File size: 66,811 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
{
    "paper_id": "W07-0414",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:39:18.457470Z"
    },
    "title": "Comparing Reordering Constraints for SMT Using Efficient BLEU Oracle Computation",
    "authors": [
        {
            "first": "Markus",
            "middle": [],
            "last": "Dreyer",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Johns Hopkins University",
                "location": {
                    "addrLine": "3400 North Charles Street",
                    "postCode": "21218",
                    "settlement": "Baltimore",
                    "region": "MD",
                    "country": "USA"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Keith",
            "middle": [],
            "last": "Hall",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Johns Hopkins University",
                "location": {
                    "addrLine": "3400 North Charles Street",
                    "postCode": "21218",
                    "settlement": "Baltimore",
                    "region": "MD",
                    "country": "USA"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Sanjeev",
            "middle": [],
            "last": "Khudanpur",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Johns Hopkins University",
                "location": {
                    "addrLine": "3400 North Charles Street",
                    "postCode": "21218",
                    "settlement": "Baltimore",
                    "region": "MD",
                    "country": "USA"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper describes a new method to compare reordering constraints for Statistical Machine Translation. We investigate the best possible (oracle) BLEU score achievable under different reordering constraints. Using dynamic programming, we efficiently find a reordering that approximates the highest attainable BLEU score given a reference and a set of reordering constraints. We present an empirical evaluation of popular reordering constraints: local constraints, the IBM constraints, and the Inversion Transduction Grammar (ITG) constraints. We present results for a German-English translation task and show that reordering under the ITG constraints can improve over the baseline by more than 7.5 BLEU points.",
    "pdf_parse": {
        "paper_id": "W07-0414",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper describes a new method to compare reordering constraints for Statistical Machine Translation. We investigate the best possible (oracle) BLEU score achievable under different reordering constraints. Using dynamic programming, we efficiently find a reordering that approximates the highest attainable BLEU score given a reference and a set of reordering constraints. We present an empirical evaluation of popular reordering constraints: local constraints, the IBM constraints, and the Inversion Transduction Grammar (ITG) constraints. We present results for a German-English translation task and show that reordering under the ITG constraints can improve over the baseline by more than 7.5 BLEU points.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Reordering the words and phrases of a foreign sentence to obtain the target word order is a fundamental, and potentially the hardest, problem in machine translation. The search space for all possible permutations of a sentence is factorial in the number of words/phrases; therefore a variety of models have been proposed that constrain the set of possible permutations by allowing certain reorderings while disallowing others. Some models (Brown et al. (1996) , Kumar and Byrne (2005) ) allow words to change place with their local neighbors, but disallow global reorderings. Other models (Wu (1997) , Xiong et al. (2006) ) explicitly allow global reorderings, but do not allow all possible permutations, including some local permutations.",
                "cite_spans": [
                    {
                        "start": 439,
                        "end": 459,
                        "text": "(Brown et al. (1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 462,
                        "end": 484,
                        "text": "Kumar and Byrne (2005)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 589,
                        "end": 599,
                        "text": "(Wu (1997)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 602,
                        "end": 621,
                        "text": "Xiong et al. (2006)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We present a novel technique to compare achievable translation accuracies under different reordering constraints. While earlier work has trained and tested instantiations of different reordering models and then compared the translation results (Zens and Ney, 2003) we provide a more general mechanism to evaluate the potential efficacy of reordering constraints, independent of specific training paradigms. Our technique attempts to answer the question: What is the highest BLEU score that a given translation system could reach when using reordering constraints X? Using this oracle approach, we abstract away from issues that are not inherent in the reordering constraints, but may nevertheless influence the comparison results, such as model and feature design, feature selection, or parameter estimation. In fact, we compare several sets of reordering constraints empirically, but do not train them as models. We merely decode by efficiently searching over possible translations allowed by each model and choosing the reordering that achieves the highest BLEU score.",
                "cite_spans": [
                    {
                        "start": 244,
                        "end": 264,
