File size: 67,183 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
{
    "paper_id": "W10-0202",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T05:04:30.493244Z"
    },
    "title": "Emotion Detection in Email Customer Care",
    "authors": [
        {
            "first": "Narendra",
            "middle": [],
            "last": "Gupta",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "AT&T Labs -Research, Inc. Florham Park",
                "location": {
                    "postCode": "07932",
                    "region": "NJ",
                    "country": "USA"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Mazin",
            "middle": [],
            "last": "Gilbert",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "AT&T Labs -Research, Inc. Florham Park",
                "location": {
                    "postCode": "07932",
                    "region": "NJ",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Giuseppe",
            "middle": [
                "Di"
            ],
            "last": "Fabbrizio",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "AT&T Labs -Research, Inc. Florham Park",
                "location": {
                    "postCode": "07932",
                    "region": "NJ",
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Prompt and knowledgeable responses to customers' emails are critical in maximizing customer satisfaction. Such emails often contain complaints about unfair treatment due to negligence, incompetence, rigid protocols, unfriendly systems, and unresponsive personnel. In this paper, we refer to these emails as emotional emails. They provide valuable feedback to improve contact center processes and customer care, as well as, to enhance customer retention. This paper describes a method for extracting salient features and identifying emotional emails in customer care. Salient features reflect customer frustration, dissatisfaction with the business, and threats to either leave, take legal action and/or report to authorities. Compared to a baseline system using word ngrams, our proposed approach with salient features resulted in a 20% absolute Fmeasure improvement.",
    "pdf_parse": {
        "paper_id": "W10-0202",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Prompt and knowledgeable responses to customers' emails are critical in maximizing customer satisfaction. Such emails often contain complaints about unfair treatment due to negligence, incompetence, rigid protocols, unfriendly systems, and unresponsive personnel. In this paper, we refer to these emails as emotional emails. They provide valuable feedback to improve contact center processes and customer care, as well as, to enhance customer retention. This paper describes a method for extracting salient features and identifying emotional emails in customer care. Salient features reflect customer frustration, dissatisfaction with the business, and threats to either leave, take legal action and/or report to authorities. Compared to a baseline system using word ngrams, our proposed approach with salient features resulted in a 20% absolute Fmeasure improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Emails are becoming the preferred communication channel for customer service. For customers, it is a way to avoid long hold times on call centers phone calls and to keep a record of the information exchanges with the business. For businesses, it offers an opportunity to best utilize customer service representatives by evenly distributing the work load over time, and for representatives, it allows time to research the issue and respond to the customers in a manner consistent with business policies. Businesses can further exploit the offline nature of this channel by automatically routing the emails involving critical issues to specialized representatives. Besides concerns related to products and services, businesses ensure that emails complaining about unfair treatment due to negligence, incompetence, rigid protocols and unfriendly systems, are always handled with care. Such emails, referred to as emotional emails, are critical to reduce the churn i.e., retaining customers who otherwise would have taken their business elsewhere, and, at the same time, they are a valuable source of information for improving business processes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In recurring service oriented businesses, a large number of customer emails may contain routine complaints. While such complaints are important and are addressed by customer service representatives, our purpose here is to identify emotional emails where severity of the complaints and customer dissatisfaction are relatively high. Emotional emails may contain abusive and probably emotionally charged language, but we are mainly interested in identifying messages where, in addition to the flames, the customer includes a concrete description of the problem experienced with the company providing the service. In the context of customer service, customers express their concerns in many ways. Sometimes they convey a negative emotional component articulated by phrases like disgusted and you suck. In other cases, there is a minimum emotional involvement by enumerating factual sentences such as you overcharged, or take my business elsewhere. In many cases, both the emotional and factual components are actually present. In this work, we have identified eight dif-ferent ways that customers use to express their emotions in emails. Throughout this paper, these ways will be referred to as Salient Features. We cast the identification of emotional email as a text classification problem, and show that using salient features we can significantly improve the identification accuracy. Compared to a baseline system which uses Boosting (Schapire, 1999) withnword n-grams features, our proposed system using salient features resulted in improvement in f-measure from 0.52 to 0.72.",
                "cite_spans": [
                    {
                        "start": 1434,
                        "end": 1450,
