File size: 89,647 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
{
    "paper_id": "W09-0304",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:38:30.033152Z"
    },
    "title": "Evaluating the pairwise string alignment of pronunciations",
    "authors": [
        {
            "first": "Martijn",
            "middle": [],
            "last": "Wieling",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Groningen",
                "location": {
                    "country": "The Netherlands"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Jelena",
            "middle": [],
            "last": "Proki\u0107",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Groningen",
                "location": {
                    "country": "The Netherlands"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "John",
            "middle": [],
            "last": "Nerbonne",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Groningen",
                "location": {
                    "country": "The Netherlands"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Pairwise string alignment (PSA) is an important general technique for obtaining a measure of similarity between two strings, used e.g., in dialectology, historical linguistics, transliteration, and in evaluating name distinctiveness. The current study focuses on evaluating different PSA methods at the alignment level instead of via the distances it induces. About 3.5 million pairwise alignments of Bulgarian phonetic dialect data are used to compare four algorithms with a manually corrected gold standard. The algorithms evaluated include three variants of the Levenshtein algorithm as well as the Pair Hidden Markov Model. Our results show that while all algorithms perform very well and align around 95% of all alignments correctly, there are specific qualitative differences in the (mis)alignments of the different algorithms.",
    "pdf_parse": {
        "paper_id": "W09-0304",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Pairwise string alignment (PSA) is an important general technique for obtaining a measure of similarity between two strings, used e.g., in dialectology, historical linguistics, transliteration, and in evaluating name distinctiveness. The current study focuses on evaluating different PSA methods at the alignment level instead of via the distances it induces. About 3.5 million pairwise alignments of Bulgarian phonetic dialect data are used to compare four algorithms with a manually corrected gold standard. The algorithms evaluated include three variants of the Levenshtein algorithm as well as the Pair Hidden Markov Model. Our results show that while all algorithms perform very well and align around 95% of all alignments correctly, there are specific qualitative differences in the (mis)alignments of the different algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Our cultural heritage is not only accessible through museums, libraries, archives and their digital portals, it is alive and well in the varied cultural habits practiced today by the various peoples of the world. To research and understand this cultural heritage we require instruments which are sensitive to its signals, and, in particular sensitive to signals of common provenance. The present paper focuses on speech habits which even today bear signals of common provenance in the various dialects of the world's languages, and which have also been recorded and preserved in major archives of folk culture internationally. We present work in a research line which seeks to develop digital instruments capable of detecting common provenance among pronunciation habits, focusing in this paper on the issue of evaluating the quality of these instruments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Pairwise string alignment (PSA) methods, like the popular Levenshtein algorithm (Levenshtein, 1965) which uses insertions (alignments of a segment against a gap), deletions (alignments of a gap against a segment) and substitutions (alignments of two segments) often form the basis of determining the distance between two strings. Since there are many alignment algorithms and specific settings for each algorithm influencing the distance between two strings (Nerbonne and Kleiweg, 2007) , evaluation is very important in determining the effectiveness of the distance methods.",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 99,
                        "text": "(Levenshtein, 1965)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 458,
                        "end": 486,
                        "text": "(Nerbonne and Kleiweg, 2007)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Determining the distance (or similarity) between two phonetic strings is an important aspect of dialectometry, and alignment quality is important in applications in which string alignment is a goal in itself, for example, determining if two words are likely to be cognate (Kondrak, 2003) , detecting confusable drug names (Kondrak and Dorr, 2003) , or determining whether a string is the transliteration of the same name from another writing system (Pouliquen, 2008) .",
                "cite_spans": [
                    {
                        "start": 272,
                        "end": 287,
                        "text": "(Kondrak, 2003)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 322,
                        "end": 346,
                        "text": "(Kondrak and Dorr, 2003)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 449,
                        "end": 466,
                        "text": "(Pouliquen, 2008)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we evaluate string distance measures on the basis of data from dialectology. We therefore explain a bit more of the intended use of the pronunciation distance measure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Dialect atlases normally contain a large number of pronunciations of the same word in various places throughout a language area. All pairs of pronunciations of corresponding words are compared in order to obtain a measure of the aggregate linguistic distance between dialectal varieties (Heeringa, 2004) . It is clear that the quality of the measurement is of crucial importance.",
                "cite_spans": [
                    {
                        "start": 287,
                        "end": 303,
                        "text": "(Heeringa, 2004)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Almost all evaluation methods in dialectometry focus on the aggregate results and ignore the individual word-pair distances and individual alignments on which the distances are based. The focus on the aggregate distance of 100 or so word pairs effectively hides many differences between methods. For example, Heeringa et al. (2006) find no significant differences in the degrees to which several pairwise string distance measures correlate with perceptual distances when examined at an aggregate level. and also report almost no difference between different PSA algorithms at the aggregate level. It is important to be able to evaluate the different techniques more sensitively, which is why this paper examines alignment quality at the segment level. Kondrak (2003) applies a PSA algorithm to align words in different languages in order to detect cognates automatically. Exceptionally, he does provide an evaluation of the string alignments generated by different algorithms. But he restricts his examination to a set of only 82 gold standard pairwise alignments and he only distinguishes correct and incorrect alignments and does not look at misaligned phones.",
                "cite_spans": [