                        "text": "(Zens and Ney, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We start by introducing popular reordering constraints (Section 2). Then, we present dynamicprogramming algorithms that find the highestscoring permutations of sentences under given reordering constraints (Section 3). We use this technique to compare several reordering constraints empirically. We combine a basic translation framework with different reordering constraints (Section 4) and present results on a German-English translation task (Section 5). Finally, we offer an analysis of the results and provide a review of related work (Sections 6-8).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Reordering constraints restrict the movement of words or phrases in order to reach or approximate the word order of the target language. Some of the constraints considered in this paper were originally proposed for reordering words, but we will describe all constraints in terms of reordering phrases. Phrases are units of consecutive words read off a phrase translation table.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering Constraints",
                "sec_num": "2"
            },
            {
                "text": "Local constraints allow phrases to swap with one another only if they are adjacent or very close to each other. Kumar and Byrne (2005) define two local reordering models for their Translation Template Model (TTM): In the first one, called MJ-1, only adjacent phrases are allowed to swap, and the movement has to be done within a window of 2. A sequence consisting of three phrases abc can therefore become acb or bac, but not cba. One phrase can jump at most one phrase ahead and cannot take part in more than one swap. In their second strategy, called MJ-2, phrases are allowed to swap with their immediate neighbor or with the phrase next to the immediate neighbor; the maximum jump length is 2. This allows for all six possible permutations of abc. The movement here has to take place within a window of 3 phrases. Therefore, a four-phrase sequence abcd cannot be reordered to cadb, for example. MJ-1 and MJ-2 are shown in Figure 1 .",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 134,
                        "text": "Kumar and Byrne (2005)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 926,
                        "end": 934,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Local Constraints",
                "sec_num": "2.1"
            },
            {
                "text": "First introduced by Brown et al. (1996) , the IBM constraints are among the most well-known and most widely used reordering paradigms. Translation is done from the beginning of the sentence to the end, phrase by phrase; at each point in time, the constraints allow one of the first k still untranslated phrases to be selected for translation (see Figure 1d , for k=2). The IBM constraints are much less restrictive than local constraints. The first word of the input, for example, can move all the way to the end, independent of the value of k. Typically, k is set to 4 (Zens and Ney, 2003) . We write IBM with k=4 as IBM(4). The IBM constraints are supersets of the  local constraints.   0  1  if  2  you  3  to-me  4  that  5  explain 6 could (a) The sentence in foreign word order. ",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 39,
                        "text": "(1996)",
                        "ref_id": null
                    },
                    {
                        "start": 570,
                        "end": 590,
                        "text": "(Zens and Ney, 2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 347,
                        "end": 356,
                        "text": "Figure 1d",
                        "ref_id": null
                    },
                    {
                        "start": 626,
                        "end": 736,
                        "text": "The IBM constraints are supersets of the  local constraints.   0  1  if  2  you  3  to-me  4  that  5  explain",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "IBM Constraints",
                "sec_num": "2.2"
            },
            {
                "text": "The Inversion Transduction Grammar (ITG) (Wu, 1997) , a derivative of the Syntax Directed Transduction Grammars (Aho and Ullman, 1972) , constrains the possible permutations of the input string by defining rewrite rules that indicate permutations of the string. In particular, the ITG allows all permutations defined by all binary branching structures where the children of any constituent may be swapped in order. The ITG constraint is different from the other reordering constraints presented in that it is not based on finite-state operations. An Model # perm.",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 51,
                        "text": "(Wu, 1997)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 112,
                        "end": 134,
                        "text": "(Aho and Ullman, 1972)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ITG Constraints",
                "sec_num": "2.3"
            },
            {
                "text": "\"Best\" sentence n-gram precisions BLEU MJ-1 13 if you that to-me could explain 100.0/66.7/20.0/0.0 0.0 MJ-2 52 to-me if you could explain that 100.0/83.3/60.0/50.0 70.71 IBM 232 if to-me that you could explain 100.0/50.0/20.0/0.0 0.0 IBM 4384 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0 IBM(4) (prune) 42 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0 ITG 394 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0 ITG (prune) 78 if you could explain that to-me 100.0/100.0/100.0/100.0 100.0 ITG decoder runs in polynomial time and allows for long-distance phrasal reordering. A phrase can, for example, move from the first position in the input to the last position in the output and vice versa, by swapping the topmost node in the constructed binary tree. However, due to the binary bracketing constraint, some permutations are not modeled. A four-phrase sequence abcd cannot be permuted into cadb or bdac. Therefore, the ITG constraints are not supersets of the IBM constraints. IBM(4), for example, allows abcd to be permuted into cadb and bdac.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ITG Constraints",