                        "text": "(Schapire, 1999)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In section 2, we provide a summary of previous work and its relationship with our contribution. In section 3, we describe our method for emotion detection and extraction of salient features. A series of experiments demonstrating improvement in classification performance is presented in section 4. We conclude the paper by highlighting the main contribution of this work in section 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Extensive work has been done on emotion detection. In the context of human-computer dialogs, although richer features including acoustic and intonation are available, there is a general consensus (Litman and Forbes-Riley, 2004b; Lee and Narayanan, 2005) about the use of lexical features to significantly improve the accuracy of emotion detection.",
                "cite_spans": [
                    {
                        "start": 229,
                        "end": 253,
                        "text": "Lee and Narayanan, 2005)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work",
                "sec_num": "2"
            },
            {
                "text": "Research has also been done in predicting basic emotions (also referred to as affects) within text Liu et al., 2003) . To render speech with prosodic contour conveying the emotional content of the text, one of 6 types of human emotions (e.g., angry, disgusted, fearful, happy, sad, and surprised) are identified for each sentence in the running text. Deducing such emotions from lexical constructs is a hard problem evidenced by little agreement among humans. A Kappa value of 0.24-0.51 was shown in . Liu et al. (2003) have argued that the absence of affect laden surface features i.e., key words, from the text does not imply absence of emotions, therefore they have relied more on common-sense knowledge. Instead of deducing types emotions in each sentence, we are interested in knowing if the entire email is emotional or not. Additionally we are also interested in the intensity and the cause of those emotions.",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 116,
                        "text": "Liu et al., 2003)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 502,
                        "end": 519,
                        "text": "Liu et al. (2003)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work",
                "sec_num": "2"
            },
            {
                "text": "There is also a body of work in areas of creating Semantic Orientation (SO) dictionaries (Hatzivassiloglou and McKeown, 1997; Turney and Littman, 2003; Esuli and Sebastiani, 2005) and their use in identifying emotions laden sentences and polarity (Yu and Hatzivassiloglou, 2003; Kim and Hovy, 2004; Hu and Liu, 2004) of those emotions. While such dictionaries provide a useful starting point, their use alone does not yield satisfactory results. In Wilson et al. (2005) , classification of phrases containing positive, negative or neutral emotions is discussed. For this problem they show high agreement among human annotators (Kappa of 0.84). They also show that labeling phrases as positive, negative or neutral only on the basis of presence of key word from such dictionaries yields a classification accuracy of 48%. An obvious reason for this poor performance is that semantic orientations of words are context dependent.",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 125,
                        "text": "(Hatzivassiloglou and McKeown, 1997;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 126,
                        "end": 151,
                        "text": "Turney and Littman, 2003;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 152,
                        "end": 179,
                        "text": "Esuli and Sebastiani, 2005)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 247,
                        "end": 278,
                        "text": "(Yu and Hatzivassiloglou, 2003;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 279,
                        "end": 298,
                        "text": "Kim and Hovy, 2004;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 299,
                        "end": 316,
                        "text": "Hu and Liu, 2004)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 449,
                        "end": 469,
                        "text": "Wilson et al. (2005)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work",
                "sec_num": "2"
            },
            {
                "text": "Works reported in Wilson et al. (2005) ; Pang et al. (2002) and Dave et al. (2003) have attempted to mitigate this problem by using supervised methods. They report classification results using a number of different sets of features, including unigram word features. Wilson et al. (2005) reports an improvement (63% to 65.7% accuracy) in performance by using a host of features extracted from syntactic dependencies. Similarly, Gamon (2004) shows that the use of deep semantic features along with word unigrams improve performances. Pang et al. (2002) and Dave et al. (2003) on the other hand confirmed that word unigrams provide the best classification results. This is in line with our experience as well and could be due to sparseness of the data. We also used supervised methods to predict emotional emails. To train predictive models we used word ngrams (uni-, bi-and tri-grams) and a number of binary features indicating the presence of words/phrases from specific dictionaries. Spertus (1997) discusses a system called Smoky which recognizes hostile messages and is quite similar to our work. While Smoky is interested in identifying messages that contain flames, our research on emotional emails looks deeper to discover the reasons for such flames. Besides word unigrams, Smoky uses rules to derive additional features for classification. These features are intended to capture different manifestations of the flames. Simi-larly, in our work we also use rules (in our case implemented as table look-up) to derive additional features of emotional emails.",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 38,
                        "text": "Wilson et al. (2005)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 41,
                        "end": 59,
                        "text": "Pang et al. (2002)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 64,
                        "end": 82,
                        "text": "Dave et al. (2003)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 266,
                        "end": 286,