                    {
                        "start": 309,
                        "end": 331,
                        "text": "Heeringa et al. (2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 752,
                        "end": 766,
                        "text": "Kondrak (2003)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the current study we introduce and evaluate several alignment algorithms more extensively at the alignment level. The algorithms we evaluate include the Levenshtein algorithm (with syllabicity constraint), which is one of the most popular alignment methods and has successfully been used in determining pronunciation differences in phonetic strings (Kessler, 1995; Heeringa, 2004) . In addition we look at two adaptations of the Levenshtein algorithm. The first adaptation includes the swap-operation (Wagner and Lowrance, 1975) , while the second adaptation includes phonetic segment distances, which are generated by applying an iterative pointwise mutual information (PMI) procedure (Church and Hanks, 1990 ). Finally we include alignments generated with the Pair Hidden Markov Model (PHMM) as introduced to language studies by Mackay and Kondrak (2005) . They reported that the Pair Hidden Markov Model outperformed ALINE, the best performing algorithm at the alignment level in the aforementioned study of Kondrak (2003) . The PHMM has also successfully been used in dialectology by .",
                "cite_spans": [
                    {
                        "start": 352,
                        "end": 367,
                        "text": "(Kessler, 1995;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 368,
                        "end": 383,
                        "text": "Heeringa, 2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 504,
                        "end": 531,
                        "text": "(Wagner and Lowrance, 1975)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 689,
                        "end": 712,
                        "text": "(Church and Hanks, 1990",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 834,
                        "end": 859,
                        "text": "Mackay and Kondrak (2005)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1014,
                        "end": 1028,
                        "text": "Kondrak (2003)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The dataset used in this study consists of 152 words collected from 197 sites equally distributed over Bulgaria. The transcribed word pronunciations include diacritics and suprasegmentals (e.g., intonation). The total number of different phonetic types (or segments) is 98. 1 The gold standard pairwise alignment was automatically generated from a manually corrected gold standard set of N multiple alignments (see Proki\u0107 et al., 2009 ) in the following way:",
                "cite_spans": [
                    {
                        "start": 274,
                        "end": 275,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 415,
                        "end": 436,
                        "text": "Proki\u0107 et al., 2009 )",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "\u2022 Every individual string (including gaps) in the multiple alignment is aligned with every other string of the same word. With 152 words and 197 sites and in some cases more than one pronunciations per site for a certain word, the total number of pairwise alignments is about 3.5 million.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "\u2022 If a resulting pairwise alignment contains a gap in both strings at the same position (a gap-gap alignment), these gaps are removed from the pairwise alignment. We justify this, reasoning that no alignment algorithm may be expected to detect parallel deletions in a single pair of words. There is no evidence for this in the single pair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "To make this clear, consider the multiple alignment of three Bulgarian dialectal variants of the word 'I' (as in 'I am'):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "j \"A s \"A z i j \"A Using the procedure above, the three generated pairwise alignments are:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "j \"A s j \"A s \"A z i \"A z i j \"A j \"A",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "2"
            },
            {
                "text": "Four algorithms are evaluated with respect to the quality of their alignments, including three variants of the Levenshtein algorithm and the Pair Hidden Markov Model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Algorithms",
                "sec_num": "3"
            },
            {
                "text": "The Levenshtein algorithm is a very efficient dynamic programming algorithm, which was first introduced by Kessler (1995) as a tool for computationally comparing dialects. The Levenshtein distance between two strings is determined by counting the minimum number of edit operations (i.e. insertions, deletions and substitutions) needed to transform one string into the other.",
                "cite_spans": [
                    {
                        "start": 107,
                        "end": 121,
                        "text": "Kessler (1995)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The VC-sensitive Levenshtein algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "For example, the Levenshtein distance between [j\"As] and [\"Azi], two Bulgarian dialectal variants of the word 'I' (as in 'I am'), is 3:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The VC-sensitive Levenshtein algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "j\"As delete j 1 \"As subst. s/z 1 \"Az insert i 1 \"Azi 3",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The VC-sensitive Levenshtein algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "The corresponding alignment is: j \"A s \"A z i 1 1 1 The Levenshtein distance has been used frequently and successfully in measuring linguistic distances in several languages, including Irish (Kessler, 1995) , Dutch (Heeringa, 2004) and Norwegian (Heeringa, 2004) . Additionally, the Levenshtein distance has been shown to yield aggregate results that are consistent (Cronbach's \u03b1 = 0.99) and valid when compared to dialect speakers judgements of similarity (r \u2248 0.7; Heeringa et al., 2006) .",
                "cite_spans": [
                    {
                        "start": 191,
                        "end": 206,
                        "text": "(Kessler, 1995)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 215,
                        "end": 231,
                        "text": "(Heeringa, 2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 246,
                        "end": 262,
                        "text": "(Heeringa, 2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 467,
                        "end": 489,
                        "text": "Heeringa et al., 2006)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The VC-sensitive Levenshtein algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "Following Heeringa (2004) , we have adapted the Levenshtein algorithm slightly, so that it does not allow alignments of vowels with consonants. We refer to this adapted algorithm as the VCsensitive Levenshtein algorithm.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 25,
