File size: 96,241 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
{
    "paper_id": "W07-0401",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:40:36.508309Z"
    },
    "title": "Chunk-Level Reordering of Source Language Sentences with Automatically Learned Rules for Statistical Machine Translation",
    "authors": [
        {
            "first": "Yuqi",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Richard",
            "middle": [],
            "last": "Zens",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Hermann",
            "middle": [],
            "last": "Ney",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results are reported for a Chinese-to-English task, showing an improvement of 0.5%-1.8% BLEU score absolute on various test sets and better computational efficiency than reordering during decoding. The experiments also show that the reordering at the chunk-level performs better than at the POS-level.",
    "pdf_parse": {
        "paper_id": "W07-0401",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper, we describe a sourceside reordering method based on syntactic chunks for phrase-based statistical machine translation. First, we shallow parse the source language sentences. Then, reordering rules are automatically learned from source-side chunks and word alignments. During translation, the rules are used to generate a reordering lattice for each sentence. Experimental results are reported for a Chinese-to-English task, showing an improvement of 0.5%-1.8% BLEU score absolute on various test sets and better computational efficiency than reordering during decoding. The experiments also show that the reordering at the chunk-level performs better than at the POS-level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In machine translation, reordering is one of the major problems, since different languages have different word order requirements. Many reordering constraints have been used for word reorderings, such as ITG constraints (Wu, 1996) , IBM constraints (Berger et al., 1996) and local constraints (Kanthak et al., 2005) . These approaches do not make use of any linguistic knowledge.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 230,
                        "text": "(Wu, 1996)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 249,
                        "end": 270,
                        "text": "(Berger et al., 1996)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 293,
                        "end": 315,
                        "text": "(Kanthak et al., 2005)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Several methods have been proposed to use syntactic information to handle the reordering problem, e.g. (Wu, 1997; Yamada and Knight, 2001; Gildea, 2003; Melamed, 2004; Graehl and Knight, 2004; Galley et al., 2006) . One approach makes use of bitext grammars to parse both the source and target languages. Another approach makes use of syntactic information only in the target language. Note that these models have radically different structures and parameterizations than phrase-based models for SMT.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 113,
                        "text": "(Wu, 1997;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 114,
                        "end": 138,
                        "text": "Yamada and Knight, 2001;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 139,
                        "end": 152,
                        "text": "Gildea, 2003;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 153,
                        "end": 167,
                        "text": "Melamed, 2004;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 168,
                        "end": 192,
                        "text": "Graehl and Knight, 2004;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 193,
                        "end": 213,
                        "text": "Galley et al., 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Another kind of approaches is to use syntactic information in rescoring methods. (Koehn and Knight, 2003) apply a reranking approach to the sub-task of noun-phrase translation. and describe the use of syntactic features in reranking the output of a full translation system, but the syntactic features give very small gains.",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 105,
                        "text": "(Koehn and Knight, 2003)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we present a strategy to reorder a source sentence using rules based on syntactic chunks. It is possible to integrate reordering rules directly into the search process, but here, we consider a more modular approach: easy to exchange reordering strategy. To avoid hard decisions before SMT, we generate a source-reordering lattice instead of a single reordered source sentence as input to the SMT system. Then, the decoder uses the reordered source language model as an additional feature function. A language model trained on the reordered source-side chunks gives a score for each path in the lattice. The novel ideas in this paper are:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 reordering of the source sentence at the chunk level,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 representing linguistic chunks-reorderings in a lattice.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is organized as follows. Section 2 presents a review of related work. In Sections 3, we review the phrase-based translation system used in this work and propose the framework of the new reordering method. In Section 4, we introduce the details of the reordering rules, how they are defined and how to extract them. In Section 5, we explain how to apply the rules and how to generate reordering lattice. In Section 6, we present some results that show that the chunk-level source reordering is helpful for phrase-based statistical machine translation. Finally, we conclude this paper and discuss future work in Section 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Beside the reordering methods during decoding, an alternative approach is to reorder the input source sentence to match the word order of the target sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Some reordering methods are carried out on syntactic source trees. (Collins et al., 2005 ) describe a method for reordering German for German-to-English translation, where six transformations are applied to the surface string of the parsed source sentence. (Xia and McCord, 2004) propose an approach for translation from French-to-English. This approach automatically extracts rewrite patterns by parsing the source and target sides of the training corpus. These rewrite patterns can be applied to any input source sentence so that the rewritten source and target sentences have similar word order. Both methods need a parser to generate trees of source sentences and are applied only as a preprocessing step.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 88,