                        "text": "Wilson et al. (2005)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 427,
                        "end": 439,
                        "text": "Gamon (2004)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 532,
                        "end": 550,
                        "text": "Pang et al. (2002)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 555,
                        "end": 573,
                        "text": "Dave et al. (2003)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 984,
                        "end": 998,
                        "text": "Spertus (1997)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work",
                "sec_num": "2"
            },
            {
                "text": "We use supervised machine learning techniques to detect emotional emails. In particular, our emotion detector is a statistical classifier model trained using hand labeled training examples. For each example, a set of salient features is extracted. The major components of our system are described below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotion detection in emails",
                "sec_num": "3"
            },
            {
                "text": "For detecting emotional emails we used Boostexter as text classification. Our choice of machine learning algorithm was not strategic and we have no reason to believe that SVMs or maximum entropybased classifiers will not perform equally well. Boostexter, which is based on the boosting family of algorithms, was first proposed by Schapire (1999) . It has been applied successfully to numerous text classification applications (Gupta et al., 2005) at AT&T. Boosting builds a highly accurate classifier by combining many \"weak\" base classifiers, each one of which may only be moderately accurate. Boosting constructs the collection of base classifiers iteratively. On each iteration t, the boosting algorithm supplies the base learner weighted training data and the base learner generates a base classifier h t . Set of nonnegative weights w t encode how important it is that h t correctly classifies each email. Generally, emails that were most often misclassified by the preceding base classifiers will be given the most weight so as to force the base learner to focus on the \"hardest\" examples. As described in Schapire and Singer (1999) , Boostexter uses confidence rated base classifiers h that for every example x (in our case it is the customer emails) output a real number h(x) whose sign (-1 or +1) is interpreted as a prediction(+1 indicates emotional email), and whose magnitude |h(x)| is a measure of \"confidence.\" The output of the final classifier f is f (x) = T t=1 h t (x), i.e., the sum of confidence of all classifiers h t . The real-valued predictions of the final classifier f can be mapped onto a confidence value between 0 and 1 by a logistic function;",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 345,
                        "text": "Schapire (1999)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 426,
                        "end": 446,
                        "text": "(Gupta et al., 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1112,
                        "end": 1138,
                        "text": "Schapire and Singer (1999)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classifier",
                "sec_num": "3.1"
            },
            {
                "text": "conf (x = emotional email) = 1 1 + e \u2212f (x) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classifier",
                "sec_num": "3.1"
            },
            {
                "text": "The learning procedure in boosting minimizes the negative conditional log likelihood of the training data under this model, namely:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classifier",
                "sec_num": "3.1"
            },
            {
                "text": "i ln(1 + e \u2212y i f (x i ) ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classifier",
                "sec_num": "3.1"
            },
            {
                "text": "Here i iterates over all training examples and y i is the label of ith example.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classifier",
                "sec_num": "3.1"
            },
            {
                "text": "Emotional emails are a reaction to perceived excessive loss of time and/or money by customers. Expressions of such reactions in emails are salient features of emotional emails. For our data we have identified the eight features listed below. While many of these features are of general nature and can be present in most customer service related emotional emails, in this paper we make no claims about their completeness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature extraction",
                "sec_num": "3.2"
            },
            {
                "text": "itly expressing customers affective states by phrases like it upsets me, I am frustrated;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "2. Expression of negative opinions about the company: by evaluative expressions like dishonest dealings, disrespectful.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "These could also be insulting expressions like stink, suck, idiots;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "3. Threats to take their business elsewhere: by expression like business elsewhere, look for another provider. These expressions are neither emotional or evaluative;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "4. Threats to report to authorities: federal agencies, consumer protection. These are domain dependent names of agencies. The mere presence of such names implies customer threat;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "5. Threats to take legal action:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "seek retribution, lawsuit.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "These expressions may also not be emotional or evaluative in nature; 6. Justification about why they should have been treated better. A common way to do this is to say things like long time customer, loyal customer, etc. Semantic orientations of most phrases used to express this feature are positive;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "7. Disassociate themselves from the company, by using phrases like you people, your service representative, etc. These are analogous to rule class \"Noun Phrases used as Appositions\" in Spertus (1997) .",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 199,