                        "text": "Heeringa (2004)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The VC-sensitive Levenshtein algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "Because metathesis (i.e. transposition of sounds) occurs relatively frequently in the Bulgarian dialect data (in 21 of 152 words), we extend the VC-sensitive Levenshtein algorithm as described in section 3.1 to include the swap-operation (Wagner and Lowrance, 1975), which allows two adjacent characters to be interchanged. The swapoperation is also known as a transposition, which was introduced with respect to detecting spelling errors by Damerau (1964) . As a consequence the Damerau distance refers to the minimum number of insertions, deletions, substitutions and transpositions required to transform one string into the other. In contrast to Wagner and Lowrance (1975) and in line with Damerau (1964) we restrict the swap operation to be only allowed for string X and Y when x i = y i+1 and y i = x i+1 (with x i being the token at position i in string X):",
                "cite_spans": [
                    {
                        "start": 442,
                        "end": 456,
                        "text": "Damerau (1964)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 649,
                        "end": 675,
                        "text": "Wagner and Lowrance (1975)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 693,
                        "end": 707,
                        "text": "Damerau (1964)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "x i x i+1 y i y i+1 >< 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "Note that a swap-operation in the alignment is indicated by the symbol '><'. The first number following this symbol indicates the cost of the swapoperation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "Consider the alignment of [vr\"7] and [v\"7r], 2 two Bulgarian dialectal variants of the word 'peak' (mountain). The alignment involves a swap and results in a total Levenshtein distance of 1:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "v r \"7 v \"7 r >< 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "However, the alignment of the transcription [vr\"7] with another dialectal transcription [v\"ar] does not allow a swap and yields a total Levenshtein distance of 2: v r \"7 v \"a r 1 1",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 50,
                        "text": "[vr\"7]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "Including just the option of swapping identical segments in the implementation of the Levenshtein algorithm is relatively easy. We set the cost of the swap operation to one 3 plus twice the cost of substituting x i with y i+1 plus twice the cost of substituting y i with x i+1 . In this way the swap operation will be preferred when x i = y i+1 and y i = x i+1 , but not when x i = y i+1 and/or y i = x i+1 . In the first case the cost of the swap operation is 1, which is less than the cost of the alternative of two substitutions. In the second case the cost is either 3 (if x i = y i+1 or y i = x i+1 ) or 5 (if x i = y i+1 and y i = x i+1 ), which is higher than the cost of using insertions, deletions and/or substitutions. Just as in the previous section, we do not allow vowels to align with consonants (except in the case of a swap).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with the swap operation",
                "sec_num": "3.2"
            },
            {
                "text": "The VC-sensitive Levenshtein algorithm as described in section 3.1 only distinguishes between vowels and consonants. However, more sensitive segment distances are also possible. Heeringa (2004) experimented with specifying phonetic segment distances based on phonetic features and also based on acoustic differences derived from spectrograms, but he did not obtain improved results at the aggregate level. Instead of using segment distances as these are (incompletely) suggested by phonetic or phonological theory, we tried to determine the sound distances automatically based on the available data. We used pointwise mutual information (PMI; Church and Hanks, 1990) to obtain these distances. It generates segment distances by assessing the degree of statistical dependence between the segments x and y:",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 193,
                        "text": "Heeringa (2004)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 637,
                        "end": 642,
                        "text": "(PMI;",
                        "ref_id": null
                    },
                    {
                        "start": 643,
                        "end": 666,
                        "text": "Church and Hanks, 1990)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "PMI(x, y) = log 2 p(x, y) p(x) p(y)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "Where:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 p(x, y): the number of times x and y occur at the same position in two aligned strings X and Y , divided by the total number of aligned segments (i.e. the relative occurrence of the aligned segments x and y in the whole dataset). Note that either x or y can be a gap in the case of insertion or deletion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 p(x) and p(y): the number of times x (or y) occurs, divided by the total number of segment occurrences (i.e. the relative occurrence of x or y in the whole dataset). Dividing by this term normalizes the empirical frequency with respect to the frequency expected if x and y are statistically independent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "The greater the PMI value, the more segments tend to cooccur in correspondences. Negative PMI values indicate that segments do not tend to cooccur in correspondences, while positive PMI values indicate that segments tend to cooccur in correspondences. The segment distances can therefore be generated by subtracting the PMI value from 0 and adding the maximum PMI value (i.e. lowest distance is 0). In that way corresponding segments obtain the lowest distance. Based on the PMI value and its conversion to segment distances, we developed an iterative procedure to automatically obtain the segment distances:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "1. The string alignments are generated using the VC-sensitive Levenshtein algorithm (see section 3.1). 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "2. The PMI value for every segment pair is calculated according to (1) and subsequently transformed to a segment distance by subtracting it from zero and adding the maximum PMI value.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "3. The Levenshtein algorithm using these segment distances is applied to generate a new set of alignments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Levenshtein algorithm with generated segment distances",
                "sec_num": "3.3"
            },
            {
                "text": "Step 2 and 3 are repeated until the alignments of two consecutive iterations do not differ (i.e. convergence is reached).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4.",
                "sec_num": null
            },
            {
                "text": "The potential merit of using PMI-generated segment distances can be made clear by the following example. Consider the strings [v\"7n] and [v\"7\u00efk@], Bulgarian dialectal variants of the word 'outside'. The VC-sensitive Levenshtein algorithm yields the following (correct) alignment:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4.",
                "sec_num": null
            },
            {
                "text": "v \"7 n v \"7 \u00ef k @ 1 1 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4.",
                "sec_num": null
            },
            {
                "text": "But also the alternative (incorrect) alignment:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4.",
                "sec_num": null