                        "text": "(Collins et al., 2005",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 257,
                        "end": 279,
                        "text": "(Xia and McCord, 2004)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Another kind of source reordering methods besides full parsing is based on Part-Of-Speech (POS) tags or word classes. (Costa-juss\u00e0 and Fonollosa, 2006) view the source reordering as a translation task that translate the source language into a reordered source language. Then, the reordered source sentence is taken as the single input to the standard SMT system. (Chen et al., 2006) automatically extract rules from word alignments. These rules are defined at the POS level and the scores of matching rules are used as additional feature functions during rescor-ing. (Crego and Mari\u00f1o, 2006) integrate source-side reordering into SMT decoding. They automatically learn rewrite patterns from word alignment and represent the patterns with POS tags. To our knowledge no work is reported on the reordering with shallow parsing.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 151,
                        "text": "(Costa-juss\u00e0 and Fonollosa, 2006)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 363,
                        "end": 382,
                        "text": "(Chen et al., 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 567,
                        "end": 591,
                        "text": "(Crego and Mari\u00f1o, 2006)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Decoding lattices were already used in (Zens et al., 2002; Kanthak et al., 2005) . Those approaches used linguistically uninformed word-level reorderings.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 58,
                        "text": "(Zens et al., 2002;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 59,
                        "end": 80,
                        "text": "Kanthak et al., 2005)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this section, we will describe the phrase-based SMT system which we use for the experiments. Then, we will give an outline of the extentions with the chunk-level source reordering model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Overview",
                "sec_num": "3"
            },
            {
                "text": "In statistical machine translation, we are given a source language sentence f J 1 = f 1 . . . f j . . . f J , which is to be translated into a target language sentence e I 1 = e 1 . . . e i . . . e I . Among all possible target language sentences, we will choose the sentence with the highest probability:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e\u00ce 1 = argmax I,e I 1 P r(e I 1 |f J 1 ) (1) = argmax I,e I 1 P r(e I 1 ) \u2022 P r(f J 1 |e I 1 )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "This decomposition into two knowledge sources is known as the source-channel approach to statistical machine translation (Brown et al., 1990) . It allows an independent modeling of the target language model P r(e I 1 ) and the translation model P r(f J 1 |e I 1 ). The target language model describes the well-formedness of the target language sentence. The translation model links the source language sentence to the target language sentence. The argmax operation denotes the search problem, i.e., the generation of the output sentence in the target language.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 141,
                        "text": "(Brown et al., 1990)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "A generalization of the classical source-channel approach is the direct modeling of the posterior probability P r(e I 1 |f J 1 ). Using a log-linear model , we obtain:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "P r(e I 1 |f J 1 ) = exp M m=1 \u03bb m h m (e I 1 , f J 1 ) I \u2032 ,e \u2032I \u2032 1 exp M m=1 \u03bb m h m (e \u2032 I \u2032 1 , f J 1 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "(3) The denominator represents a normalization factor that depends only on the source sentence f J",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "1 . Therefore, we can omit it during the search process. As a decision rule, we obtain:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "e\u00ce 1 = argmax I,e I 1 M m=1 \u03bb m h m (e I 1 , f J 1 ) (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "The log-linear model has the advantage that additional models h(\u2022) can be easily integrated into the overall system. The model scaling factors \u03bb M 1 are trained according to the maximum entropy principle, e.g., using the GIS algorithm. Alternatively, one can train them with respect to the final translation quality measured by an error criterion (Och, 2003) .",
                "cite_spans": [
                    {
                        "start": 347,
                        "end": 358,
                        "text": "(Och, 2003)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "The log-linear model is a natural framework to integrate many models. The baseline system uses the following models:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 phrase translation model \u2022 distortion model (assigning costs based on the jump width)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "All the experiments in the paper are evaluated without rescoring. More details about the baseline system can be found in (Mauser et al., 2006) ",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 142,
                        "text": "(Mauser et al., 2006)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline Phrase-based SMT System",
                "sec_num": "3.1"
            },
            {
