File size: 93,392 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
{
    "paper_id": "W10-0210",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T05:02:28.776164Z"
    },
    "title": "@AM: Textual Attitude Analysis Model",
    "authors": [
        {
            "first": "Alena",
            "middle": [],
            "last": "Neviarouskaya",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Tokyo Nat. Institute of Informatics University of Tokyo",
                "location": {
                    "addrLine": "7-3-1 Hongo, Bunkyo-ku 2-1-2 Hitotsubashi Chiyoda 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656",
                    "postCode": "101-8430, 113-8656",
                    "settlement": "Tokyo, Tokyo",
                    "country": "Japan, Japan, Japan"
                }
            },
            "email": ""
        },
        {
            "first": "Helmut",
            "middle": [],
            "last": "Prendinger",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Tokyo Nat. Institute of Informatics University of Tokyo",
                "location": {
                    "addrLine": "7-3-1 Hongo, Bunkyo-ku 2-1-2 Hitotsubashi Chiyoda 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656",
                    "postCode": "101-8430, 113-8656",
                    "settlement": "Tokyo, Tokyo",
                    "country": "Japan, Japan, Japan"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Mitsuru",
            "middle": [],
            "last": "Ishizuka",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Tokyo Nat. Institute of Informatics University of Tokyo",
                "location": {
                    "addrLine": "7-3-1 Hongo, Bunkyo-ku 2-1-2 Hitotsubashi Chiyoda 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656",
                    "postCode": "101-8430, 113-8656",
                    "settlement": "Tokyo, Tokyo",
                    "country": "Japan, Japan, Japan"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The automatic analysis and classification of text using fine-grained attitude labels is the main task we address in our research. The developed @AM system relies on compositionality principle and a novel approach based on the rules elaborated for semantically distinct verb classes. The evaluation of our method on 1000 sentences, that describe personal experiences, showed promising results: average accuracy on fine-grained level was 62%, on middle level-71%, and on top level-88%.",
    "pdf_parse": {
        "paper_id": "W10-0210",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The automatic analysis and classification of text using fine-grained attitude labels is the main task we address in our research. The developed @AM system relies on compositionality principle and a novel approach based on the rules elaborated for semantically distinct verb classes. The evaluation of our method on 1000 sentences, that describe personal experiences, showed promising results: average accuracy on fine-grained level was 62%, on middle level-71%, and on top level-88%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "With rapidly growing online sources aimed at encouraging and stimulating people's discussions concerning personal, public or social issues (news, blogs, discussion forums, etc.), there is a great need in development of a computational tool for the analysis of people's attitudes. According to the Appraisal Theory (Martin and White, 2005) , attitude types define the specifics of appraisal being expressed: affect (personal emotional state), judgment (social or ethical appraisal of other's behaviour), and appreciation (evaluation of phenomena).",
                "cite_spans": [
                    {
                        "start": 314,
                        "end": 338,
                        "text": "(Martin and White, 2005)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction and Related Work",
                "sec_num": "1"
            },
            {
                "text": "To analyse contextual sentiment (polarity) of a phrase or a sentence, rule-based approaches (Nasukawa and Yi, 2003; Mulder et al., 2004; Moilanen and Pulman, 2007; Subrahmanian and Reforgiato, 2008) , a machine-learning method using not only lexical but also syntactic features (Wilson et al., 2005) , and a model of integration of machine learning approach with compositional semantics (Choi and Cardie, 2008) were proposed.",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 115,
                        "text": "(Nasukawa and Yi, 2003;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 116,
                        "end": 136,
                        "text": "Mulder et al., 2004;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 137,
                        "end": 163,
                        "text": "Moilanen and Pulman, 2007;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 164,
                        "end": 198,
                        "text": "Subrahmanian and Reforgiato, 2008)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 278,
                        "end": 299,
                        "text": "(Wilson et al., 2005)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 387,
                        "end": 410,
                        "text": "(Choi and Cardie, 2008)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction and Related Work",
                "sec_num": "1"
            },
            {
                "text": "With the aim to recognize fine-grained emotions from text on the level of distinct sentences, researchers have employed a keyword spotting technique (Olveres et al., 1998; Chuang and Wu, 2004; Strapparava et al., 2007) , a technique calculating emotion scores using Pointwise Mutual Information (PMI) (Kozareva et al., 2007) , an approach inspired by common-sense knowledge (Liu et al., 2003) , rule-based linguistic approaches (Boucouvalas, 2003; Chaumartin, 2007) , machine-learning methods (Alm, 2008; Aman and Szpakowicz, 2008; Strapparava and Mihalcea, 2008) , and an ensemble based multi-label classification technique (Bhowmick et al., 2009) .",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 171,
                        "text": "(Olveres et al., 1998;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 172,
                        "end": 192,
                        "text": "Chuang and Wu, 2004;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 193,
                        "end": 218,
                        "text": "Strapparava et al., 2007)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 301,
                        "end": 324,
                        "text": "(Kozareva et al., 2007)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 374,
                        "end": 392,
                        "text": "(Liu et al., 2003)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 428,
                        "end": 447,
                        "text": "(Boucouvalas, 2003;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 448,
                        "end": 465,
                        "text": "Chaumartin, 2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 493,
                        "end": 504,
                        "text": "(Alm, 2008;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 505,
                        "end": 531,
                        "text": "Aman and Szpakowicz, 2008;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 532,
                        "end": 563,
                        "text": "Strapparava and Mihalcea, 2008)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 625,
                        "end": 648,
                        "text": "(Bhowmick et al., 2009)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction and Related Work",
                "sec_num": "1"
            },
            {
                "text": "Early attempts to focus on distinct attitude types in the task of attitude analysis were made by Taboada and Grieve (2004) , who determined a potential value of adjectives for affect, judgement and appreciation by calculating the PMI with the pronoun-copular pairs 'I was (affect)', 'He was (judgement) ', and 'It was (appreciation) ', and Whitelaw et al. (2005) , who used machine learning technique (SVM) with fine-grained semantic distinctions in features (attitude type, orientation) in combination with \"bag of words\" to classify movie reviews. However, the concentration only on adjectives, that express appraisal, and their modifiers, greatly narrows the potential of the Whitelaw et al.'s (2005) approach.",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 122,