            },
            {
                "text": "v \"7 n v \"7 \u00ef k @ The idea behind this procedure is similar to Ristad's suggestion to learn segment distances for edit distance using an expectation maximization algorithm (Ristad and Yianilos, 1998) . Our approach differs from their approach in that we only learn segment distances based on the alignments generated by the VC-sensitive Levenshtein algorithm, while Ristad and Yianilos (1998) learn segment distances by considering all possible alignments of two strings.",
                "cite_spans": [
                    {
                        "start": 172,
                        "end": 199,
                        "text": "(Ristad and Yianilos, 1998)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 366,
                        "end": 392,
                        "text": "Ristad and Yianilos (1998)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "4.",
                "sec_num": null
            },
            {
                "text": "The Pair Hidden Markov Model (PHMM) also generates alignments based on automatically generated segment distances and has been used suc- cessfully in language studies (Mackay and Kondrak, 2005; . A Hidden Markov Model (HMM) is a probabilistic finite-state transducer that generates an observation sequence by starting in an initial state, going from state to state based on transition probabilities and emitting an output symbol in each state based on the emission probabilities in that state for that output symbol (Rabiner, 1989) . The PHMM was originally proposed by Durbin et al. (1998) for aligning biological sequences and was first used in linguistics by Mackay and Kondrak (2005) to identify cognates. The PHMM differs from the regular HMM in that it outputs two observation streams (i.e. a series of alignments of pairs of individual segments) instead of only a series of single symbols. The PHMM displayed in Figure 1 has three emitting states: the substitution ('match') state (M) which emits two aligned symbols, the insertion state (Y) which emits a symbol and a gap, and the deletion state (X) which emits a gap and a symbol.",
                "cite_spans": [
                    {
                        "start": 166,
                        "end": 192,
                        "text": "(Mackay and Kondrak, 2005;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 515,
                        "end": 530,
                        "text": "(Rabiner, 1989)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 569,
                        "end": 589,
                        "text": "Durbin et al. (1998)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 661,
                        "end": 686,
                        "text": "Mackay and Kondrak (2005)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 918,
                        "end": 926,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "The following example shows the state sequence for the pronunciations [j\"As] and [\"Azi] (English 'I'):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "j \"A s \"A z i X M M Y",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "Before generating the alignments, all probabilities of the PHMM have to be estimated. These probabilities consist of the 5 transition probabilities shown in Figure 1 : , \u03bb, \u03b4, \u03c4 XY and \u03c4 M . In addition there are 98 emission probabilities for the insertion state and the deletion state (one for ev-ery segment) and 9604 emission probabilities for the substitution state. The probability of starting in one of the three states is set equal to the probability of going from the substitution state to that particular state. The Baum-Welch expectation maximization algorithm (Baum et al., 1970) can be used to iteratively reestimate these probabilities until a local optimum is found.",
                "cite_spans": [
                    {
                        "start": 571,
                        "end": 590,
                        "text": "(Baum et al., 1970)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 157,
                        "end": 165,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "To prevent order effects in training, every word pair is considered twice (e.g., w a \u2212 w b and w b \u2212 w a ). The resulting insertion and deletion probabilities are therefore the same (for each segment), and the probability of substituting x for y is equal to the probability of substituting y for x, effectively yielding 4802 distinct substitution probabilities. showed that using Dutch dialect data for training, sensible segment distances were obtained; acoustic vowel distances on the basis of spectrograms correlated significantly (r = \u22120.72) with the vowel substitution probabilities of the PHMM. Additionally, probabilities of substituting a symbol with itself were much higher than the probabilities of substituting an arbitrary vowel with another non-identical vowel (mutatis mutandis for consonants), which were in turn much higher than the probabilities of substituting a vowel for a consonant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "After training, the well known Viterbi algorithm can be used to obtain the best alignments (Rabiner, 1989 ).",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 105,
                        "text": "(Rabiner, 1989",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Pair Hidden Markov Model",
                "sec_num": "3.4"
            },
            {
                "text": "As described in section 2, we use the generated pairwise alignments from a gold standard of multiple alignments for evaluation. In addition, we look at the performance of a baseline of pairwise alignments, which is constructed by aligning the strings according to the Hamming distance (i.e. only allowing substitutions and no insertions or deletions; Hamming, 1950) .",
                "cite_spans": [
                    {
                        "start": 351,
                        "end": 365,
                        "text": "Hamming, 1950)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "The evaluation procedure consists of comparing the alignments of the previously discussed algorithms including the baseline with the alignments of the gold standard. For the comparison we use the standard Levenshtein algorithm without any restrictions. The evaluation proceeds as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "1. The pairwise alignments of the four algorithms, the baseline and the gold standard are generated and standardized (see section 4.1). When multiple equal-scoring alignments are generated by an algorithm, only one (i.e. the final) alignment is selected.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "2. In each alignment, we convert each pair of aligned segments to a single token, so that every alignment of two strings is converted to a single string of segment pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "3. For every algorithm these transformed strings are aligned with the transformed strings of the gold standard using the standard Levenshtein algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "4. The Levenshtein distances for all these strings are summed up resulting in the total distance between every alignment algorithm and the gold standard. Only if individual segments match completely the segment distance is 0, otherwise it is 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "To illustrate this procedure, consider the following gold standard alignment of [vl\"7k] and [v\"7lk] , two Bulgarian dialectal variants of the word 'wolf':",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 99,