                        "text": "Spertus (1997)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "8. State what was done wrong to them: grossly overcharged, on hold for hours, etc. These phrases may have negative or neutral semantic orientations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "In addition to the word unigrams, salient features of emotional emails are also used for training/testing the emotional email classifier. While labeling the training data, labelers look for salient features within the email and also the severity of the loss perceived by the customer. For example, email 1 in Fig. 1 is labeled as emotional because customer perception of loss is severe to the point that the customer may cancel the service. On the other hand, email 2 is not emotional because customer perceived loss is not severe to the point of service cancellation. This customer would be satisfied in this instant if he/she receives the requested information in a timely fashion.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 309,
                        "end": 315,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "To extract salient features from an email, eight separate lists of phrases customers use to express each of the salient features were manually created. These lists were extracted from the training data and can be considered as basic rules that identify emotional emails. In the labeling guide for critical emails labelers were instructed to look for salient features in the email and keep a list of encountered phrases. We further enriched these lists by: a) using general knowledge of English, we added variations to existing phrases and b) searching a large body of email text (different from testing) for different phrases in which key words from known phrases participated. For example from the known phrase lied to we used the word lied and found a phrase blatantly lied. Using these lists we extracted eight binary salient features for each email, indicating presence/absence of phrases from the corresponding list in the email. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Expression of negative emotions: Explic-",
                "sec_num": "1."
            },
            {
                "text": "We performed several experiments to compare the performance of our emotional email classifier with that using a ngram based text classifier. For these experiments we labeled 620 emails as training examples and 457 emails as test examples. Training examples were labeled independently by two different labelers 1 with relatively high degree of agreement among them. Kappa (Cohen, 1960) value of 0.814 was observed versus 0.5-0.7 reported for emotion labeling tasks Litman and Forbes-Riley, 2004a ). Because of the relatively high agreement among these labelers, with different back ground, we did not feel the need to check the agreement among more than 2 labelers. Due to the limited size of the training data we used cross validation (leave-one-out) technique on the test set to evaluate outcomes of different experiments. In this round robin approach, each example from the test set is tested using a model trained on all remaining 1076 (620 plus 456) examples. Test results on all 457 test examples are averaged.",
                "cite_spans": [
                    {
                        "start": 371,
                        "end": 384,
                        "text": "(Cohen, 1960)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 464,
                        "end": 494,
                        "text": "Litman and Forbes-Riley, 2004a",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments and evaluation",
                "sec_num": "4"
            },
            {
                "text": "Throughout all of our experiments, we computed the classification accuracy of detecting emotional emails using precision, recall and F-measure. Notice for our test data a classifier with majority vote has a classification accuracy of 87%, but since none of the emotional emails are identified, recall and Fmeasure are both zero. On the other hand, a classifier which generates many more false positives for each true positive, will have a lower classification accuracy but a higher (non-zero) F-measure than the majority vote classifier. Fig. 2 shows precision/recall curves for different experiments. The black circles represent the operating point corresponding to the best F-measure for each curve. Actual values of these points are provided in Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 538,
                        "end": 544,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 748,
                        "end": 755,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and evaluation",
                "sec_num": "4"
            },
            {
                "text": "As a baseline experiment we used word ngram features to train a classifier model. The graph labeled as \"ngram features\" in Fig. 2 shows the performance of this classifier. The best F-measure in this case is only 0.52. Obviously this low performance can be attributed to the small training set and the large feature space formed by word ngrams. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 123,
                        "end": 129,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and evaluation",
                "sec_num": "4"
            },
            {
                "text": "The baseline system was compared with a similar system using salient features. First, we used a simple classification rule that we formulated by looking at the training data. According to this rule, if an email contained three or more salient features it was classified as an emotional email. We classified the test data using this rule and obtained and an Fmeasure of 0.68 (see row labeled as \u2265 3 in Table 2 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 401,
                        "end": 408,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Salient features",
                "sec_num": "4.1"
            },
            {