                "text": "Encouraged by the work of (Xia and McCord, 2004) and (Crego and Mari\u00f1o, 2006) , we also reorder the source language side. Compared to reordering on the target language side, one advantage is the efficiency since the reordering lattice can be translated monotonically as in (Zens et al., 2002) . Another advantage is that there is correct sentence information for the reordering methods, because the source sentences are always given. Syntactic reordering on target language is difficult, since the methods will degrade much because of the errors in hypothesis. We apply reordering at the syntactic chunk level which can been seen as an intermediate level between full parsing and POS tagging. Figure 1 shows the differences between the new translation framework and the standard translation process. A reordering lattice replaces the original source sentence as the input to the translation system. The use of a lattice avoids hard decisions before translation. To generate the reordering lattice, the source sentence is first POS tagged and chunk parsed. Then, reordering rules are applied to the chunks to generate the reordering lattice.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 48,
                        "text": "(Xia and McCord, 2004)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 53,
                        "end": 77,
                        "text": "(Crego and Mari\u00f1o, 2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 273,
                        "end": 292,
                        "text": "(Zens et al., 2002)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 693,
                        "end": 701,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Source Sentence Reordering Framework",
                "sec_num": "3.2"
            },
            {
                "text": "Reordering rules are the key information for source reordering. They are automatically learned from the training data. The details of these two modules will be introduced in Section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Source Sentence Reordering Framework",
                "sec_num": "3.2"
            },
            {
                "text": "There has been much work on learning and applying reordering rules on source language, such as (Nie\u00dfen and Ney, 2001; Xia and McCord, 2004; Collins et al., 2005; Chen et al., 2006; Crego and Mari\u00f1o, 2006; Popovi\u0107 and Ney, 2006) . The reordering rules could be composed of words, POS tags or syntactic tags of phrases. In our work, a rule is composed of chunk tags and POS tags. There is no. lhs rhs 1.",
                "cite_spans": [
                    {
                        "start": 95,
                        "end": 117,
                        "text": "(Nie\u00dfen and Ney, 2001;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 118,
                        "end": 139,
                        "text": "Xia and McCord, 2004;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 140,
                        "end": 161,
                        "text": "Collins et al., 2005;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 162,
                        "end": 180,
                        "text": "Chen et al., 2006;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 181,
                        "end": 204,
                        "text": "Crego and Mari\u00f1o, 2006;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 205,
                        "end": 227,
                        "text": "Popovi\u0107 and Ney, 2006)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "N P 0 P P 1 u 2 n 3 0 1 2 3 2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "N P 0 P P 1 u 2 n 3 3 0 1 2 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "DN P 0 N P 1 V P 2 0 1 2 4. DN P 0 N P 1 V P 2 1 0 2 5. DN P 0 N P 1 m 2 0 1 2 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "DN P 0 N P 1 m 2 ad 3 3 0 1 2 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "DN P 0 N P 1 m 2 ad 3 v 4 4 3 0 1 2 no hierarchical structure in a rule.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Rules",
                "sec_num": "4"
            },
            {
                "text": "First, we show some rule examples in Table 1 . A reordering rule consists of a left-hand-side (lhs) and a right-hand-side (rhs). The left-hand-side is a syntactic rule (chunk or POS tags), while the righthand-side is the reordering positions of the rule. Different rules can share the same left-hand-side, such as rules no. 1, 2 and no. 3, 4. The rules record not only the real reordered chunk sequence, but also the monotone chunk sequences, like no. 1, 3 and 5. Note that the same tag sequence can appear multiple times according to different contexts, such as DN P 0 N P 1 m 2 # 0 1 2 in rules no. 5, 6, 7.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 37,
                        "end": 44,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Definition of Reordering Rules",
                "sec_num": "4.1"
            },
            {
                "text": "The extraction of reordering rules is based on the word alignment and the source sentence chunks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction of Reordering Rules",
                "sec_num": "4.2"
            },
            {
                "text": "Here, we train word alignments in both directions with GIZA++ (Och and Ney, 2003) . To get alignment with high accuracy, we use the intersection alignment here. For a given word-aligned sentence pair (f J 1 , e I 1 , a J 1 ), the source word sequence f J 1 is first parsed into a chunk sequence F K 1 . Accordingly, the word-to-word alignment a J 1 is changed to a chunk-to-word alignment\u00e3 K 1 which is the combination of the target words aligned to the source words in a chunk. It is defined as: Here, j k denotes the position of the first source word in k th chunk. The new alignment is 1 : m from source chunks to target words. It also means\u00e3 k is a set of positions of target words.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 81,
                        "text": "(Och and Ney, 2003)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction of Reordering Rules",
                "sec_num": "4.2"
            },
            {
                "text": "a k = {i|i = a j \u2227 j \u2208 [j k , j k+1 \u2212 1]}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extraction of Reordering Rules",
                "sec_num": "4.2"
            },
            {