                "sec_num": "2.3"
            },
            {
                "text": "The different reordering strategies described allow for different permutations and restrict the search space in different ways. We are concerned with the maximal achievable accuracy under given constraints, independent of feature design or parameter estimation. This is what we call the oracle accuracy under the reordering constraints and it is computed on a dataset with reference translations. We now describe algorithms that can be used to find such oracle translations among unreordered translation candidates. There are two equivalent strategies: The reordering constraints that are be-ing tested can be expressed as a special dynamicprogramming decoder which, when applied to an unreordered hypothesis, searches the space of permutations defined by the reordering constraints and returns the highest-scoring permutation. We employ this strategy for the ITG reorderings (Section 3.2). For the other reordering constraints, we employ a more generic strategy: Given the set of reordering constraints, all permutations of an unreordered translation candidate are precomputed and explicitly represented as a lattice. This lattice is passed as input to a Dijkstra-style decoder (Section 3.1) which traverses it and finds the solution that reachest the highest BLEU score. 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Factored BLEU Computation",
                "sec_num": "3"
            },
            {
                "text": "The Dijkstra-style decoder takes as input a lattice in which each path represents one possible permutation of an unreordered hypothesis under a given reordering paradigm, as in Figure 1 . It traverses the lattice and finds the solution that has the highest approximate BLEU score, given the reference. The dynamic-programming algorithm divides the problem into subproblems that are solved independently, the solutions of which contribute to the solutions of other subproblems. The general procedure is sketched in Figure 3 : for each subpath of the lattice containing the precomputed permutations, we store the three most recently attached words k, len ",
                "cite_spans": [
                    {
                        "start": 646,
                        "end": 648,
                        "text": "k,",
                        "ref_id": null
                    },
                    {
                        "start": 649,
                        "end": 652,
                        "text": "len",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 177,
                        "end": 185,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 514,
                        "end": 522,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Dijkstra BLEU Decoder",
                "sec_num": "3.1"
            },
            {
                "text": "+ 1, w 2 , w 3 , w new ]) = max w 1 ( get bleu ( [0, j, len, w 1 , w 2 , w 3 ], [j, k, w new ] ) ) (1) function get bleu ( [0, j, len, w 1 , w 2 , w 3 ], [j, k, w new ] ) := update ngrams (0, j, k, len, w 1 , w 2 , w 3 , w new ) ; return exp 1 4 4 n=1 log ngrams i ([0, k, len + 1, w 2 , w 3 , w new ]) len \u2212 n + 1 ;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dijkstra BLEU Decoder",
                "sec_num": "3.1"
            },
            {
                "text": "(2) Figure 3 : Top: The BLEU score is used as inside score for a subpath from 0 to k with the rightmost words w2, w3, wnew in the Dijkstra decoder. Bottom: Pseudo code for a function get bleu which updates the n-gram matches ngrams1(. . . ), ngrams2(. . . ), ngrams3(. . . ), ngrams4(. . . ) for the resulting subpath in a hash table [0, k, len + 1, w2, w3, wnew] and returns its approximate BLEU score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 4,
                        "end": 12,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Dijkstra BLEU Decoder",
                "sec_num": "3.1"
            },
            {
                "text": "(\"\",\"\",\"\") 0/0/0/0 (\"\",\"to\",\"me\") 2/1/0/0 (\"to\",\"me\",\"if\") 3/1/0/0 (\"me\",\"if\",\"you\") 4/2/0/0 (\"if\",\"you\",\"could\") 5/3/1/0 (\"you\",\"could\",\"explain\") 6/4/2/1 (\"could\",\"explain\",\"that\") 7 ure 4). A context of three words is needed to compute fourgram precisions used in the BLEU score. Starting from the start state, we recursively extend a subpath word by word, following the paths in the lattice. Whenever we extend the path by a word to the right we incorporate that word and use update ngrams to update the four n-gram counts for the subpath. The function update ngrams has access to the reference string 2 and stores the updated n-gram counts for the resulting path in a hash table. 3 The inside score of each subpath is the approximate BLEU score, calculated as the average of the four n-gram log precisions. An n-gram precision is always the number of n-gram matches divided by the length len of the path minus (n \u2212 1). A path of length 4 with 2 bigram matches, for example, has a bigram precision of 2 / 3 . This method is similar to Dijkstra's algorithm (Dijkstra, 1959) composed with a fourgram finite-state language model, where the scoring is done using n-gram counts and precision 2 Multiple reference strings can be used if available. 3 An epsilon value of 1 \u221210 is used for zero precisions. scores. We call this the Dijkstra BLEU decoder.",