                        "text": "Taboada and Grieve (2004)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 303,
                        "end": 332,
                        "text": "', and 'It was (appreciation)",
                        "ref_id": null
                    },
                    {
                        "start": 333,
                        "end": 362,
                        "text": "', and Whitelaw et al. (2005)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 679,
                        "end": 703,
                        "text": "Whitelaw et al.'s (2005)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction and Related Work",
                "sec_num": "1"
            },
            {
                "text": "In this paper we introduce our system @AM (ATtitude Analysis Model), which (1) classifies sentences according to the fine-grained attitude labels (nine affect categories (Izard, 1971) : 'anger ', 'disgust', 'fear', 'guilt', 'interest', 'joy', 'sadness', ' shame', 'surprise'; four polarity labels for judgment and appreciation: 'POS jud', 'NEG jud', 'POS app', 'NEG app'; and 'neutral'); (2) assigns the strength of the attitude; and (3) determines the level of confidence, with which the attitude is expressed. @AM relies on compositionality principle and a novel approach based on the rules elaborated for semantically distinct verb classes.",
                "cite_spans": [
                    {
                        "start": 170,
                        "end": 183,
                        "text": "(Izard, 1971)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 193,
                        "end": 255,
                        "text": "', 'disgust', 'fear', 'guilt', 'interest', 'joy', 'sadness', '",
                        "ref_id": null
                    },
                    {
                        "start": 339,
                        "end": 387,
                        "text": "'NEG jud', 'POS app', 'NEG app'; and 'neutral');",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction and Related Work",
                "sec_num": "1"
            },
            {
                "text": "We built the lexicon for attitude analysis that includes: (1) attitude-conveying terms; (2) modifiers;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon for Attitide Analysis",
                "sec_num": "2"
            },
            {
                "text": "(3) \"functional\" words; and (4) modal operators.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon for Attitide Analysis",
                "sec_num": "2"
            },
            {
                "text": "As a core of lexicon for attitude analysis, we employ Affect database and extended version of Sen-tiFul database developed by Neviarouskaya et al. (2009) . The affective features of each emotionrelated word are encoded using nine emotion labels ('anger', 'disgust', 'fear', 'guilt', 'interest', 'joy', 'sadness', 'shame', and 'surprise') and corresponding emotion intensities that range from 0.0 to 1.0. The original version of SentiFul database, which contains sentiment-conveying adjectives, adverbs, nouns, and verbs annotated by sentiment polarity, polarity scores and weights, was manually extended using attitude labels. Some examples of annotated attitude-conveying words are listed in Table 1 . It is important to note here that some words could express different attitude types (affect, judgment, appreciation) depending on context; such lexical entries were annotated by all possible categories. Table 1 . Examples of attitude-conveying words and their annotations.",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 153,
                        "text": "Neviarouskaya et al. (2009)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 245,
                        "end": 337,
                        "text": "('anger', 'disgust', 'fear', 'guilt', 'interest', 'joy', 'sadness', 'shame', and 'surprise')",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 693,
                        "end": 700,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 906,
                        "end": 913,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Core of Lexicon",
                "sec_num": "2.1"
            },
            {
                "text": "The robust attitude analysis method should rely not only on attitude-conveying terms, but also on modifiers and contextual valence shifters (term introduced by Polanyi and Zaenen (2004) ), which are integral parts of our lexicon. We collected 138 modifiers that have an impact on contextual attitude features of related words, phrases, or clauses. They include:",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 185,
                        "text": "Polanyi and Zaenen (2004)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "1. Adverbs of degree (e.g., 'significantly', 'slightly' etc.) and adverbs of affirmation (e.g., 'absolutely', 'seemingly') that have an influence on the strength of attitude of the related words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "2. Negation words (e.g., 'never', 'nothing' etc.) that reverse the polarity of related statement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "3. Adverbs of doubt (e.g., 'scarcely', 'hardly' etc.) and adverbs of falseness (e.g., 'wrongly' etc.) that reverse the polarity of related statement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "4. Prepositions (e.g., 'without', 'despite' etc.) that neutralize the attitude of related words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "5. Condition operators (e.g., 'if', 'even though' etc.) that neutralize the attitude of related words. Adverbs of degree and adverbs of affirmation affect on related verbs, adjectives, or another adverb. Two annotators gave coefficients for intensity degree strengthening or weakening (from 0.0 to 2.0) to each of 112 collected adverbs, and the result was averaged (e.g., coeff('perfectly') = 1.9, coeff('slightly') = 0.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "We distinguish two types of \"functional\" words that influence contextual attitude and its strength:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "1. Intensifying adjectives (e.g., 'rising', 'rapidly-growing'), nouns (e.g., 'increase', 'up-tick'), and verbs (e.g., 'to grow', 'to rocket'), which increase the strength of attitude of related words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "2. Reversing adjectives (e.g., 'reduced'), nouns (e.g., 'termination', 'reduction'), and verbs (e.g., 'to decrease', 'to limit', 'to diminish'), which reverse the prior polarity of related words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modifiers and Functional Words",
                "sec_num": "2.2"
            },
            {
                "text": "Consideration of the modal operators in the tasks of opinion mining and attitude analysis is very important, as they indicate a degree of person's belief in the truth of the proposition, which is subjective in nature. Modal expressions point to likelihood and clearly involve the speaker's judgment (Hoye, 1997) . Modals are distinguished by the confidence level.",
                "cite_spans": [
                    {
                        "start": 299,
                        "end": 311,
                        "text": "(Hoye, 1997)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modal Operators",
                "sec_num": "2.3"
            },
            {
                "text": "We collected modal operators of two categories: 1. Modal verbs (13 verbs). 2. Modal adverbs (61 adverbs). Three human annotators assigned the confidence level, which ranges from 0.0 to 1.0, to each modal verb and adverb; these ratings were averaged (e.g., conf('vaguely') = 0.17, conf('may') = 0.27, conf('arguably') = 0.63, conf('would') = 0.8, conf('veritably') = 1.0).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modal Operators",
                "sec_num": "2.3"