                "text": "We apply the standard phrase extraction algorithm (Zens et al., 2002) to (F K 1 , e I 1 ,\u00e3 K 1 ). Discarding the cross phrases, we keep the other phrases as rules. In a cross phrase, at least two chunk-word alignments overlap on the target language side. An example of a cross phrase is illustrated in Figure 2(c) . Figure 2(a) and (b) illustrate the phrases for reordering rules, which could be monotone phrases or reordering phrases.",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 69,
                        "text": "(Zens et al., 2002)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 302,
                        "end": 313,
                        "text": "Figure 2(c)",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 316,
                        "end": 327,
                        "text": "Figure 2(a)",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Extraction of Reordering Rules",
                "sec_num": "4.2"
            },
            {
                "text": "The first step of chunk parsing is word segmentation. Then, a POS tagger is usually needed for further syntactic analysis. In our experiments, we use the tool of \"Inst. of Computing Tech., Chinese Lexical Analysis System (ICTCLAS)\" (Zhang et al., 2003) , which does the two tasks in one pass.",
                "cite_spans": [
                    {
                        "start": 232,
                        "end": 252,
                        "text": "(Zhang et al., 2003)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing the Source Sentence",
                "sec_num": "5.1"
            },
            {
                "text": "Referring to the description of the chunking task in CoNLL-2000 1 , instead of English, a Chinese chunker is processed and evaluated. Each word is assigned a chunk tag, which contains the name of the chunk type and \"B\" for the first word of the chunk and \"I\" for each other word in the chunk. The \"O\" chunk tag is used for tokens which are not part of any chunk. We use the maximum entropy tool YAS- MET 2 to learn the chunking model. The model is based on a combination of word and POS tags. Since specific training and test data are not available for Chinese chunking, we convert subtrees of the Chinese treebank (LDC2005T01) into chunks. As there are many ways to choose a subtree, we uses the minimum subtree with the following constraints:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing the Source Sentence",
                "sec_num": "5.1"
            },
            {
                "text": "\u2022 a subtree has more than one child,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing the Source Sentence",
                "sec_num": "5.1"
            },
            {
                "text": "\u2022 the children of a subtree are all leaves.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing the Source Sentence",
                "sec_num": "5.1"
            },
            {
                "text": "Compared to chunking of English as in CoNLL-2000, there are more chunk types (24 instead of 6) and no single-word chunks. These two aspects make chunking for Chinese harder.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parsing the Source Sentence",
                "sec_num": "5.1"
            },
            {
                "text": "First, we search the reordering rules, in which the chunk sequence matches any tag sequence in the input sentence. A source sentence has many paths generated by the rules . For a word uncovered by any rules, its POS tag is used. Each path corresponds to one sentence permutation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Applying Reordering Rules",
                "sec_num": "5.2"
            },
            {
                "text": "The left part of the Figure 3 shows seven possible coverages, the right part is the reordering for each coverage. Some of the reorderings are identical, like the permutations in line 1, 3 and 5. That is because one word sequence is memorized by several rules in different contexts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 21,
                        "end": 29,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Applying Reordering Rules",
                "sec_num": "5.2"
            },
            {
                "text": "All reorderings of an input sentence S are compressed and stored in a lattice. Each path is a possi-ble reordering S \u2032 and is given a weight W . In this paper, the weight is computed using a source language model p(S \u2032 ). The weight is used directly in the decoder, integrated into Equation (4). There is also a scaling factor for this weight, which is optimized together with other scaling factors on the development data. The probability of the reordered source sentence is calculated as follows: for a reordered source sentence w 1 w 2 ...w n , the trigram language model is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lattice Weighting",
                "sec_num": "5.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(S \u2032 ) = N n=1 p(w n |w n\u22122 , w n\u22121 )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Lattice Weighting",
                "sec_num": "5.3"
            },
            {
                "text": "Beside a word N-gram language model, a POS tag N-gram model or a chunk tag N-gram model could be used as well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lattice Weighting",
                "sec_num": "5.3"
            },
            {
                "text": "In this paper, we use a word trigram model. The model is trained on reordered training source sentences. A training source sentence is parsed into chunks. In the same way as described in Section 4.2, word-to-word alignments is converted to chunkto-word alignments. We reorder the source chunks to monotonize the chunk-to-word alignments. The chunk boundaries are kept when this reordering is done.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lattice Weighting",
                "sec_num": "5.3"
            },
            {
                "text": "In this section, we report results for chunk parsing. The annotation of the data is derived from the Chinese treebank (LDC2005T01). The corpus is split into two parts: 1000 sentences are randomly se- lected as test data. The remaining part is used for training. The corpus is from the newswire domain. Table 2 shows the corpus statistics. For the 4 680 chunks in the test set, the chunker has found 4 414 chunks, of which 2 879 are correct. Following the criteria of CoNLL-2000, the chunker is evaluated using the F-score, which is a combination of precision and recall. The result is shown in Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 302,