                "cite_spans": [
                    {
                        "start": 685,
                        "end": 686,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 1060,
                        "end": 1076,
                        "text": "(Dijkstra, 1959)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1246,
                        "end": 1247,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dijkstra BLEU Decoder",
                "sec_num": "3.1"
            },
            {
                "text": "For the ITG reordering constraints, we use a dynamic program that computes the permutations implicitly. It takes only the unreordered hypothesis as input and creates the possible reorderings under the ITG constraints during decoding, as it creates a parse chart. The algorithm is similar to a CKY parsing algorithm in that it proceeds bottom-up and combines smaller constituents into larger ones recursively. Figure 5 contains details of the algorithm. The ITG BLEU decoder stores the three leftmost and the three rightmost words in each constituent. A constituent from position i to position k, with w a , w b , and w c as leftmost words, and w x , w y , w z as rightmost words is written as",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 409,
                        "end": 417,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": "[i, k, (w a , w b , w c ), (w x , w y , w z )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": ". Such a constituent can be built by straight or inverted rules. Using an inverted rule means swapping the order of the children in the built constituent. The successive bottomup combinations of adjacent constituents result in hierarchical binary bracketing with swapped and non-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": "\u03b2 ([i, k, (w a , w b , w c ), (w x , w y , w z )]) = max \u03b2 () ([i, k, (w a , w b , w c ), (w x , w y , w z )]) , \u03b2 <> ([i, k, (w a , w b , w c ), (w x , w y , w z )]) (3) \u03b2 <> ([i, k, (w a , w b , w c ), (w x , w y , w z )]) = max j,w a ,w b ,w c ,w x ,w y ,w z get bleu j, k, (w a , w b , w c ), (w x , w y , w z ) , [i, j, (w a , w b , w c ), (w x , w y , w z )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": "(4) Figure 5 : Equations for the ITG oracle BLEU decoder. [i, k, (wa, w b , wc), (wx, wy, wz)] is a constituent from i to k with leftmost words wa,w b ,wc and rightmost words wx,wy,wz. Top: A constituent can be built with a straight or a swapped rule. Bottom: A swapped rule. The get bleu function can be adapted from Figure 3 swapped constituents. Our ITG BLEU decoder uses standard beam search pruning. As in Zens and Ney (2003) , phrases are not broken up, but every phrase is, at the beginning of reordering, stored in the chart as one lexical token together with the precomputed n-gram matches and the n-gram precision score.",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 430,
                        "text": "Zens and Ney (2003)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 4,
                        "end": 12,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 318,
                        "end": 326,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": "In addition to standard ITG we run experiments with a constrained ITG, in which we impose a bound \u03c1 on the maximum length of reordered constituents, measured in phrases. If the combined length of two constituents exceeds this bound they can only be combined in the given monotone order. Experiments with this ITG variant give insight into the effect that various long-distance reorderings have on the final BLEU scores (see Table 3 ). Such bounds are also effective speedup techniques (Eisner and Tromble, 2006) .",
                "cite_spans": [
                    {
                        "start": 485,
                        "end": 511,
                        "text": "(Eisner and Tromble, 2006)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 424,
                        "end": 431,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "ITG BLEU Decoder",
                "sec_num": "3.2"
            },
            {
                "text": "BLEU is defined to use the modified n-gram precision, which means that a correct n-gram that occurs once in the reference, but several times in the system translation will be counted only once as correct. The other occurrences are clipped. We do not include this global feature since we want a dynamic-programming solution with polynomial size and runtime. The decoder processes subproblems independently; words are attached locally and stored only as boundary words of covered paths/ constituents. Therefore we cannot discount a locally attached word that has already been attached elsewhere to an alternative path/constituent. However, clipping affects most heavily the unigram scores which are constant, like the length of the sentence. 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLEU Approximations",
                "sec_num": "3.3"
            },
            {
                "text": "4 Since the sentence lengths are constant for all reorderings of a given sentence we can in our experiments also ignore the brevity penalty which cancels out. If the input consists of sev-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLEU Approximations",
                "sec_num": "3.3"
            },
            {