            },
            {
                "text": "Words in a sentence are interrelated and, hence, each of them can influence the overall meaning and attitudinal bias of a statement. The algorithm for the attitude classification is designed based on the compositionality principle, according to which we determine the attitudinal meaning of a sentence by composing the pieces that correspond to lexical units or other linguistic constituent types governed by the rules of polarity reversal, aggregation (fusion), propagation, domination, neutralization, and intensification, at various grammatical levels.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "Polarity reversal means that phrase or statement containing attitude-conveying term/phrase with prior positive polarity becomes negative, and vice versa. The rule of polarity reversal is applied in three cases: (1) negation word-modifier in relation with attitude-conveying statement (e.g., 'never' & POS('succeed') => NEG('never succeed')); (2) adverb of doubt in relation with attitude-conveying statement (e.g., 'scarcely' & POS('relax') => NEG('scarcely relax')); (3) functional word of reversing type in relation with attitude-conveying statement (e.g., adjective 'reduced' & POS('enthusiasm') => NEG('reduced enthusiasm')). In the case of judgment and appreciation, the use of polarity reversal rule is straightforward ('POS jud' <=> 'NEG jud', 'POS app' <=> 'NEG app'). However, it is not trivial to find pairs of opposite emotions in the case of a fine-grained classification, except for 'joy' and 'sadness'. Therefore, we assume that (1) opposite emotion for three positive emotions, such as 'interest', 'joy', and 'surprise', is 'sadness' ('POS aff' => 'sadness'); and (2) opposite emotion for six negative emotions, such as 'anger', 'disgust', 'fear', 'guilt', 'sadness', and 'shame', is 'joy' ('NEG aff' => 'joy').",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The rules of aggregation (fusion) are as follows: (1) if polarities of attitude-conveying terms in adjective-noun, noun-noun, adverb-adjective, adverb-verb phrases have opposite directions, mixed polarity with dominant polarity of a descriptive term is assigned to the phrase (e.g., POS('beautiful') & NEG('fight') => POS-neg('beautiful fight'); NEG('shamelessly') & POS('celebrate') => NEGpos('shamelessly celebrate')); otherwise (2) the resulting polarity is based on the equal polarities of terms, and the strength of attitude is measured as a maximum between polarity scores (intensities) of terms (max(score1,score2)).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The rule of propagation is useful, as proposed in (Nasukawa and Yi, 2003) , for the task of detection of local sentiments for given subjects. \"Propagation\" verbs propagate the sentiment towards the arguments; \"transfer\" verbs transmit sentiments among the arguments. The rule of propagation is applied when verb of \"propagation\" or \"transfer\" type is used in a phrase/clause and sentiment of an argument that has prior neutral polarity needs to be investigated (e.g., PROP-POS('to admire') & 'his",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 73,
                        "text": "(Nasukawa and Yi, 2003)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "behaviour' => POS('his behaviour'); 'Mr. X' & TRANS('supports') & NEG('crime business') => NEG('Mr. X')).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The rules of domination are as follows: (1) if polarities of verb (this rule is applied only for certain classes of verbs) and object in a clause have opposite directions, the polarity of verb is prevailing (e.g., NEG('to deceive') & POS('hopes') => NEG('to deceive hopes')); (2) if compound sentence joints clauses using coordinate connector 'but', the attitude features of a clause following after the connector are dominant (e.g., 'NEG(It was hard to climb a mountain all night long), but POS(a magnificent view rewarded the traveler at the morning).' => POS(whole sentence)).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The rule of neutralization is applied when preposition-modifier or condition operator relate to the attitude-conveying statement (e.g., 'despite' & NEG('worries') => NEUT('despite worries')).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The rule of intensification means strengthening or weakening of the polarity score (intensity), and is applied when:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "1. adverb of degree or affirmation relates to attitude-conveying term (e.g., Pos_score('extremely happy') > Pos_score('happy')); 2. adjective or adverb is used in a comparative or superlative form (e.g., Neg_score('sad') < Neg_score('sadder') < Neg_score ('saddest')). Our method is capable of processing sentences of different complexity, including simple, compound, complex (with complement and relative clauses), and complex-compound sentences. To understand how words and concepts relate to each other in a sentence, we employ Connexor Machinese Syntax parser (http://www.connexor.eu/) that returns lemmas, parts of speech, dependency functions, syntactic function tags, and morphological tags. When handling the parser output, we represent the sentence as a set of primitive clauses. Each clause might include Subject formation, Verb formation and Object formation, each of which may consist of a main element (subject, verb, or object) and its attributives and complements. For the processing of complex or compound sentences, we build a so-called \"relation matrix\", which contains information about dependences (e.g., coordination, subordination, condition, contingency, etc.) between different clauses in a sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "The annotations of words are taken from our attitude-conveying lexicon. The decision on most appropriate label, in case of words with multiple annotations (e.g., word 'unfriendly' in Table 1 ), is made based on (1) the analysis of morphological tags of nominal heads and their premodifiers in the sentence (e.g., first person pronoun, third person pronoun, demonstrative pronoun, nominative or genitive noun, etc.); (2) the analysis of the sequence of hypernymic semantic relations of a particular noun in WordNet (Miller, 1990) , which allows to determine its conceptual domain (e.g., \"person, human being\", \"artifact\", \"event\", etc.). For ex., 'I feel highly unfriendly attitude towards me' conveys 'NEG aff' ('sadness'), while 'Shop assistant's behavior was really unfriendly' and 'Plastic bags are environment unfriendly' express 'NEG jud' and 'NEG app', correspondingly.",
                "cite_spans": [
                    {
                        "start": 514,
                        "end": 528,
                        "text": "(Miller, 1990)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 183,
                        "end": 190,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "While applying the compositionality principle, we consecutively assign attitude features to words, phrases, formations, clauses, and finally, to the whole sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality Principle",
                "sec_num": "3"
            },
            {
                "text": "All sentences must include a verb, because the verb tells us what action the subject is performing and object is receiving. In order to elaborate rules for attitude analysis based on the semantics of verbs, we investigated VerbNet (Kipper et al., 2007) , the largest on-line verb lexicon that is organized into verb classes characterized by syntactic and semantic coherence among members of a class. Based on the thorough analysis of 270 first-level classes of VerbNet and their members, 73 verb classes (1) were found useful for the task of attitude analysis, and (2) were further classified into 22 classes differentiated by the role that members play in attitude analysis and by rules applied to them. Our classification is shown in For each of our verb classes, we developed set of rules that are applied to attitude analysis on the phrase/clause-level. Some verb classes include verbs annotated by attitude type, prior polarity orientation, and the strength of attitude: \"Psychological state or emotional reaction\", \"Judgment\", \"Verbs of removing with negative charge\", \"Verbs of removing with positive charge\", \"Negatively charged change of state\", \"Bodily state and damage to the body\", \"Preservation\", and others. The attitude features of phrases, which involve positively or negatively charged verbs from such classes, are context-sensitive, and are defined by means of rules designed for each of the class.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 252,