                        "end": 309,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 594,
                        "end": 601,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Chunking Result",
                "sec_num": "6.1"
            },
            {
                "text": "The accuracy is evaluated at the word level, the other three metrics are evaluated at the chunk level. The results at the chunk level are worse than at the word level, because a chunk is counted as correct only if the chunk tag and the chunk boundaries are both correct.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chunking Result",
                "sec_num": "6.1"
            },
            {
                "text": "For the translation experiments, we report the two accuracy measures BLEU (Papineni et al., 2002) and NIST (Doddington, 2002) as well as the two error rates word error rate (WER) and positionindependent word error rate (PER).",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 97,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 107,
                        "end": 125,
                        "text": "(Doddington, 2002)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Results",
                "sec_num": "6.2"
            },
            {
                "text": "We perform translation experiments on the Basic Traveling Expression Corpus (BTEC) for the Chinese-English task. It is a speech translation task in the domain of tourism-related information. We report results on the IWSLT 2004 IWSLT , 2005 IWSLT and 2006 evaluation test sets. There are 16 reference translations for the IWSLT 2004 and 2005 tasks and 7 reference translations for the IWSLT 2006 task. Table 4 shows the corpus statistics of the task. A training corpus is used to train the translation model, the language model and to obtain the reordering (Zhang et al., 2003) . The translation is evaluated case-insensitive and without punctuation marks.",
                "cite_spans": [
                    {
                        "start": 216,
                        "end": 226,
                        "text": "IWSLT 2004",
                        "ref_id": null
                    },
                    {
                        "start": 227,
                        "end": 239,
                        "text": "IWSLT , 2005",
                        "ref_id": null
                    },
                    {
                        "start": 240,
                        "end": 254,
                        "text": "IWSLT and 2006",
                        "ref_id": null
                    },
                    {
                        "start": 556,
                        "end": 576,
                        "text": "(Zhang et al., 2003)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 401,
                        "end": 408,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Translation Results",
                "sec_num": "6.2"
            },
            {
                "text": "The translation results are presented in Table 5 . The baseline system is a non-monotone translation system, in which the decoder does reordering on the target language side. Compared to the baseline system, the source reordering method improves the BLEU score by 0.5% \u2212 1.8% absolute. It also achieves a better WER. Note that the used chunker here is out-of-domain 3 . An improvement is achieved even with a low F-measure for chunking. So, we could hope that larger improvement is possible using a high-accuracy chunker.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 41,
                        "end": 48,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Translation Results",
                "sec_num": "6.2"
            },
            {
                "text": "Though the input is a lattice, the source reordering is still faster than the reordering during decoding, e.g. for the IWSLT 2006 test set, the baseline system took 17.5 minutes and the source reordering system took 12.3 minutes. The result also indicates that the non-monotone decoding hurts the performance in a source reordering framework. A similar conclusion is also presented in (Xia and McCord, 2004) .",
                "cite_spans": [
                    {
                        "start": 385,
                        "end": 407,
                        "text": "(Xia and McCord, 2004)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Results",
                "sec_num": "6.2"
            },
            {
                "text": "Additional experiments we carried out to compare POS-level and chunk-level reorderings. We delete the chunk information and keep the POS tags. Then, we rerun the source reordering system on the IWSLT 2004 test set. The translation results are shown in Table 6 . Though the accuracy of chunking is low, the chunk-level method gets better results than POSlevel method. With POS tags, we get more reordering rules and more paths in the lattice, since the sentence length is longer than with chunks. The statistics are shown in Table 7 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 252,
                        "end": 259,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 524,
                        "end": 531,
                        "text": "Table 7",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Translation Results",
                "sec_num": "6.2"
            },
            {
                "text": "This paper presents a source-side reordering method which is based on syntactic chunks. The reordering rules are automatically learned from bilingual data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "7"
            },
            {
                "text": "To avoid hard decision before decoding, a reordering lattice representing all possible reorderings is used instead of single source sentence for decoding. The experiments demonstrate that even with a very poor chunker, the chunk-level source reordering is still helpful for a state-of-the-art statistical translation system and it has better performance than the POS-level source reordering and target-side reordering. There are some directions for future work. First, we would like to try this method on larger data sets and other language pairs. Second, we are going to improve the chunking accuracy. Third, we would reduce the number of rules and prune the lattice.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "7"