                "text": "We also adopt the approximation that treats every sentence with its reference as a separate corpus (Tillmann and Zhang, 2006) so that ngram counts are not accumulated, and parallel processing of sentences becomes possible. Due to these two approximations, our method is not guaranteed to find the best reordering defined by the reordering constraints. However, we have found on our heldout data that an oracle that does not accumulate n-gram counts is only minimally worse than an oracle that does accumulate them (up to 0.25 BLEU points). 5 If, in addition, clipping is ignored, the resulting oracle stays virtually the same, at most 0.02 BLEU points worse than the oracle found otherwise. All results in this paper are computed with the original BLEU formula on the sentences found by the oracle algorithms.",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 125,
                        "text": "(Tillmann and Zhang, 2006)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 540,
                        "end": 541,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLEU Approximations",
                "sec_num": "3.3"
            },
            {
                "text": "To compare the reordering constraints under oracle conditions we first obtain unreordered candidate translations from a simple baseline translation model. For each reordering paradigm, we take the candidate translations, get the best oracle reorderings under the given reordering constraints and pick the best sentence according to the BLEU score. The baseline translation system is created using probabilistic word-to-word and phrase-to-phrase taeral sentences of different lengths (see fn. 1) then the brevity penalty can be built in by keeping track of length ratios of attached phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Creating a Monotone Translation Baseline",
                "sec_num": "4"
            },
            {
                "text": "5 The accumulating oracle algorithm makes a greedy decision for every sentence given the ngram counts so far accumulated (Zens and Ney, 2005) . The result of such a greedy oracle method may depend on the order of the input sentences. We tried 100 shuffles of these and received 100 very similar results, with a variance of under 0.006 BLEU points. The non-accumulating oracles use an epsilon value (1 \u221210 ) for zero counts.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 141,
                        "text": "(Zens and Ney, 2005)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Creating a Monotone Translation Baseline",
                "sec_num": "4"
            },
            {
                "text": "bles. Using the translation probabilities, we create a lattice that contains word and phrase translations for every substring of the source sentence. The resulting lattice is made of English words and phrases of different lengths. Every word or phrase translation probability p is a mixture of p(f |e) and p(e|f ). We discard short phrase translations exponentially by a parameter that is trained on heldout data. Insertions and deletions are handled exclusively by the use of a phrase table: an insertion takes place wherever the English side of a phrase translation is longer than the foreign side (e.g. English presidential candidate for German Pr\u00e4sidentschaftskandidat), and vice versa for deletions (e.g. we discussed for wir haben diskutiert). Gaps or discontinuous phrases are not handled. The baseline decoder outputs the n-best paths through the lattice according to the lattice scores 6 , marking consecutive phrases so that the oracle reordering algorithms can recognize them and keep them together. Note that the baseline system is trained on real data, while the reordering constraints that we want to test are not trained.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Creating a Monotone Translation Baseline",
                "sec_num": "4"
            },
            {
                "text": "We use the monotone translation baseline model and the oracle BLEU computation to evaluate different popular reordering strategies. We now describe the experimental settings. The word and phrase translation probabilities of the baseline model are trained on the Europarl German-English training set, using GIZA++ and the Pharaoh phrase extraction algorithm. For testing we use the NAACL 2006 SMT Shared Task test data. For each sentence of the test set, a lattice is created in the way described in Section 4, with parameters optimized on a small heldout set. 7 For each sentence, the 1000-best candidates according to the lattice scores are extracted. We take the 10-best oracle candidates, according to the reference, and use a BLEU decoder to create the best permutation of each of them and pick the best one. Using this procedure, we make sure that we get the highest-scoring unreordered candidates and choose the best one among their oracle reorderings. Table 2 and Figure 6 show the resulting BLEU scores for different sentence lengths. Table 3 shows results of the ITG runs with different length bounds \u03c1. The average phrase length in the candidate translations of the test set is 1.42 words.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 959,
                        "end": 966,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 971,
                        "end": 979,
                        "text": "Figure 6",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 1043,
                        "end": 1050,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Empirical Comparison of Reordering Constraints",
                "sec_num": "5"
            },
            {
                "text": "Oracle decodings under the ITG and under IBM(4) constraints were up to 1000 times slower than under the other tested oracle reordering methods in our implementations. Among the faster methods, decoding under MJ-2 constraints was up to 40% faster than under IBM(2) constraints in our implementation. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Empirical Comparison of Reordering Constraints",
                "sec_num": "5"
            },