                        "text": "(Kipper et al., 2007)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "As an example, below we provide short description and rules elaborated for the subclass \"Objectcentered (oriented) emotional state\". Features: subject experiences emotions towards some stimulus; verb prior polarity: positive or negative; context-sensitive. Verb-Object rules (subject is ignored): 1. \"Interior perspective\" (subject's inner emotion state or attitude):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('admires') & O+('his brave heart') => (fusion, max(V_score,O_score)) => 'POS aff'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('admires') & O-('mafia leader') => (verb valence dominance, V_score) => 'POS aff'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('disdains') & O+('his honesty') => (verb valence dominance, V_score) => 'NEG aff'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('disdains') & O-('criminal activities') => (fusion, max(V_score,O_score)) => 'NEG aff'. 2. \"Exterior perspective\" (social/ethical judgment):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('admires') & O+('his brave heart') => (fusion, max(V_score,O_score)) => 'POS jud'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('admires') & O-('mafia leader') => (verb valence reversal, max(V_score,O_score)) => 'NEG jud'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('disdains') & O+('his honesty') => (verb valence dominance, max(V_score,O_score)) => 'NEG jud'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('disdains') & O-('criminal activities') => (verb valence reversal, max(V_score,O_score)) => 'POS jud'. 3. In case of neutral object => attitude type and prior polarity of verb, verb score (V_score). Verb-PP (prepositional phrase) rules: 1. In case of negatively charged verb and PP starting with 'from' => verb valence dominance:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('suffers') & PP-('from illness') => interior: 'NEG aff'; exterior: 'NEG jud'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V-('suffers') & PP+ ('from love') => interior: 'NEG aff'; exterior: 'NEG jud'. 2. In case of positively charged verb and PP starting with 'in'/'for', treat PP same as object (see above):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('believes') & PP-('in evil') => interior: 'POS aff'; exterior: 'NEG jud'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S & V+('believes') & PP+('in kindness') => interior: 'POS aff'; exterior: 'POS jud'. In the majority of rules the strength of attitude is measured as a maximum between attitude scores of a verb and an object (max(V_score,O_score)), because strength of overall attitude depends on both scores. For example, attitude conveyed by 'to suffer from grave illness' is stronger than that of 'to suffer from slight illness'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "In contrast to the rules of \"Object-centered (oriented) emotional state\" subclass, which ignore attitude features of a subject in a sentence, the rules elaborated for the \"Subject-driven change in emotional state (trans.)\" disregard the attitude features of object, as in sentences involving members of this subclass object experiences emotion, and subject causes the emotional state. For example (due to limitation of space, here and below we provide only some cases): S('Classical music') & V+('calmed') & O-('disobedient child') => interior: 'POS aff'; exterior: 'POS app'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S-('Fatal consequences of GM food intake') & V-('frighten') & O('me') => interior: 'NEG aff'; exterior: 'NEG app'. The Verb-Object rules for the subclasses \"Positive judgment\" and \"Negative judgment\" (verbs from \"Judgment\" class relate to a judgment or opinion that someone may have in reaction to something) are very close to those defined for the subclass \"Object-centered (oriented) emotional state\". However, Verb-PP rules have some specifics: for both positive and negative judgment verbs, we treat PP starting with 'for'/'of'/'as' same as object in Verb-Object rules. For example: S('He') & V-('blamed') & O+('innocent person') => interior: 'NEG jud'; exterior: 'NEG jud'. S('They') & V-('punished') & O('him') & PP-('for his misdeed') => interior: 'NEG jud'; exterior: 'POS jud'. Verbs from classes \"Favorable attitude\" and \"Adverse (unfavorable) attitude\" have prior neutral polarity and positive or negative reinforcement, correspondingly, that means that they only impact on the polarity and strength of non-neutral phrase (object in a sentence written in active voice, or subject in a sentence written in passive voice, or PP in case of some verbs). Rules: 1. If verb belongs to the \"Favorable attitude\" class and the polarity of phrase is not neutral, then the attitude score of the phrase is intensified (we use symbol '^' to indicate intensification): Along with modal verbs and modal adverbs, members of the \"Communication indicator/reinforcement of attitude\" verb class also indicate the confidence level or degree of certainty concerning given opinion. Features: subject (communicator) expresses statement with/without attitude; statement is PP starting with 'of', 'on', 'against', 'about', 'concerning', 'regarding', 'that', 'how' etc.; ground: positive or negative; reinforcement: positive or negative. Rules: 1. If the polarity of expressed statement is neutral, then the attitude is neutral: S('Professor') & [V pos. ground, pos. reinforcement, confidence:0.83]('dwelled') & PPneutral('on a question') => neutral. 2. If the polarity of expressed statement is not neutral and the reinforcement is positive, then the polarity score of the statement (PP) is intensified: S('Jane') & [V neg. ground, pos. reinforcement, confidence:0.8]('is complaining') & PP-('of a headache again') => 'NEG app'; PP_score^; confidence:0.8. 3. If the polarity of expressed statement is not neutral and reinforcement is negative, then the polarity of the statement (PP) is reversed and score is intensified: S('Max') & [V neg. ground, neg. reinforcement, confidence:0.2]('doubt') & PP-{'that' S+('his good fortune') & [V termination]('will ever end')} => 'POS app'; PP_score^; confidence:0.2. In the last example, to measure the sentiment of PP, we apply rule for the verb 'end' from the \"Termination of activity\" class, which reverses the non-neutral polarity of subject (in intransitive use of verb) or object (in transitive use of verb). For example, the polarity of the following sentence with positive PP is negative: 'They discontinued helping children'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "S('They') & [V",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Consideration of the Semantics of Verbs",
                "sec_num": "4"
            },
            {
                "text": "In order to evaluate the performance of our algorithm, we conducted experiment on the set of sentences extracted from personal stories about life experiences that were anonymously published on the social networking website Experience Project (www.experienceproject.com). This website represents an interactive platform that allows people to share personal experiences, thoughts, opinions, feelings, passions, and confessions through the network of personal stories. With over 4 million experiences accumulated (as of February 2010), Experience Project is a perfect source for researchers interested in studying different types of attitude expressed through text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "For our experiment we extracted 1000 sentences from various stories grouped by topics within 13 different categories, such as \"Arts and entertainment\", \"Current events\", \"Education\", \"Family and friends\", \"Health and wellness\", \"Relationships and romance\" and others, on the Experience Project. Sentences were collected from 358 distinct topic groups, such as \"I still remember September 11\", \"I am intelligent but airheaded\", \"I think bullfighting is cruel\", \"I quit smoking\", \"I am a fashion victim\", \"I was adopted\" and others.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set Description",
