annual Conf. of the Association for Computational Linguistics, pages 289-296, Madrid, Spain, July.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "A polynomial-time algorithm for statistical machine translation",
"authors": [
{
"first": "D",
"middle": [],
"last": "Wu",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. 34th Annual Meeting of the Assoc. for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "152--158",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Wu. 1996. A polynomial-time algorithm for statistical ma- chine translation. In Proc. 34th Annual Meeting of the As- soc. for Computational Linguistics, pages 152-158, Santa Cruz, CA, June.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Stochastic inversion transduction grammars and bilingual parsing of parallel corpora",
"authors": [
{
"first": "D",
"middle": [],
"last": "Wu",
"suffix": ""
}
],
"year": 1997,
"venue": "Computational Linguistics",
"volume": "23",
"issue": "3",
"pages": "377--403",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Lin- guistics, 23(3):377-403, September.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Improving a statistical MT system with automatically learned rewrite patterns",
"authors": [
{
"first": "F",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Mccord",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of COLING04",
"volume": "",
"issue": "",
"pages": "508--514",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. Xia and M. McCord. 2004. Improving a statistical MT sys- tem with automatically learned rewrite patterns. In Proc. of COLING04, pages 508-514, Geneva, Switzerland, Aug 23- Aug 27.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "A syntax-based statistical translation model",
"authors": [
{
"first": "K",
"middle": [],
"last": "Yamada",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2001,
"venue": "Proc. of the 39th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "523--530",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Yamada and K. Knight. 2001. A syntax-based statistical translation model. In Proc. of the 39th Annual Meeting of the Association for Computational Linguistics (ACL), pages 523-530, Toulouse, France, July.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Phrase-based statistical machine translation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2002,
"venue": "25th German Conf. on Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intelligence (LNAI)",
"volume": "",
"issue": "",
"pages": "18--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Zens, F. J. Och, and H. Ney. 2002. Phrase-based statistical machine translation. In M. Jarke, J. Koehler, and G. Lake- meyer, editors, 25th German Conf. on Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intel- ligence (LNAI), pages 18-32, Aachen, Germany, September. Springer Verlag.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Chinese lexical analysis using hierarchical hidden markov model",
"authors": [
{
"first": "H",
"middle": [
"P"
],
"last": "Zhang",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "X",
"middle": [
"Q"
],
"last": "Cheng",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "H",
"middle": [
"K"
],
"last": "Yu",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of the second SIGHAN workshop on Chinese language processing",
"volume": "",
"issue": "",
"pages": "63--70",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. P. Zhang, Q. Liu, X. Q. Cheng, H. Zhang, and H. K. Yu. 2003. Chinese lexical analysis using hierarchical hidden markov model. In Proc. of the second SIGHAN workshop on Chinese language processing, pages 63-70, Morristown, NJ, USA.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "phrase count features \u2022 word-based translation model \u2022 word and phrase penalty \u2022 target language model (6-gram)",
"type_str": "figure",
"uris": null,
"num": null
},
"FIGREF1": {
"text": "Illustration of the translation process with and without source reordering.",
"type_str": "figure",
"uris": null,
"num": null
},
"FIGREF2": {
"text": "Illustration of three kinds of phrases: (a)monotone phrase, (b)reordering phrase, (c)cross phrase. The black box is a word-to-word alignment. The gray box is a chunk-to-word alignment.",
"type_str": "figure",
"uris": null,
"num": null
},
"FIGREF3": {
"text": "Example of applying rules. The left part is the used rules. The right part is the generated new orders of source words.",
"type_str": "figure",
"uris": null,
"num": null
},
"TABREF0": {
"num": null,
"content": "<table/>",
"html": null,
"text": "Examples of reordering rules. (lhs: chunk and POS tag sequence, rhs: permutation )",
"type_str": "table"
},
"TABREF1": {
"num": null,
"content": "<table><tr><td/><td>train</td><td>test</td></tr><tr><td>sentences</td><td>17 785</td><td>1 000</td></tr><tr><td>words</td><td colspan=\"2\">486 468 21 851</td></tr><tr><td>chunks</td><td>105 773</td><td>4 680</td></tr><tr><td colspan=\"3\">words out of chunks 244 416 10 282</td></tr></table>",
"html": null,
"text": "Statistics of training and test corpus for chunk parsing.",
"type_str": "table"
},
"TABREF2": {
"num": null,
"content": "<table><tr><td colspan=\"4\">accuracy precision recall F-measure</td></tr><tr><td>74.51%</td><td>65.2%</td><td>61.5%</td><td>63.3</td></tr></table>",
"html": null,
"text": "Chunk parsing result on 1000 sentences.",
"type_str": "table"
},
"TABREF3": {
"num": null,
"content": "<table><tr><td/><td/><td colspan=\"2\">Chinese English</td></tr><tr><td>Train</td><td>Sentences</td><td>40k</td><td/></tr><tr><td/><td>Words</td><td>308k</td><td>377k</td></tr><tr><td>Dev</td><td>Sentences</td><td>489</td><td/></tr><tr><td/><td>Words</td><td>5 478</td><td>6 008</td></tr><tr><td>Test</td><td>Sentences</td><td>500</td><td/></tr><tr><td>IWSLT04</td><td>Words</td><td>3 866</td><td>3 581</td></tr><tr><td>Test</td><td>Sentences</td><td>506</td><td/></tr><tr><td>IWSLT05</td><td>Words</td><td>3 652</td><td>3 579</td></tr><tr><td>Test</td><td>Sentences</td><td>500</td><td/></tr><tr><td>IWSLT06</td><td>Words</td><td>5 846</td><td>-</td></tr><tr><td colspan=\"4\">rules. A development corpus is used to optimize the</td></tr><tr><td colspan=\"4\">scaling factors for the BLEU score. The English text</td></tr><tr><td colspan=\"4\">is processed using a tokenizer. The Chinese text pro-</td></tr><tr><td colspan=\"4\">cessing uses word segmentation with the ICTCLAS</td></tr><tr><td>segmenter</td><td/><td/><td/></tr></table>",
"html": null,
"text": "Statistics of training and test corpora for the IWSLT tasks.",
"type_str": "table"
},
"TABREF4": {
"num": null,
"content": "<table><tr><td>WER[%] PER[%] NIST BLEU[%]</td></tr></table>",
"html": null,
"text": "Translation performance for the Chinese-English IWSLT task",
"type_str": "table"
},
"TABREF5": {
"num": null,
"content": "<table><tr><td colspan=\"4\">: Lattice information for the Chinese-English</td></tr><tr><td colspan=\"2\">IWSLT 2004 test data</td><td/><td/></tr><tr><td/><td colspan=\"2\">avg. density used</td><td>translation</td></tr><tr><td/><td>pro sent</td><td colspan=\"2\">rules time [min/sec]</td></tr><tr><td>POS</td><td>15.7</td><td>6 868</td><td>7:08</td></tr><tr><td>Chunk</td><td>8.2</td><td>3 685</td><td>3:47</td></tr></table>",
"html": null,
"text": "",
"type_str": "table"
}
}
}
} |