            {
                "text": "The empirical results show that reordering under sufficiently permissive constraints can improve a monotone baseline oracle by more than 7.5 BLEU points. This gap between choosing the best unreordered sentences versus choosing the best optimally reordered sentences is small for short sentences and widens dramatically (more than nine BLEU points) for longer sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "The ITG constraints and the IBM(4) constraints both give very high oracle translation accuracies on the German-English translation task. Overall, their BLEU scores are about 2 to more than 4 points better than the BLEU scores of the best other methods. This gap between the two highest-scoring constraints and the other methods becomes bigger as the sentence lengths grow and is greater than 4 S e n t e n c e l e n g t h # o f t e s t s e n t e n c e s BLEU Figure 6 . All results are computed with the original BLEU formula on the sentences found by the oracle algorithms.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 459,
                        "end": 467,
                        "text": "Figure 6",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "BLEU scores for sentences longer than 30 sentences. This advantage in translation accuracy comes with high computational cost, as mentioned above.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "Among the computationally more lightweight reordering methods tested, IBM(2) and MJ-2 are very close to each other in translation accuracy, with IBM(2) obtaining slightly better scores on longer sentences, while MJ-2 is more efficient. MJ-1 is less successful in reordering, improving the monotone baseline by only about 2.5 BLEU points at best, but is the best choice if speed is an issue.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "As described above, the reorderings defined by the local constraints MJ-1 and MJ-2 are subsets of IBM(2) and IBM(3). We did not test IBM(3), but the values can be interpolated between IBM(2) and IBM(4). The ITG constraints do not belong in this family of finite-state contraints; they allow reorderings that none of the other methods allow, and vice versa. The fact that ITG constraints can reach such high translation accuracies supports the findings in Zens et al. (2004) and is an empirical validation of the ITG hypothesis.",
                "cite_spans": [
                    {
                        "start": 455,
                        "end": 473,
                        "text": "Zens et al. (2004)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "The experiments with the constrained ITG show the effect of reorderings spanning different lengths (see Table 3 ). While most reorderings are shortdistance (<5 phrases) a lot of improvements can still be obtained when \u03c1 is increased from length 5 to 10 and even from 10 to 20 phrases.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 104,
                        "end": 111,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "There exist related algorithms that search the space of reorderings and compute BLEU oracle approxi- mations. Zens and Ney (2005) describe a dynamicprogramming algorithm in which at every state the number of n-gram matches is stored, along with a multiset that contains all words from the reference that have not yet been matched. This makes it possible to compute the modified ngram precision, but the search space is exponential. Tillmann and Zhang (2006) use a BLEU oracle decoder for discriminative training of a local reordering model. No details about the algorithm are given. Zens and Ney (2003) perform a comparison of different reordering strategies. Their study differs from ours in that they use reordering models trained on real data and may therefore be influenced by feature selection, parameter estimation and other training-specific issues. In our study, only the baseline translation model is trained on data. Zens et al. (2004) conduct a study similar to Zens and Ney (2003) and note that the results for the ITG reordering constraints were quite dependent on the very simple probability model used. Our study avoids this issue by using the BLEU oracle approach. In Wellington et al. (2006) , hand-aligned data are used to compare the standard ITG constraints to ITGs that allow gaps.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 129,
                        "text": "Zens and Ney (2005)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 432,
                        "end": 457,
                        "text": "Tillmann and Zhang (2006)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 583,
                        "end": 602,
                        "text": "Zens and Ney (2003)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 927,
                        "end": 945,
                        "text": "Zens et al. (2004)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 973,
                        "end": 992,
                        "text": "Zens and Ney (2003)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1184,
                        "end": 1208,
                        "text": "Wellington et al. (2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7"
            },
            {