                "sec_num": "5.1"
            },
            {
                "text": "We considered three hierarchical levels of attitude labels in our experiment (see Figure 1) . Three independent annotators labeled the sentences with one of 14 categories from ALL level and a corresponding score (the strength or intensity value). These annotations were further interpreted using labels from MID and TOP levels. Fleiss' Kappa coefficient was used as a measure of reliability of human raters' annotations. The agreement coefficient on 1000 sentences was 0.53 on ALL level, 0.57 on MID level, and 0.73 on TOP level.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 82,
                        "end": 91,
                        "text": "Figure 1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data Set Description",
                "sec_num": "5.1"
            },
            {
                "text": "Only those sentences, on which at least two out of three human raters completely agreed, were included in the \"gold standard\" for our experiment. Three \"gold standards\" were created according to the hierarchy of attitude labels. Fleiss' Kappa coefficients are 0.62, 0.63, and 0.74 on ALL, MID, and TOP levels, correspondingly. Table 3 shows the distributions of labels in the \"gold standards\". Table 3 . Label distributions in the \"gold standards\".",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 327,
                        "end": 334,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 394,
                        "end": 401,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data Set Description",
                "sec_num": "5.1"
            },
            {
                "text": "After processing each sentence from the data set by our system, we measured averaged accuracy, precision, recall, and F-score for each label within ALL, MID, and TOP levels. The results are shown in Table 4 . The ratio of the most frequent attitude label in the \"gold standard\" was considered as the baseline. As seen from the obtained results, our algorithm performed with high accuracy significantly surpassing the baselines on all levels of attitude hierarchy (except 'neutral' category on the TOP level, which is probably due to the unbalanced distribution of labels in the \"gold standard\", where 'neutral' sentences constitute less than 9%). Table 4 . Results of the system performance evaluation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 199,
                        "end": 206,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 647,
                        "end": 654,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "In the case of fine-grained attitude recognition (ALL level), the highest precision was obtained for 'shame' (0.923) and 'NEG jud' (0.889), while the highest recall was received for 'sadness' (0.917) Figure 1 . Hierarchy of attitude labels.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 200,
                        "end": 208,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "and 'joy' (0.905) emotions at the cost of low precision (0.528 and 0.439, correspondingly). The algorithm performed with the worst results in recognition of 'NEG app' and 'neutral'. The analysis of a confusion matrix for the ALL level revealed the following top confusions of our system (see Table 5 ): (1) 'anger ', 'fear', 'guilt', 'shame', 'NEG jud', 'NEG app' and 'neutral' were predominantly incorrectly predicted as 'sadness' (for ex., @AM resulted in 'sadness' for the sentence 'I know we have several months left before the election, but I am already sick and tired of seeing the ads on TV', while human annotations were 'anger'/'anger'/'disgust'); (2) 'interest', 'POS jud' and 'POS app' were mostly confused with 'joy' by our algorithm (e.g., @AM classified the sentence 'It's one of those life changing artifacts that we must have in order to have happier, healthier lives' as 'joy'(-ful), while human annotations were 'POS app'/'POS app'/'interest').",
                "cite_spans": [
                    {
                        "start": 314,
                        "end": 377,
                        "text": "', 'fear', 'guilt', 'shame', 'NEG jud', 'NEG app' and 'neutral'",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 292,
                        "end": 299,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.2"
            },
            {
                "text": "Incorrectly predicted labels (%), in descending order anger sadness (28.9%), joy (4.4%), neutral (4.4%), NEG app (2.2%) disgust anger (4.8%), sadness (4.8%), NEG jud (4.8%) fear sadness (13%), joy (5.6%), POS app (1.9%) guilt sadness (50%), anger (4.5%) interest joy (33.3%), neutral (7.1%), sadness (3.6%), POS app (2.4%), fear (1.2%) joy interest (3.2%), POS app (3.2%), sadness (1.1%), surprise (1.1%), neutral (1.1%) sadness neutral (3.8%), joy (1.5%), anger (0.8%), fear (0.8%), guilt (0.8%), NEG app (0.8%) shame sadness (16.7%), fear (5.6%), guilt (5.6%), NEG jud (5.6%) surprise fear (5.6%), neutral (5.6%), joy (2.8%), POS jud (2.8%) POS jud joy (37.9%), POS app (9.1%), interest (4.5%), sadness (1.5%), surprise (1.5%), NEG jud (1.5%), neutral (1.5%) NEG jud sadness (37.2%), anger (3.8%), disgust (3.8%), neutral (3.8%) POS app joy (37%), neutral (9%), surprise (7%), interest (3%), POS jud (3%), sadness (1%) NEG app sadness (44.8%), fear (13.8%), disgust (3.4%), surprise (3.4%), neutral (3.4%) neutral sadness (29.9%), joy (13.8%), interest (3.4%), fear (2.3%), POS jud (2.3%), NEG app (2.3%), NEG jud (1.1%), POS app (1.1%) Table 5 . Data from a confusion matrix for ALL level.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1139,
                        "end": 1146,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Actual label",
                "sec_num": null
            },
            {
                "text": "Our system achieved high precision for all categories on the MID level (Table 4) , with the exception of 'NEG app' and 'neutral', although high recall was obtained only in the case of categories related to affect ('POS aff', 'NEG aff'). These results indicate that affect sensing is easier than recognition of judgment or appreciation from text. TOP level results (Table 4) show that our algorithm classifies sentences that convey positive or negative sentiment with high accuracy (92% and 91%, correspondingly). On the other hand, 'neutral' sentences still pose a challenge.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 71,
                        "end": 80,
                        "text": "(Table 4)",
                        "ref_id": null
                    },
                    {
                        "start": 364,
                        "end": 373,
                        "text": "(Table 4)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Actual label",
                "sec_num": null
            },
            {
                "text": "The analysis of errors revealed that system requires common sense or additional context to deal with sentences like 'All through my life I've felt like I'm second fiddle' (\"gold standard\": 'sadness'; @AM: 'neutral') or 'For me every minute on my horse is alike an hour in heaven!' (\"gold standard\": 'joy'; @AM: 'neutral').",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Actual label",
                "sec_num": null
            },
            {
                "text": "We also evaluated the system performance with regard to attitude intensity estimation. The percentage of attitude-conveying sentences (not considering neutral ones), on which the result of our system conformed to the fine-grained \"gold standard\" (ALL level), according to the measured distance between intensities given by human raters (averaged values) and those obtained by our system is shown in Table 6 . As seen from the table, our system achieved satisfactory results in estimation of the strength of attitude expressed through text. 12.2 (0.6 -0.8] 2.6 (0.8 -1.0] 0.2 Table 6 . Results on intensity.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 399,