                "text": "Since no confidence thresholding can be used with the deterministic rule, its performance is indicated by a single point marked by the gray circle in Fig. 2 . This result clearly demonstrates high utility of our salient features. To verify that the salient features threshold count of 3 used in our simple classification rule is the best, we also evaluated the performance of the rule for the salient features with threshold count of 2 and 4 (row labeled as \u2265 2 and \u2265 4 in Table 2 ). In our next set experiments, we trained a classifier model using salient features alone and with word ngrams. Corresponding cross validation results on the test data are annotated in Table 2 and in Fig. 2 as \"Salient Features\" and \"N-grams & Salient Features\", respectively. Incremental improvement in best F-measure clearly shows: a) BoosTexter is able to learn better rules than the simple rule of identifying three or more salient features. b) Even though salient features provide a significant improvement in performance, there is still discriminative information in ngram features. A direct consequence of the second observation is that the detection accuracy can be further improved by extending/refining the phrase lists and/or by using more labeled data so that to exploit the discriminative information in the word ngram features.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 150,
                        "end": 156,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 473,
                        "end": 480,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 667,
                        "end": 674,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 682,
                        "end": 688,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Salient features",
                "sec_num": "4.1"
            },
            {
                "text": "Salient Features of emotional emails are the consequence of our knowledge of how customers react to their excessive loss. To empirically demonstrate that eight different salient features used in identification of emotional emails do provide complementary evidence, we randomly distributed the phrases in eight lists. We then used them to extract eight binary features in the same manner as before. Best F-measure for this experiment is shown in the last row of Table 2 , and labeled as \"N-gram & Random Features\". Degradation in performance of this experiment clearly demonstrates that salient features used by us provide complimentary and not redundant information.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 461,
                        "end": 468,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Salient features",
                "sec_num": "4.1"
            },
            {
                "text": "Customer emails complaining about unfair treatment are often emotional and are critical for businesses. They provide valuable feedback for improving business processes and coaching agents. Furthermore careful handling of such emails helps to improve customer retention. In this paper, we presented a method for emotional email identification. We introduced the notion of salient features for emotional emails, and demonstrated high agreement among two labelers in detecting emotional emails. We also demonstrated that extracting salient features from the email text and using them to train a classifier model can significantly improve identification accuracy. Compared to a baseline classifier which uses only the word ngrams features, the addition of the salient features improved the F-measure from 0.52 to 0.72. Our current research is focused on improving the salient feature extraction process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "More specifically by leveraging publically available Semantic orientation dictionaries, and by enriching our dictionaries using phrases extracted from a large corpus by matching syntactic patterns of some seed phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "One of the labeler was one of the authors of this paper and other had linguistic back ground.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Emotional sequencing and development in fairy tales",
                "authors": [
                    {
                        "first": "Cecilia",
                        "middle": [],
                        "last": "Alm",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the First International Conference on Affective Computing and Intelligent Interaction",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alm, Cecilia and Richard Sproat. 2005. Emotional sequencing and development in fairy tales. In Proceedings of the First International Conference on Affective Computing and Intelligent Interac- tion.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Emotions from text: machine learning for text-based emotion prediction",
                "authors": [
                    {
                        "first": "Cecilia",
                        "middle": [],
                        "last": "Alm",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Ovesdotter",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "HLT '05: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "579--586",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alm, Cecilia Ovesdotter, Dan Roth, and Richard Sproat. 2005. Emotions from text: machine learning for text-based emotion prediction. In HLT '05: Proceedings of the conference on Hu- man Language Technology and Empirical Meth- ods in Natural Language Processing. Association for Computational Linguistics, Morristown, NJ, USA, pages 579-586.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A coefficient of agreement for nominal scales",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "Educational and Psychological Measurement",
                "volume": "20",
                "issue": "1",
                "pages": "37--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cohen, J. 1960. A coefficient of agreement for nom- inal scales. Educational and Psychological Mea- surement 20(1):37-46.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Mining the peanut gallery: Opinion extraction and semantic classification of product reviews",
                "authors": [
                    {
                        "first": "Kushal",
                        "middle": [],
                        "last": "Dave",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Lawrence",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "M"