                "text": "We have presented a training-independent method to compare different reordering constraints for machine translation. Given a sentence in foreign word order, its reference translation(s) and reordering constraints, our dynamic-programming algorithms efficiently find the oracle reordering that has the approximately highest BLEU score. This allows evaluating different reordering constraints experimentally, but abstracting away from specific features, the probability model or training methods of the reordering strategies. The presented method evaluates the theoretical capabilities of reordering constraints, as opposed to more arbitrary accuracies of specifically trained instances of reordering models. Using our oracle method, we presented an empirical evaluation of different reordering constraints for a German-English translation task. The results show that a good reordering of a given monotone translation can improve the translation quality dramatically. Both short-and long-distance reorderings contribute to the BLEU score improvements, which are generally greater for longer sentences. Reordering constraints that allow global reorderings tend to reach better oracles scores than ones that search more locally. The ITG constraints and the IBM(4) constraints both give the highest oracle scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8"
            },
            {
                "text": "The presented BLEU decoder algorithms can be useful in many ways: They can generally help decide what reordering constraints to choose for a given translation system. They can be used for discriminative training of reordering models (Tillmann and Zhang, 2006) . Furthermore, they can help detecting insufficient parameterization or incapable training algorithms: If two trained reordering model instances show similar performances on a given task, but the oracle scores differ greatly then the training methods might not be optimal.",
                "cite_spans": [
                    {
                        "start": 233,
                        "end": 259,
                        "text": "(Tillmann and Zhang, 2006)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8"
            },
            {
                "text": "For both strategies, several unreordered translation candidates do not have to be regarded separately, but can be represented as a weighted lattice and be used as input to the special dynamic program or to the process that precomputes possible permutations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We use a straightforward adaption of Algorithm 3 inHuang and Chiang (2005) 7We fill the initial phrase and word lattice with the 20 best candidates, using phrases of 3 or less words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was partially supported by the National Science Foundation via an ITR grant (No 0121285), the Defense Advanced Research Projects Agency via a GALE contract (No HR0011-06-2-0001), and the Office of Naval Research via a MURI grant (No N00014-01-1-0685). We thank Jason Eisner, David Smith, Roy Tromble and the anonymous reviewers for helpful comments and suggestions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The Theory of Parsing, Translation, and Compiling",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "V"
                        ],
                        "last": "Aho",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Ullman",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. V. Aho and J. D. Ullman. 1972. The Theory of Parsing, Translation, and Compiling. Prentice Hall.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Language translation apparatus and method using context-based translation models",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Gillett",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Printz",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ures",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "United States Patent",
                "volume": "",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A.L. Berger P. F. Brown, S. A. Della Pietra, V. J. Della Pietra, J. R. Gillett, J. D. Lafferty, R. L. Mercer, H. Printz, and L. Ures. 1996. Language translation apparatus and method using context-based translation models. United States Patent No. 5,510,981.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A note on two problems in connexion with graphs",
                "authors": [
                    {
                        "first": "E",
                        "middle": [
                            "W"
                        ],
                        "last": "Dijkstra",
                        "suffix": ""
                    }
                ],
                "year": 1959,
                "venue": "Numerische Mathematik",
                "volume": "1",
                "issue": "",
                "pages": "269--271",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E.W. Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische Mathematik., 1:269-271.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Local search with very large-scale neighborhoods for optimal permutations in Machine Translation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "W"
                        ],
                        "last": "Tromble",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the Workshop on Computationally Hard Problems and Joint Inference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Eisner and R. W. Tromble. 2006. Local search with very large-scale neighborhoods for optimal permutations in Ma- chine Translation. In Proc. of the Workshop on Computa- tionally Hard Problems and Joint Inference, New York.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Better k-best parsing",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Chiang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of IWPT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Huang and D. Chiang. 2005. Better k-best parsing. In Proc. of IWPT, Vancouver, B.C., Canada.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Local phrase reordering models for Statistical Machine Translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of HLT/EMNLP",
                "volume": "",
                "issue": "",