                        "end": 406,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 575,
                        "end": 582,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Actual label",
                "sec_num": null
            },
            {
                "text": "In this paper we introduced @AM, which is so far, to the best of our knowledge, the only system classifying sentences using fine-grained attitude types, and extensively dealing with the semantics of verbs in attitude analysis. Our composition approach broadens the coverage of sentences with complex contextual attitude. The evaluation results indicate that @AM achieved reliable results in the task of textual attitude analysis. The limitations include dependency on lexicon and on accuracy of the parser. The primary objective for the future research is to use the results of named-entity recognition software in our algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Affect in Text and Speech. PhD Dissertation",
                "authors": [
                    {
                        "first": "Cecilia",
                        "middle": [
                            "O"
                        ],
                        "last": "Alm",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cecilia O. Alm. 2008. Affect in Text and Speech. PhD Dissertation. University of Illinois at Urbana- Champaign.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Using Roget's Thesaurus for Fine-Grained Emotion Recognition",
                "authors": [
                    {
                        "first": "Saima",
                        "middle": [],
                        "last": "Aman",
                        "suffix": ""
                    },
                    {
                        "first": "Stan",
                        "middle": [],
                        "last": "Szpakowicz",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Third International Joint Conference on Natural Language Processing IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "296--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saima Aman and Stan Szpakowicz. 2008. Using Roget's Thesaurus for Fine-Grained Emotion Recognition. Proceedings of the Third International Joint Confe- rence on Natural Language Processing IJCNLP 2008, Hyderabad, India, pp. 296-302.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Reader Perspective Emotion Analysis in Text through Ensemble based Multi-Label Classification Framework",
                "authors": [
                    {
                        "first": "Plaban",
                        "middle": [],
                        "last": "Kumar Bhowmick",
                        "suffix": ""
                    },
                    {
                        "first": "Anupam",
                        "middle": [],
                        "last": "Basu",
                        "suffix": ""
                    },
                    {
                        "first": "Pabitra",
                        "middle": [],
                        "last": "Mitra",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Computer and Information Science",
                "volume": "2",
                "issue": "4",
                "pages": "64--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Plaban Kumar Bhowmick, Anupam Basu, and Pabitra Mitra. 2009. Reader Perspective Emotion Analysis in Text through Ensemble based Multi-Label Classifi- cation Framework. Computer and Information Science, 2 (4): 64-74.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Real Time Text-to-Emotion Engine for Expressive Internet Communications. Being There: Concepts, Effects and Measurement of User Presence in Synthetic Environments",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Anthony",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Boucouvalas",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "306--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anthony C. Boucouvalas. 2003. Real Time Text-to- Emotion Engine for Expressive Internet Communica- tions. Being There: Concepts, Effects and Measure- ment of User Presence in Synthetic Environments, Ios Press, pp. 306-318.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "UPAR7: A Knowledge-based System for Headline Sentiment Tagging",
                "authors": [
                    {
                        "first": "Francois-Regis",
                        "middle": [],
                        "last": "Chaumartin",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations",
                "volume": "",
                "issue": "",
                "pages": "422--425",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francois-Regis Chaumartin. 2007. UPAR7: A Know- ledge-based System for Headline Sentiment Tagging. Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Republic, pp. 422-425.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis",
                "authors": [
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Cardie",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "793--801",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yejin Choi and Claire Cardie. 2008. Learning with Compositional Semantics as Structural Inference for Subsentential Sentiment Analysis. Proceedings of the Conference on Empirical Methods in Natural Lan- guage Processing, pp. 793-801.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Multimodal Emotion Recognition from Speech and Text",
                "authors": [
                    {
                        "first": "Ze-Jing",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "Chung-Hsien",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computational Linguistic and Chinese Language Processing",
                "volume": "9",
                "issue": "",
                "pages": "45--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ze-Jing Chuang and Chung-Hsien Wu. 2004. Multi- modal Emotion Recognition from Speech and Text. Computational Linguistic and Chinese Language Processing, 9(2): 45-62.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Adverbs and Modality in English",
                "authors": [
                    {
                        "first": "Leo",
                        "middle": [],
                        "last": "Hoye",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leo Hoye. 1997. Adverbs and Modality in English. New York: Addison Wesley Longman Inc.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "The Face of Emotion",
                "authors": [
                    {
                        "first": "Carroll",
                        "middle": [
                            "E"
                        ],
                        "last": "Izard",
                        "suffix": ""
                    }
                ],
                "year": 1971,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carroll E. Izard. 1971. The Face of Emotion. New York: Appleton-Century-Crofts.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A Large-scale Classification of English Verbs. Language Resources and Evaluation",
                "authors": [
                    {
                        "first": "Karin",
                        "middle": [],
                        "last": "Kipper",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Korhonen",
                        "suffix": ""
                    },
                    {
                        "first": "Neville",
                        "middle": [],
                        "last": "Ryant",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "42",
                "issue": "",
                "pages": "21--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karin Kipper, Anna Korhonen, Neville Ryant, and Mar- tha Palmer. 2007. A Large-scale Classification of English Verbs. Language Resources and Evaluation, 42 (1): 21-40.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "UA-ZBSA: A Headline Emotion Classification through Web Information",
                "authors": [
                    {
                        "first": "Zornitsa",
                        "middle": [],
                        "last": "Kozareva",
                        "suffix": ""
                    },