                        ],
                        "last": "Pennock",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of WWW",
                "volume": "",
                "issue": "",
                "pages": "519--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dave, Kushal, Steve Lawrence, and David M. Pen- nock. 2003. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of WWW. pages 519- 528.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Determining the semantic orientation of terms through gloss classificaion",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "14th ACM International Conference on Information and Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "617--624",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Esuli, A. and F. Sebastiani. 2005. Determin- ing the semantic orientation of terms through gloss classificaion. In Proceedings of CIKM-05, 14th ACM International Conference on Informa- tion and Knowledge Management. Bremen, DE., pages 617-624.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Sentiment classification on customer feedback data: Noisy data large feature vectors and the role of linguistic analysis",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Gamon",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING",
                "volume": "",
                "issue": "",
                "pages": "841--847",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gamon, M. 2004. Sentiment classification on cus- tomer feedback data: Noisy data large feature vectors and the role of linguistic analysis. In Pro- ceedings of COLING 2004. Geneva, Switzerland, pages 841-847.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "The AT&T Spoken Language Understanding System",
                "authors": [
                    {
                        "first": "Narendra",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "Tur",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-T\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Srinivas",
                        "middle": [],
                        "last": "Banglore",
                        "suffix": ""
                    },
                    {
                        "first": "Giuseppe",
                        "middle": [],
                        "last": "Riccardi",
                        "suffix": ""
                    },
                    {
                        "first": "Mazin",
                        "middle": [],
                        "last": "Rahim",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "14",
                "issue": "1",
                "pages": "213--222",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gupta, Narendra, Gokhan Tur, Dilek Hakkani-T\u00fcr, Srinivas Banglore, Giuseppe Riccardi, and Mazin Rahim. 2005. The AT&T Spoken Language Understanding System. IEEE Transactions on Speech and Audio Processing 14(1):213-222.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Predicting the semantic orientation of ad-15",
                "authors": [
                    {
                        "first": "Vasileios",
                        "middle": [],
                        "last": "Hatzivassiloglou",
                        "suffix": ""
                    },
                    {
                        "first": "Kathleen",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hatzivassiloglou, Vasileios and Kathleen McKeown. 1997. Predicting the semantic orientation of ad- 15",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Proceedings of the Joint ACL/EACL Conference",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "174--181",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "jectives. In Proceedings of the Joint ACL/EACL Conference. pages 174-181.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Mining and summarizing customer reviews",
                "authors": [
                    {
                        "first": "Minqing",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)",
                "volume": "",
                "issue": "",
                "pages": "168--177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hu, Minqing and Bing Liu. 2004. Mining and sum- marizing customer reviews. In Proceedings of the ACM SIGKDD Conference on Knowledge Dis- covery and Data Mining (KDD). pages 168-177.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Determining the sentiment of opinions",
                "authors": [
                    {
                        "first": "Soo-Min",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the International Conference on Computational Linguistics (COLING)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kim, Soo-Min and Eduard Hovy. 2004. Determin- ing the sentiment of opinions. In Proceedings of the International Conference on Computational Linguistics (COLING).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Toward detecting emotions in spoken dialogs",
                "authors": [
                    {
                        "first": "Chul",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shrikanth",
                        "middle": [
                            "S"
                        ],
                        "last": "Min",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "13",
                "issue": "2",
                "pages": "293--303",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, Chul Min and Shrikanth S. Narayanan. 2005. Toward detecting emotions in spoken dialogs. IEEE Transactions on Speech and Audio Process- ing 13(2):293-303.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Annotating student emotional states in spoken tutoring dialogues",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue (SIGdial)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Litman, D. and K. Forbes-Riley. 2004a. Annotat- ing student emotional states in spoken tutoring dialogues. In Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue (SIGdial).",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Predicting student emotions in computer-human tutoring dialogues",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Litman",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Forbes-Riley",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Annual Meeting of the Association for Compuational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Litman, D. and K. Forbes-Riley. 2004b. Predicting student emotions in computer-human tutoring di- alogues. In Proceedings of the 42nd Annual Meet- ing of the Association for Compuational Linguis- tics (ACL). Barcelone, Spain.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A model of textual affect sensing using real-world knowledge",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Lieberman",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Selker",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "IUI '03: Proceedings of the 8th international conference on Intelligent user interfaces",