                "pages": "161--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Kumar and W. Byrne. 2005. Local phrase reordering models for Statistical Machine Translation. In Proc. of HLT/EMNLP, pages 161-168, Vancouver, B.C., Canada.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A discriminative global training algorithm for Statistical MT",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "721--728",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Tillmann and T. Zhang. 2006. A discriminative global train- ing algorithm for Statistical MT. In Proc. of ACL, pages 721-728, Sydney, Australia.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Empirical lower bounds on the complexity of translational equivalence",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Wellington",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Waxmonsky",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Melamed",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "977--984",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Wellington, S. Waxmonsky, and D. Melamed. 2006. Empir- ical lower bounds on the complexity of translational equiv- alence. In Proc. of COLING-ACL, pages 977-984, Sydney, Australia.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Stochastic inversion transduction grammars and bilingual parsing of parallel corpora",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics",
                "volume": "23",
                "issue": "3",
                "pages": "377--404",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Wu. 1997. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Lin- guistics, 23(3):377-404.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Maximum entropy based phrase reordering model for Statistical Machine Translation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "521--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Xiong, Q. Liu, and S. Lin. 2006. Maximum entropy based phrase reordering model for Statistical Machine Translation. In Proc. of COLING-ACL, pages 521-528, Sydney, Aus- tralia.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A comparative study on reordering constraints in Statistical Machine Translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "144--151",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens and H. Ney. 2003. A comparative study on reordering constraints in Statistical Machine Translation. In Proc. of ACL, pages 144-151, Sapporo, Japan.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Word graphs for Statistical Machine Translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the ACL Workshop on Building and Using Parallel Texts",
                "volume": "",
                "issue": "",
                "pages": "191--198",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens and H. Ney. 2005. Word graphs for Statistical Machine Translation. In Proc. of the ACL Workshop on Building and Using Parallel Texts, pages 191-198, Ann Arbor, MI.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Reordering constraints for phrase-based Statistical Machine Translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Watanabe",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of CoLing",
                "volume": "",
                "issue": "",
                "pages": "205--211",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens, H. Ney, T. Watanabe, and E. Sumita. 2004. Reorder- ing constraints for phrase-based Statistical Machine Transla- tion. In Proc. of CoLing, pages 205-211, Geneva.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "text": "The example if you to-me that explain could and its reordering to if you could explain that to-me using an ITG. The alignments are added below the tree, and the horizontal bars in the tree indicate a swap.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF2": {
                "text": "Three right-most words and n-gram matches: This shows the best path for the MJ-2 reordering of if you to-me that explain could, along with the words stored at each state and the progressively updated n-gram matches. The full path to-me if you could explain that has 7 unigram matches, 5 bigram, 3 trigram, and 2 fourgram matches. See the full MJ-2 lattice inFigure 1c.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF3": {
                "text": "Reordering oracle scores for different sentence lengths. See alsoTable 2.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "text": "",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF1": {
                "text": "Illustrating example: The number of permutations (# perm.) that different reordering paradigms consider for the input sequence if you to-me that explain could, and the permutation with highest BLEU score. The sentence length is 7, but there are only 6! possible permutations, since the phrase to-me counts as one word during reordering. ITG (prune) is the ITG BLEU decoder with the pruning settings we used in our experiments (beam threshold 10 \u22124 ). For comparison, IBM(4) (prune) is the lattice BLEU decoder with the same pruning settings, but we use pruning only for ITG permutations in our experiments.",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF3": {
                "text": "BLEU and NIST results for different reordering methods on binned sentence lengths. The ITG results are, unlike the other results, with pruning (beam 10 \u22124 ). The BLEU results are plotted in",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            },
            "TABREF5": {
                "text": "BLEU results of ITGs that are constrained to reorderings not exceeding a certain span length \u03c1. Results shown for different sentence lengths.",
                "type_str": "table",
                "num": null,
                "content": "<table/>",
                "html": null
            }
        }
    }
}