            },
            {
                "text": "http://www.cnts.ua.ac.be/conll2000/chunking/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www-i6.informatik.rwth-aachen.de/web/Software /index.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The chunker is trained on newswire data, but the test data is from the tourism domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This material is partly based upon work supported by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR0011-06-C-0023, and was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under the project \"Statistische Text\u00fcbersetzung\" (Ne572/5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. 1996. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-72, March.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A statistical approach to machine translation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cocke",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "S"
                        ],
                        "last": "Roossin",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computational Linguistics",
                "volume": "16",
                "issue": "2",
                "pages": "79--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin. 1990. A statistical approach to machine translation. Com- putational Linguistics, 16(2):79-85, June.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Reordering rules for phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Cettolo",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Int. Workshop on Spoken Language Translation Evaluation Campaign on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "1--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen, M. Cettolo, and M. Federico. 2006. Reordering rules for phrase-based statistical machine translation. In Int. Workshop on Spoken Language Translation Evaluation Campaign on Spoken Language Translation, pages 1-15, Kyoto, Japan, November.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Clause restructuring for statistical machine translation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Kucerova",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "531--540",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Collins, P. Koehn, and I. Kucerova. 2005. Clause restructur- ing for statistical machine translation. In Proc. of the 43rd Annual Meeting of the Association for Computational Lin- guistics (ACL), pages 531-540, Ann Arbor, Michigan, June.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Statistical machine reordering",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "A R"
                        ],
                        "last": "Fonollosa",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the Conf. on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "70--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. R. Costa-juss\u00e0 and J. A. R. Fonollosa. 2006. Statistical ma- chine reordering. In Proc. of the Conf. on Empirical Meth- ods in Natural Language Processing, pages 70-76, Sydney, Australia, July.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Integration of postagbased source reordering into SMT decoding by an extended search graph",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Crego",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "B"
                        ],
                        "last": "Mari\u00f1o",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of AMTA06",
                "volume": "",
                "issue": "",
                "pages": "29--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. M. Crego and J. B. Mari\u00f1o. 2006. Integration of postag- based source reordering into SMT decoding by an extended search graph. In Proc. of AMTA06, pages 29-36, Mas- sachusetts, USA, August.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. ARPA Workshop on Human Language Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Doddington. 2002. Automatic evaluation of machine trans- lation quality using n-gram co-occurrence statistics. In Proc. ARPA Workshop on Human Language Technology.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Scalable inference and training of context-rich syntactic translation models",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Galley",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Graehl",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Deneefe",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Thayer",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "961--968",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang, and I. Thayer. 2006. Scalable inference and train- ing of context-rich syntactic translation models. In Proc. of the 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the Association for Computational Lin- guistics, pages 961-968, Sydney, Australia, July.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Loosely tree-based alignment for machine translation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "80--87",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Gildea. 2003. Loosely tree-based alignment for machine translation. In Proc. of the 41th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), pages 80-87, Sapporo, Japan, July.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Training tree transducers",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Graehl",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "HLT-NAACL 2004: Main Proc",
                "volume": "",
                "issue": "",
                "pages": "105--112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Graehl and K. Knight. 2004. Training tree transducers. In HLT-NAACL 2004: Main Proc., pages 105-112, Boston, Massachusetts, USA, May 2 -May 7.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Novel reordering approaches in phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kanthak",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Vilar",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
                "volume": "",
                "issue": "",