                "volume": "",
                "issue": "",
                "pages": "125--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liu, Hugo, Henry Lieberman, and Ted Selker. 2003. A model of textual affect sensing using real-world knowledge. In IUI '03: Proceedings of the 8th international conference on Intelligent user inter- faces. ACM Press, Miami, Florida, USA, pages 125-132.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Thumbs up? Sentiment classification using machine learning techniques",
                "authors": [
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "Lillian",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shivakumar",
                        "middle": [],
                        "last": "Vaithyanathan",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "79--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. 2002. Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the 2002 Conference on Em- pirical Methods in Natural Language Processing (EMNLP). Philadelphia, Pennsylvania, pages 79-86.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A brief introduction to boosting",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "E"
                        ],
                        "last": "Schapire",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of IJCAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schapire, R.E. 1999. A brief introduction to boost- ing. In Proceedings of IJCAI.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Improved boosting algorithms using confidence-rated predictions",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "E"
                        ],
                        "last": "Schapire",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Singer",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Machine Learning",
                "volume": "37",
                "issue": "3",
                "pages": "297--336",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schapire, R.E. and Y. Singer. 1999. Improved boosting algorithms using confidence-rated pre- dictions. Machine Learning 37(3):297-336.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Smokey: Automatic recognition of hostile messages",
                "authors": [
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Spertus",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. of Innovative Applications of Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "1058--1065",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Spertus, Ellen. 1997. Smokey: Automatic recogni- tion of hostile messages. In In Proc. of Innova- tive Applications of Artificial Intelligence. pages 1058-1065.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Measuring praise and criticism: Inference of semantic orientation from association",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Littman",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "ACM Transactions on Information Systems",
                "volume": "21",
                "issue": "4",
                "pages": "315--346",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Turney, P. and M. Littman. 2003. Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Informa- tion Systems 21(4):315-346.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Recognizing contextual polarity in phraselevel sentiment analysis",
                "authors": [
                    {
                        "first": "Theresa",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Hoffmann",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "HLT '05: Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "347--354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilson, Theresa, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing contextual polarity in phrase- level sentiment analysis. In HLT '05: Proceed- ings of the conference on Human Language Tech- nology and Empirical Methods in Natural Lan- guage Processing. Association for Computational Linguistics, Morristown, NJ, USA, pages 347- 354.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences",
                "authors": [
                    {
                        "first": "Hong",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Vasileios",
                        "middle": [],
                        "last": "Hatzivassiloglou",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu, Hong and Vasileios Hatzivassiloglou. 2003. To- wards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences. In Proceedings of the Confer- ence on Empirical Methods in Natural Language Processing (EMNLP).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "text": "Email samples: 1) emotional; 2) neutral",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "text": "Precision/Recall curves for different experiments. Large black circles indicate the operating point with best F-Measure",
                "uris": null
            },
            "TABREF1": {
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td colspan=\"3\">shows that emotional emails are about 12-13% of</td></tr><tr><td colspan=\"2\">the total population.</td><td/></tr><tr><td>Set</td><td colspan=\"2\">Number of examples Critical Emails</td></tr><tr><td>Training</td><td>620</td><td>12%</td></tr><tr><td>Test</td><td>457</td><td>13%</td></tr></table>"
            },
            "TABREF2": {
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table/>"
            },
            "TABREF4": {
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null,
                "content": "<table><tr><td>: Recall and precision corresponding to best F-</td></tr><tr><td>measure for different classifier models</td></tr></table>"
            }
        }
    }
}