                        "text": "[vl\"7k] and [v\"7lk]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "v l \"7 k v \"7 l k",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "Every aligned segment pair is converted to a single token by adding the symbol '/' between the segments and using the symbol '-' to indicate a gap. This yields the following transformed string:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "v/v l/\"7 \"7/l k/k",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "Suppose another algorithm generates the following alignment (not detecting the swap):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "v l \"7 k v \"7 l k",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "The transformed string for this alignment is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "v/v l/-\"7/\"7 -/l k/k",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "To evaluate this alignment, we align this string to the transformed string of the gold standard and obtain a Levenshtein distance of 3:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "v/v l/\"7 \"7/l k/k v/v l/-\"7/\"7 -/l k/k 1 1 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "By repeating this procedure for all alignments and summing up all distances, we obtain total distances between the gold standard and every alignment algorithm. Algorithms which generate highquality alignments will have a low distance from the gold standard, while the distance will be higher for algorithms which generate low-quality alignments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "The gold standard contains a number of alignments which have alternative equivalent alignments, most notably an alignment containing an insertion followed by a deletion (which is equal to the deletion followed by the insertion), or an alignment containing a syllabic consonant such as [\"\u00f4 \" ], which in fact matches both a vowel and a neighboring r-like consonant and can therefore be aligned with either the vowel or the consonant. In order to prevent punishing the algorithms which do not match the exact gold standard in these cases, the alignments of the gold standard and all alignment algorithms are transformed to one standard form in all relevant cases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "For example, consider the correct alignment of [v\"iA] and [v\"ij], two Bulgarian dialectal variations of the English plural pronoun 'you':",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "v \"i A v \"i j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "Of course, this alignment is as reasonable as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "v \"i A v \"i j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "To avoid punishing the first, we transform all insertions followed by deletions to deletions followed by insertions, effectively scoring the two alignments the same. For the syllabic consonants we transform all alignments to a form in which the syllabic consonant is followed by a gap and not vice versa. For instance, aligning",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "[v\"\u00f4 \" x] with [v\"Arx] (English: 'peak') yields: v \"\u00f4 \" x v \"A r x",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "Which is transformed to the equivalent alignment:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "v \"\u00f4 \" x v \"A r x",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Standardization",
                "sec_num": "4.1"
            },
            {
                "text": "We will report both quantitative results using the evaluation method discussed in the previous section, as well as the qualitative results, where we focus on characteristic errors of the different alignment algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "Because there are two algorithms which use generated segment distances (or probabilities) in their alignments, we first check if these values are sensible and comparable to each other.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Quantitative results",
                "sec_num": "5.1"
            },
            {
                "text": "With respect to the PMI results (convergence was reached after 7 iterations, taking less than 5 CPU minutes), we indeed found sensible results: the average distance between identical symbols was significantly lower than the distance between pairs of different vowels and consonants (t < \u221213, p < .001). Because we did not allow vowel-consonants alignments in the Levenshtein algorithm, no PMI values were generated for those segment pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison of segment distances",
                "sec_num": "5.1.1"
            },
            {
                "text": "Just as , we found sensible PHMM substitution probabilities (convergence was reached after 1675 iterations, taking about 7 CPU hours): the probability of matching a symbol with itself was significantly higher than the probability of substituting one vowel for another (similarly for consonants), which in turn was higher than the probability of substituting a vowel with a consonant (all t's > 9, p < .001).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison of segment distances",
                "sec_num": "5.1.1"
            },
            {
                "text": "To allow a fair comparison between the PHMM probabilities and the PMI distances, we transformed the PHMM probabilities to log-odds scores (i.e. dividing the probability by the relative frequency of the segments and subsequently taking the log). Because the residues after the linear regression between the PHMM similarities and PMI distances were not normally distributed, we used Spearman's rank correlation coefficient to assess the relationship between the two variables. We found a highly significant Spearman's \u03c1 = \u2212.965 (p < .001), which means that the relationship between the PHMM similarities and the PMI distances is very strong. When looking at the insertions and deletions we also found a significant relationship: Spearman's \u03c1 = \u2212.736 (p < .001).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison of segment distances",
                "sec_num": "5.1.1"
            },
            {
                "text": "Using the procedure described in section 4, we calculated the distances between the gold standard and the alignment algorithms. Besides reporting the total number of misaligned tokens, we also divided this number by the total number of aligned segments in the gold standard (about 16 million) to get an idea of the error rate. Note that the error rate is 0 in the perfect case, but might rise to nearly 2 in the worst case, which is an alignment consisting of only insertions and deletions and therefore up to twice as long as the alignments in the gold standard. Finally, we also report the total number of alignments (word pairs) which are not exactly equal to the alignments of the gold standard.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation against the gold standard",
                "sec_num": "5.1.2"
            },
            {
                "text": "The results are shown in Table 1 . We can clearly see that all algorithms beat the baseline and align about 95% of all string pairs correctly. While the Levenshtein PMI algorithm aligns most strings perfectly, it misaligns slightly more individual segments than the PHMM and the Levenshtein algorithm with the swap operation (i.e. it makes more segment alignment errors per word pair). The VC-sensitive Levenshtein algorithm in general performs slightly worse than the other three algorithms.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 32,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation against the gold standard",