                "pages": "167--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney. 2005. Novel reordering approaches in phrase-based statistical ma- chine translation. In 43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pages 167-174, Ann Arbor, Michigan, June.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Empirical methods for compound splitting",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. 10th Conf. of the Europ. Chapter of the Assoc. for Computational Linguistics (EACL)",
                "volume": "",
                "issue": "",
                "pages": "347--354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Koehn and K. Knight. 2003. Empirical methods for com- pound splitting. In Proc. 10th Conf. of the Europ. Chapter of the Assoc. for Computational Linguistics (EACL), pages 347-354, Budapest, Hungary, April.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mauser",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Hasan",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the Int. Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "103--110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney. 2006. The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation. In Proc. of the Int. Workshop on Spoken Language Translation, pages 103-110, Kyoto, Japan.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Statistical machine translation by parsing",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Melamed",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "The Companion Volume to the Proc. of 42nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "653--660",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Melamed. 2004. Statistical machine translation by parsing. In The Companion Volume to the Proc. of 42nd Annual Meet- ing of the Association for Computational Linguistics, pages 653-660.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Morpho-syntactic analysis for reordering in statistical machine translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Nie\u00dfen",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. of MT Summit VIII",
                "volume": "",
                "issue": "",
                "pages": "247--252",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Nie\u00dfen and H. Ney. 2001. Morpho-syntactic analysis for reordering in statistical machine translation. In Proc. of MT Summit VIII, pages 247-252.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Discriminative training and maximum entropy models for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "295--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney. 2002. Discriminative training and max- imum entropy models for statistical machine translation. In Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), pages 295-302, Philadelphia, PA, July.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "19--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney. 2003. A systematic comparison of vari- ous statistical alignment models. Computational Linguistics, 29(1):19-51, March.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A smorgasbord of features for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Khudanpur",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Eng",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. 2004 Human Language Technology Conf. / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL)",
                "volume": "",
                "issue": "",
                "pages": "161--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, and D. Radev. 2004. A smorgasbord of features for statistical machine translation. In Proc. 2004 Human Lan- guage Technology Conf. / North American Chapter of the Association for Computational Linguistics Annual Meeting (HLT-NAACL), pages 161-168, Boston,MA.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och. 2003. Minimum error rate training in statistical ma- chine translation. In Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL), pages 160-167, Sapporo, Japan, July.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "J"
                        ],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), pages 311-318, Philadelphia, PA, July.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "POS-based word reorderings for statistical machine translation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Popovi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the Fifth Int. Conf. on Language Resources and Evaluation (LREC)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Popovi\u0107 and H. Ney. 2006. POS-based word reorderings for statistical machine translation. In Proc. of the Fifth Int. Conf. on Language Resources and Evaluation (LREC).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Discriminative reranking for machine translation",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "HLT-NAACL 2004: Main Proc",
                "volume": "",
                "issue": "",
                "pages": "177--184",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Shen, A. Sarkar, and F. J. Och. 2004. Discriminative rerank- ing for machine translation. In HLT-NAACL 2004: Main Proc., pages 177-184, Boston, Massachusetts, USA, May 2 -May 7.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A DPbased search using monotone alignments in statistical translation",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Zubiaga",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. 35th Annual Conf. of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "289--296",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Tillmann, S. Vogel, H. Ney, and A. Zubiaga. 1997. A DP- based search using monotone alignments in statistical trans- lation. In Proc. 35th Annual Conf. of the Association for Computational Linguistics, pages 289-296, Madrid, Spain, July.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A polynomial-time algorithm for statistical machine translation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. 34th Annual Meeting of the Assoc. for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "152--158",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Wu. 1996. A polynomial-time algorithm for statistical ma- chine translation. In Proc. 34th Annual Meeting of the As- soc. for Computational Linguistics, pages 152-158, Santa Cruz, CA, June.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Stochastic inversion transduction grammars and bilingual parsing of parallel corpora",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics",
                "volume": "23",
                "issue": "3",