                    {
                        "first": "Borja",
                        "middle": [],
                        "last": "Navarro",
                        "suffix": ""
                    },
                    {
                        "first": "Sonia",
                        "middle": [],
                        "last": "Vazquez",
                        "suffix": ""
                    },
                    {
                        "first": "Andres",
                        "middle": [],
                        "last": "Montoyo",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations",
                "volume": "",
                "issue": "",
                "pages": "334--337",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zornitsa Kozareva, Borja Navarro, Sonia Vazquez, and Andres Montoyo, A. 2007. UA-ZBSA: A Headline Emotion Classification through Web Information. Proceedings of the Fourth International Workshop on Semantic Evaluations, pp. 334-337.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A Model of Textual Affect Sensing Using Real-World Knowledge",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Lieberman",
                        "suffix": ""
                    },
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Selker",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the International Conference on Intelligent User Interfaces",
                "volume": "",
                "issue": "",
                "pages": "125--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo Liu, Henry Lieberman, and Ted Selker. 2003. A Model of Textual Affect Sensing Using Real-World Knowledge. Proceedings of the International Confe- rence on Intelligent User Interfaces, pp. 125-132.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The Language of Evaluation: Appraisal in English",
                "authors": [
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "R"
                        ],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "White",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James R. Martin and Peter R.R. White. 2005. The Lan- guage of Evaluation: Appraisal in English. Palgrave, London, UK.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "WordNet: An On-line Lexical Database",
                "authors": [
                    {
                        "first": "George",
                        "middle": [
                            "A"
                        ],
                        "last": "Miller",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "International Journal of Lexicography, Special Issue",
                "volume": "3",
                "issue": "4",
                "pages": "235--312",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George A. Miller. 1990. WordNet: An On-line Lexical Database. International Journal of Lexicography, Special Issue, 3 (4): 235-312.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Sentiment Composition. Proceedings of the Recent Advances in Natural Language Processing International Conference",
                "authors": [
                    {
                        "first": "Karo",
                        "middle": [],
                        "last": "Moilanen",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Pulman",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "378--382",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karo Moilanen and Stephen Pulman. 2007. Sentiment Composition. Proceedings of the Recent Advances in Natural Language Processing International Confe- rence, pp. 378-382.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A Lexical Grammatical Implementation of Affect",
                "authors": [
                    {
                        "first": "Matthijs",
                        "middle": [],
                        "last": "Mulder",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Nijholt",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the Seventh International Conference on Text",
                "volume": "",
                "issue": "",
                "pages": "171--178",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthijs Mulder, Anton Nijholt, Marten den Uyl, and Peter Terpstra. 2004. A Lexical Grammatical Imple- mentation of Affect. Proceedings of the Seventh In- ternational Conference on Text, Speech and Dialogue, pp. 171-178.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Sentiment Analysis: Capturing Favorability using Natural Language Processing",
                "authors": [
                    {
                        "first": "Tetsuya",
                        "middle": [],
                        "last": "Nasukawa",
                        "suffix": ""
                    },
                    {
                        "first": "Jeonghee",
                        "middle": [],
                        "last": "Yi",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 2nd International Conference on Knowledge Capture",
                "volume": "",
                "issue": "",
                "pages": "70--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tetsuya Nasukawa and Jeonghee Yi. 2003. Sentiment Analysis: Capturing Favorability using Natural Lan- guage Processing. Proceedings of the 2nd Interna- tional Conference on Knowledge Capture, pp. 70-77.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "SentiFul: Generating a Reliable Lexicon for Sentiment Analysis",
                "authors": [
                    {
                        "first": "Alena",
                        "middle": [],
                        "last": "Neviarouskaya",
                        "suffix": ""
                    },
                    {
                        "first": "Helmut",
                        "middle": [],
                        "last": "Prendinger",
                        "suffix": ""
                    },
                    {
                        "first": "Mitsuru",
                        "middle": [],
                        "last": "Ishizuka",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the International Conference on Affective Computing and Intelligent Interaction",
                "volume": "",
                "issue": "",
                "pages": "363--368",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alena Neviarouskaya, Helmut Prendinger, and Mitsuru Ishizuka. 2009. SentiFul: Generating a Reliable Lex- icon for Sentiment Analysis. Proceedings of the In- ternational Conference on Affective Computing and Intelligent Interaction, IEEE, Amsterdam, Nether- lands, pp. 363-368.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Expressive Avatars. Proceedings of the First Workshop on Embodied Conversational Characters",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Olveres",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Billinghurst",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Savage",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Holden",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "47--55",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Olveres, M. Billinghurst, J. Savage, and A. Holden. 1998. Intelligent, Expressive Avatars. Proceedings of the First Workshop on Embodied Conversational Characters, pp. 47-55.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Contextual Valence Shifters. Working Notes of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications",
                "authors": [
                    {
                        "first": "Livia",
                        "middle": [],
                        "last": "Polanyi",
                        "suffix": ""
                    },
                    {
                        "first": "Annie",
                        "middle": [],
                        "last": "Zaenen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Livia Polanyi and Annie Zaenen. 2004. Contextual Va- lence Shifters. Working Notes of the AAAI Spring Symposium on Exploring Attitude and Affect in Text: Theories and Applications.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Learning to Identify Emotions in Text",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 ACM Symposium on Applied Computing",
                "volume": "",
                "issue": "",