                "sec_num": "5.1.2"
            },
            {
                "text": "Let us first note that it is almost impossible for any algorithm to achieve a perfect overlap with the gold standard, because the gold standard was generated from multiple alignments and therefore incorporates other constraints. For example, while a certain pairwise alignment could appear correct in aligning two consonants, the multiple alignment could show contextual support (from pronunciations in other varieties) for separating the consonants. Consequently, all algorithms discussed below make errors of this kind.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative results",
                "sec_num": "5.2"
            },
            {
                "text": "In general, the specific errors of the VCsensitive Levenshtein algorithm can be separated into three cases. First, as we illustrated in section 3.3, the VC-sensitive Levenshtein algorithm has no way to distinguish between aligning a consonant with one of two neighboring consonants and sometimes chooses the wrong one (this also holds for vowels). Second, it does not allow alignments of vowels with consonants and therefore cannot detect correct vowel-consonant alignments such as correspondences of [u] with [v] initially. Third, for the same reason the VC-sensitive Levenshtein algorithm is also not able to detect metathesis of vowels with consonants.",
                "cite_spans": [
                    {
                        "start": 501,
                        "end": 513,
                        "text": "[u] with [v]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative results",
                "sec_num": "5.2"
            },
            {
                "text": "The misalignments of the Levenshtein algorithm with the swap-operation can also be split in three cases. It suffers from the same two problems as the VC-sensitive Levenshtein algorithm in choosing to align a consonant incorrectly with one of two neighboring consonants and not being able to align a vowel with a consonant. Third, even though it aligns some of the metathesis cases correctly, it also makes some errors by incorrectly applying the swap-operation. For example, consider the alignment of [s\"ir j Ini] and [s\"ir j nI], two Bulgarian dialectal variations of the word 'cheese', in which the swap-operation is applied: Algorithm Misaligned segments (error rate) Incorrect alignments (%) Baseline (Hamming algorithm) 2510094 (0.1579) 726844 (20.92%) VC-sens. Levenshtein s \"i r j I n i s \"i r j n I 0 0 0 >< 1 1 However, the two I's are not related and should not be swapped, which is reflected in the gold standard alignment:",
                "cite_spans": [
                    {
                        "start": 705,
                        "end": 724,
                        "text": "(Hamming algorithm)",
                        "ref_id": null
                    },
                    {
                        "start": 767,
                        "end": 778,
                        "text": "Levenshtein",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative results",
                "sec_num": "5.2"
            },
            {
                "text": "s \"i r j I n i s \"i r j n I 0 0 0 1 0 1 The incorrect alignments of the Levenshtein algorithm with the PMI-generated segment distances are mainly caused by its inability to align vowels with consonants and therefore, just as the VC-sensitive Levenshtein algorithm, it fails to detect metathesis. On the other hand, using segment distances often solves the problem of selecting which of two plausible neighbors a consonant should be aligned with.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative results",
                "sec_num": "5.2"
            },
            {
                "text": "Because the PHMM employs segment substitution probabilities, it also often solves the problem of aligning a consonant to one of two neighbors. In addition, the PHMM often correctly aligns metathesis involving equal as well as similar symbols, even realizing an improvement over the Levenshtein swap algorithm. Unfortunately, many wrong alignments of the PHMM are also caused by allowing vowel-consonant alignments. Since the PHMM does not take context into account, it also aligns vowels and consonants which often play a role in metathesis when no metathesis is involved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative results",
                "sec_num": "5.2"
            },
            {
                "text": "This study provides an alternative evaluation of string distance algorithms by focusing on their effectiveness in aligning segments. We proposed, implemented, and tested the new procedure on a substantial body of data. This provides a new perspective on the quality of distance and alignment algorithms as they have been used in dialectology, where aggregate comparisons had been at times frustratingly inconclusive.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "In addition, we introduced the PMI weighting within the Levenshtein algorithm as a simple means of obtaining segment distances, and showed that it improves on the popular Levenshtein algorithm with respect to alignment accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "While the results indicated that the PHMM misaligned the fewest segments, training the PHMM is a lengthy process lasting several hours. Considering that the Levenshtein algorithm with the swap operation and the Levenshtein algorithm with the PMI-generated segment distances are much quicker to (train and) apply, and that they have only slightly lower performance with respect to the segment alignments, we actually prefer using those methods. Another argument in favor of using one of these Levenshtein algorithms is that it is a priori clearer what type of alignment errors to expect from them, while the PHMM algorithm is less predictable and harder to comprehend.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "While our results are an indication of the good quality of the evaluated algorithms, we only evaluated the algorithms on a single dataset for which a gold standard was available. Ideally we would like to verify these results on other datasets, for which gold standards consisting of multiple or pairwise alignments are available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "The dataset is available online at the website http://www.bultreebank.org/BulDialects/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We use transcriptions in which stress is marked on stressed vowels instead of before stressed syllables. We follow in this the Bulgarian convention instead of the IPA convention.3 Actually the cost is set to 0.999 to prefer an alignment involving a swap over an alternative alignment involving only regular edit operations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We also used the Levenshtein algorithm without the vowel-consonant restriction to generate the PMI values, but this had a negative effect on the performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We are grateful to Peter Kleiweg for extending the Levenshtein algorithm in the L04 package with the swap-operation. We also thank Greg Kondrak for providing the original source code of the Pair Hidden Markov Models. Finally, we thank Therese Leinonen and Sebastian K\u00fcrschner of the University of Groningen and Esteve Valls i Alecha of the University of Barcelona for their useful feedback on our ideas.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A maximization technique occurring in the statistical analysis of probabilistic functions of Markov Chains",