                "pages": "377--403",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Lin- guistics, 23(3):377-403, September.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Improving a statistical MT system with automatically learned rewrite patterns",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Mccord",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of COLING04",
                "volume": "",
                "issue": "",
                "pages": "508--514",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Xia and M. McCord. 2004. Improving a statistical MT sys- tem with automatically learned rewrite patterns. In Proc. of COLING04, pages 508-514, Geneva, Switzerland, Aug 23- Aug 27.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "A syntax-based statistical translation model",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. of the 39th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "523--530",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Yamada and K. Knight. 2001. A syntax-based statistical translation model. In Proc. of the 39th Annual Meeting of the Association for Computational Linguistics (ACL), pages 523-530, Toulouse, France, July.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "25th German Conf. on Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intelligence (LNAI)",
                "volume": "",
                "issue": "",
                "pages": "18--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens, F. J. Och, and H. Ney. 2002. Phrase-based statistical machine translation. In M. Jarke, J. Koehler, and G. Lake- meyer, editors, 25th German Conf. on Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intel- ligence (LNAI), pages 18-32, Aachen, Germany, September. Springer Verlag.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Chinese lexical analysis using hierarchical hidden markov model",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [
                            "Q"
                        ],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "K"
                        ],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the second SIGHAN workshop on Chinese language processing",
                "volume": "",
                "issue": "",
                "pages": "63--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. P. Zhang, Q. Liu, X. Q. Cheng, H. Zhang, and H. K. Yu. 2003. Chinese lexical analysis using hierarchical hidden markov model. In Proc. of the second SIGHAN workshop on Chinese language processing, pages 63-70, Morristown, NJ, USA.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "phrase count features \u2022 word-based translation model \u2022 word and phrase penalty \u2022 target language model (6-gram)",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "text": "Illustration of the translation process with and without source reordering.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "text": "Illustration of three kinds of phrases: (a)monotone phrase, (b)reordering phrase, (c)cross phrase. The black box is a word-to-word alignment. The gray box is a chunk-to-word alignment.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF3": {
                "text": "Example of applying rules. The left part is the used rules. The right part is the generated new orders of source words.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Examples of reordering rules. (lhs: chunk and POS tag sequence, rhs: permutation )",
                "type_str": "table"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td/><td>train</td><td>test</td></tr><tr><td>sentences</td><td>17 785</td><td>1 000</td></tr><tr><td>words</td><td colspan=\"2\">486 468 21 851</td></tr><tr><td>chunks</td><td>105 773</td><td>4 680</td></tr><tr><td colspan=\"3\">words out of chunks 244 416 10 282</td></tr></table>",
                "html": null,
                "text": "Statistics of training and test corpus for chunk parsing.",
                "type_str": "table"
            },
            "TABREF2": {
                "num": null,
                "content": "<table><tr><td colspan=\"4\">accuracy precision recall F-measure</td></tr><tr><td>74.51%</td><td>65.2%</td><td>61.5%</td><td>63.3</td></tr></table>",
                "html": null,
                "text": "Chunk parsing result on 1000 sentences.",
                "type_str": "table"
            },
            "TABREF3": {
                "num": null,
                "content": "<table><tr><td/><td/><td colspan=\"2\">Chinese English</td></tr><tr><td>Train</td><td>Sentences</td><td>40k</td><td/></tr><tr><td/><td>Words</td><td>308k</td><td>377k</td></tr><tr><td>Dev</td><td>Sentences</td><td>489</td><td/></tr><tr><td/><td>Words</td><td>5 478</td><td>6 008</td></tr><tr><td>Test</td><td>Sentences</td><td>500</td><td/></tr><tr><td>IWSLT04</td><td>Words</td><td>3 866</td><td>3 581</td></tr><tr><td>Test</td><td>Sentences</td><td>506</td><td/></tr><tr><td>IWSLT05</td><td>Words</td><td>3 652</td><td>3 579</td></tr><tr><td>Test</td><td>Sentences</td><td>500</td><td/></tr><tr><td>IWSLT06</td><td>Words</td><td>5 846</td><td>-</td></tr><tr><td colspan=\"4\">rules. A development corpus is used to optimize the</td></tr><tr><td colspan=\"4\">scaling factors for the BLEU score. The English text</td></tr><tr><td colspan=\"4\">is processed using a tokenizer. The Chinese text pro-</td></tr><tr><td colspan=\"4\">cessing uses word segmentation with the ICTCLAS</td></tr><tr><td>segmenter</td><td/><td/><td/></tr></table>",
                "html": null,
                "text": "Statistics of training and test corpora for the IWSLT tasks.",
                "type_str": "table"
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td>WER[%] PER[%] NIST BLEU[%]</td></tr></table>",
                "html": null,
                "text": "Translation performance for the Chinese-English IWSLT task",
                "type_str": "table"
            },
            "TABREF5": {
                "num": null,
                "content": "<table><tr><td colspan=\"4\">: Lattice information for the Chinese-English</td></tr><tr><td colspan=\"2\">IWSLT 2004 test data</td><td/><td/></tr><tr><td/><td colspan=\"2\">avg. density used</td><td>translation</td></tr><tr><td/><td>pro sent</td><td colspan=\"2\">rules time [min/sec]</td></tr><tr><td>POS</td><td>15.7</td><td>6 868</td><td>7:08</td></tr><tr><td>Chunk</td><td>8.2</td><td>3 685</td><td>3:47</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            }
        }
    }
}