                "pages": "1556--1560",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava and Rada Mihalcea. 2008. Learning to Identify Emotions in Text. Proceedings of the 2008 ACM Symposium on Applied Computing, Forta- leza, Brazil, pp. 1556-1560.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Dances with Words",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Valitutti",
                        "suffix": ""
                    },
                    {
                        "first": "Oliviero",
                        "middle": [],
                        "last": "Stock",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "1719--1724",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava, Alessandro Valitutti, and Oliviero Stock. 2007. Dances with Words. Proceedings of the International Joint Conference on Artificial Intelli- gence, Hyderabad, India, pp. 1719-1724.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "AVA: Adjective-Verb-Adverb Combinations for Sentiment Analysis. Intelligent Systems",
                "authors": [
                    {
                        "first": "V",
                        "middle": [
                            "S"
                        ],
                        "last": "Subrahmanian",
                        "suffix": ""
                    },
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Reforgiato",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "23",
                "issue": "",
                "pages": "43--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V.S. Subrahmanian and Diego Reforgiato. 2008. AVA: Adjective-Verb-Adverb Combinations for Sentiment Analysis. Intelligent Systems, IEEE, 23 (4): 43-50.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Analyzing Appraisal Automatically",
                "authors": [
                    {
                        "first": "Maite",
                        "middle": [],
                        "last": "Taboada",
                        "suffix": ""
                    },
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Grieve",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of American Association for Artificial Intelligence Spring Symposium on Exploring Attitude and Affect in Text",
                "volume": "",
                "issue": "",
                "pages": "158--161",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maite Taboada and Jack Grieve. 2004. Analyzing Ap- praisal Automatically. Proceedings of American As- sociation for Artificial Intelligence Spring Symposium on Exploring Attitude and Affect in Text, pp.158-161.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Using Appraisal Groups for Sentiment Analysis",
                "authors": [
                    {
                        "first": "Casey",
                        "middle": [],
                        "last": "Whitelaw",
                        "suffix": ""
                    },
                    {
                        "first": "Navendu",
                        "middle": [],
                        "last": "Garg",
                        "suffix": ""
                    },
                    {
                        "first": "Shlomo",
                        "middle": [],
                        "last": "Argamon",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 14th ACM International Conference on Information and Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "625--631",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Casey Whitelaw, Navendu Garg, and Shlomo Argamon. 2005. Using Appraisal Groups for Sentiment Analy- sis. Proceedings of the 14th ACM International Con- ference on Information and Knowledge Management, CIKM, Bremen, Germany, pp. 625-631.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Recognizing Contextual Polarity in Phraselevel Sentiment Analysis",
                "authors": [
                    {
                        "first": "Theresa",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [],
                        "last": "Wiebe",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Hoffmann",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "347--354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. 2005. Recognizing Contextual Polarity in Phrase- level Sentiment Analysis. Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, Vancouver: ACL, pp. 347-354.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "pos. reinforcement]('elected') & O+('fair judge') => 'POS app'; O_score^. S('They') & [V pos. reinforcement]('elected') & O-('corrupt candidate') => 'NEG app'; O_score^. 2. If verb belongs to the \"Adverse (unfavorable) attitude\" class and the polarity of phrase is not neutral, then the polarity of phrase is reversed and score is intensified:S('They') & [Vneg. reinforcement]('prevented') & O-('the spread of disease') => 'POS app'; O_score^. S+('His achievements') & [V neg. reinforcement]('were overstated') => 'NEG app'; S_score^. Below are examples of processing the sentences with verbs from \"Verbs of removing\" class. \"Verbs of removing with neutral charge\": S('The tape-recorder') & [V neutral rem.]('automatically ejects') & O-neutral('the tape') => neutral. S('The safety invention') & [V neutral rem.]('ejected') & O('the pilot') & PP-('from burning plane') => 'POS app'; PP_score^. \"Verbs of removing with negative charge\": S('Manager') & [V neg. rem.]('fired') & O-('careless employee') & PP('from the company') => 'POS app'; max(V_score,O_score). \"Verbs of removing with positive charge\": S('They') & [V pos. rem.]('evacuated') & O('children') & PP-('from dangerous place') => 'POS app'; max(V_score,PP_score).",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td>Verb class (verb samples)</td></tr><tr><td>1 Psychological state or emotional reaction</td></tr><tr><td>1.1 Object-centered (oriented) emotional state (adore, re-</td></tr><tr><td>gret)</td></tr><tr><td>1.2 Subject-driven change in emotional state (trans.)</td></tr><tr><td>(charm, inspire, bother)</td></tr><tr><td>1.3 Subject-driven change in emotional state (intrans.) (ap-</td></tr><tr><td>peal to, grate on)</td></tr><tr><td>2 Judgment</td></tr><tr><td>2.1 Positive judgment (bless, honor)</td></tr><tr><td>2.2 Negative judgment (blame, punish)</td></tr><tr><td>3 Favorable attitude (accept, allow, tolerate)</td></tr><tr><td>4 Adverse (unfavorable) attitude (discourage, elude, forbid)</td></tr><tr><td>5 Favorable or adverse calibratable changes of state (grow,</td></tr><tr><td>decline)</td></tr><tr><td>6 Verbs of removing</td></tr><tr><td>6.1 Verbs of removing with neutral charge (delete, remove)</td></tr><tr><td>6.2 Verbs of removing with negative charge (deport, expel)</td></tr><tr><td>6.3 Verbs of removing with positive charge (evacuate,</td></tr><tr><td>cure)</td></tr><tr><td>7 Negatively charged change of state (break, crush, smash)</td></tr><tr><td>8 Bodily state and damage to the body (sicken, injure)</td></tr><tr><td>9 Aspectual verbs</td></tr><tr><td>9.1 Initiation, continuation of activity, and sustaining (be-</td></tr><tr><td>gin, continue, maintain)</td></tr><tr><td>9.2 Termination of activity (quit, finish)</td></tr><tr><td>10 Preservation (defend, insure)</td></tr><tr><td>11 Verbs of destruction and killing (damage, poison)</td></tr><tr><td>12 Disappearance (disappear, die)</td></tr><tr><td>13 Limitation and subjugation (confine, restrict)</td></tr><tr><td>14 Assistance (succor, help)</td></tr><tr><td>15 Obtaining (win, earn)</td></tr><tr><td>16 Communication indicator/reinforcement of attitude (guess,</td></tr><tr><td>complain, deny)</td></tr><tr><td>17 Verbs of leaving (abandon, desert)</td></tr><tr><td>18 Changes in social status or condition (canonize, widow)</td></tr><tr><td>19 Success and failure</td></tr><tr><td>19.1 Success (succeed, manage)</td></tr><tr><td>19.2 Failure (fail, flub)</td></tr><tr><td>20 Emotional nonverbal expression (smile, weep)</td></tr><tr><td>21 Social interaction (marry, divorce)</td></tr><tr><td>22 Transmitting verbs (supply, provide)</td></tr></table>"
            },
            "TABREF2": {
                "num": null,
                "type_str": "table",
                "html": null,
                "text": "Verb classes defined for attitude analysis.",
                "content": "<table/>"
            }
        }
    }
}