                "authors": [
                    {
                        "first": "Leonard",
                        "middle": [
                            "E"
                        ],
                        "last": "Baum",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Petrie",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Soules",
                        "suffix": ""
                    },
                    {
                        "first": "Norman",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    }
                ],
                "year": 1970,
                "venue": "The Annals of Mathematical Statistics",
                "volume": "41",
                "issue": "1",
                "pages": "164--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leonard E. Baum, Ted Petrie, George Soules, and Nor- man Weiss. 1970. A maximization technique occur- ring in the statistical analysis of probabilistic func- tions of Markov Chains. The Annals of Mathemati- cal Statistics, 41(1):164-171.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Word association norms, mutual information, and lexicography",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kenneth",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Church",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hanks",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computational Linguistics",
                "volume": "16",
                "issue": "1",
                "pages": "22--29",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenneth W. Church and Patrick Hanks. 1990. Word association norms, mutual information, and lexicog- raphy. Computational Linguistics, 16(1):22-29.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A technique for computer detection and correction of spelling errors",
                "authors": [
                    {
                        "first": "Fred",
                        "middle": [
                            "J"
                        ],
                        "last": "Damerau",
                        "suffix": ""
                    }
                ],
                "year": 1964,
                "venue": "Communications of the ACM",
                "volume": "7",
                "issue": "",
                "pages": "171--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fred J. Damerau. 1964. A technique for computer de- tection and correction of spelling errors. Communi- cations of the ACM, 7:171-176.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Durbin",
                        "suffix": ""
                    },
                    {
                        "first": "Sean",
                        "middle": [
                            "R"
                        ],
                        "last": "Eddy",
                        "suffix": ""
                    },
                    {
                        "first": "Anders",
                        "middle": [],
                        "last": "Krogh",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Mitchison",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nu- cleic Acids. Cambridge University Press, United Kingdom, July.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Error detecting and error correcting codes",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Hamming",
                        "suffix": ""
                    }
                ],
                "year": 1950,
                "venue": "Bell System Technical Journal",
                "volume": "29",
                "issue": "",
                "pages": "147--160",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Hamming. 1950. Error detecting and error correcting codes. Bell System Technical Journal, 29:147-160.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Evaluation of string distance algorithms for dialectology",
                "authors": [
                    {
                        "first": "Wilbert",
                        "middle": [],
                        "last": "Heeringa",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Kleiweg",
                        "suffix": ""
                    },
                    {
                        "first": "Charlotte",
                        "middle": [],
                        "last": "Gooskens",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Nerbonne",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Linguistic Distances",
                "volume": "",
                "issue": "",
                "pages": "51--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilbert Heeringa, Peter Kleiweg, Charlotte Gooskens, and John Nerbonne. 2006. Evaluation of string dis- tance algorithms for dialectology. In John Nerbonne and Erhard Hinrichs, editors, Linguistic Distances, pages 51-62, Shroudsburg, PA. ACL.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Measuring Dialect Pronunciation Differences using Levenshtein Distance",
                "authors": [
                    {
                        "first": "Wilbert",
                        "middle": [],
                        "last": "Heeringa",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilbert Heeringa. 2004. Measuring Dialect Pronunci- ation Differences using Levenshtein Distance. Ph.D. thesis, Rijksuniversiteit Groningen.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Computational dialectology in Irish Gaelic",
                "authors": [
                    {
                        "first": "Brett",
                        "middle": [],
                        "last": "Kessler",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Proceedings of the seventh conference on European chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "60--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brett Kessler. 1995. Computational dialectology in Irish Gaelic. In Proceedings of the seventh con- ference on European chapter of the Association for Computational Linguistics, pages 60-66, San Fran- cisco, CA, USA. Morgan Kaufmann Publishers Inc.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Identification of Confusable Drug Names: A New Approach and Evaluation Methodology",
                "authors": [
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Kondrak",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Artificial Intelligence in Medicine",
                "volume": "36",
                "issue": "",
                "pages": "273--291",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grzegorz Kondrak and Bonnie Dorr. 2003. Identifica- tion of Confusable Drug Names: A New Approach and Evaluation Methodology. Artificial Intelligence in Medicine, 36:273-291.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Phonetic Alignment and Similarity",
                "authors": [
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Kondrak",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computers and the Humanities",
                "volume": "37",
                "issue": "",
                "pages": "273--291",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grzegorz Kondrak. 2003. Phonetic Alignment and Similarity. Computers and the Humanities, 37:273- 291.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Binary codes capable of correcting deletions, insertions and reversals. Doklady Akademii Nauk SSSR",
                "authors": [
                    {
                        "first": "Vladimir",
                        "middle": [],
                        "last": "Levenshtein",
                        "suffix": ""
                    }
                ],
                "year": 1965,
                "venue": "",
                "volume": "163",
                "issue": "",
                "pages": "845--848",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vladimir Levenshtein. 1965. Binary codes capable of correcting deletions, insertions and reversals. Dok- lady Akademii Nauk SSSR, 163:845-848.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Computing word similarity and identifying cognates with Pair Hidden Markov Models",
                "authors": [
                    {
                        "first": "Wesley",
                        "middle": [],
                        "last": "Mackay",
                        "suffix": ""
                    },
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Kondrak",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "40--47",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wesley Mackay and Grzegorz Kondrak. 2005. Com- puting word similarity and identifying cognates with Pair Hidden Markov Models. In Proceedings of the 9th Conference on Computational Natural Lan- guage Learning (CoNLL), pages 40-47, Morris- town, NJ, USA. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Toward a dialectological yardstick",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Nerbonne",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Kleiweg",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Journal of Quantitative Linguistics",
                "volume": "14",
                "issue": "",
                "pages": "148--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Nerbonne and Peter Kleiweg. 2007. Toward a di- alectological yardstick. Journal of Quantitative Lin- guistics, 14:148-167.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Similarity of names across scripts: Edit distance using learned costs of N-Grams",
                "authors": [
                    {
                        "first": "Bruno",
                        "middle": [],
                        "last": "Pouliquen",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 6th international Conference on Natural Language Processing",
                "volume": "5221",
                "issue": "",
                "pages": "405--416",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bruno Pouliquen. 2008. Similarity of names across scripts: Edit distance using learned costs of N- Grams. In Bent Nordstr\u00f6m and Aarne Ranta, ed- itors, Proceedings of the 6th international Con- ference on Natural Language Processing (Go- Tal'2008), volume 5221, pages 405-416.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Multiple sequence alignments in linguistics",
                "authors": [
                    {
                        "first": "Jelena",
                        "middle": [],
                        "last": "Proki\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Martijn",
                        "middle": [],
                        "last": "Wieling",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Nerbonne",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the EACL 2009 Workshop on Language Technology and Resources for Cultural Heritage",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jelena Proki\u0107, Martijn Wieling, and John Nerbonne. 2009. Multiple sequence alignments in linguistics. In Piroska Lendvai and Lars Borin, editors, Proceed- ings of the EACL 2009 Workshop on Language Tech- nology and Resources for Cultural Heritage, Social Sciences, Humanities, and Education.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A tutorial on Hidden Markov Models and selected applications in speech recognition",
                "authors": [
                    {
                        "first": "Lawrence",
                        "middle": [
                            "R"
                        ],
                        "last": "Rabiner",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Proceedings of the IEEE",
                "volume": "77",
                "issue": "2",
                "pages": "257--286",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence R. Rabiner. 1989. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2):257- 286.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Learning string-edit distance",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [
                            "Sven"
                        ],
                        "last": "Ristad",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yianilos",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Transactions on Pattern Analysis and Machine Intelligence",
                "volume": "20",
                "issue": "",
                "pages": "522--532",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Sven Ristad and Peter N. Yianilos. 1998. Learn- ing string-edit distance. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 20:522- 532.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "An extension of the string-to-string correction problem",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Lowrance",
                        "suffix": ""
                    }
                ],
                "year": 1975,
                "venue": "Journal of the ACM",
                "volume": "22",
                "issue": "2",
                "pages": "177--183",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Wagner and Roy Lowrance. 1975. An exten- sion of the string-to-string correction problem. Jour- nal of the ACM, 22(2):177-183.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Dialect pronunciation comparison and spoken word recognition",
                "authors": [
                    {
                        "first": "Martijn",
                        "middle": [],
                        "last": "Wieling",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Nerbonne",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the RANLP Workshop on Computational Phonology",
                "volume": "",
                "issue": "",
                "pages": "71--78",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martijn Wieling and John Nerbonne. 2007. Dialect pronunciation comparison and spoken word recog- nition. In Petya Osenova, editor, Proceedings of the RANLP Workshop on Computational Phonology, pages 71-78.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Inducing sound segment differences using Pair Hidden Markov Models",
                "authors": [
                    {
                        "first": "Martijn",
                        "middle": [],
                        "last": "Wieling",
                        "suffix": ""
                    },
                    {
                        "first": "Therese",
                        "middle": [],
                        "last": "Leinonen",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Nerbonne",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Computing and Historical Phonology: 9th Meeting of the ACL Special Interest Group for Computational Morphology and Phonology",
                "volume": "",
                "issue": "",
                "pages": "48--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martijn Wieling, Therese Leinonen, and John Ner- bonne. 2007. Inducing sound segment differences using Pair Hidden Markov Models. In Mark Ellison John Nerbonne and Greg Kondrak, editors, Comput- ing and Historical Phonology: 9th Meeting of the ACL Special Interest Group for Computational Mor- phology and Phonology, pages 48-56.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Pair Hidden Markov Model. Image courtesy ofMackay and Kondrak (2005).",
                "num": null,
                "type_str": "figure"
            }
        }
    }
}