File size: 51,193 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
{
    "paper_id": "W89-0211",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T03:45:10.889689Z"
    },
    "title": "Pro b a b il is t ic LR Parsing for Speech Recognition",
    "authors": [
        {
            "first": "J",
            "middle": [
                "H"
            ],
            "last": "Wright",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Bristol",
                "location": {
                    "country": "U.K"
                }
            },
            "email": ""
        },
        {
            "first": "E",
            "middle": [
                "N"
            ],
            "last": "Wrigley",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Bristol",
                "location": {
                    "country": "U.K"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "An LR parser for probabilistic context-free grammars is described. Each of the standard versions of parser generator (SLR, canonical and LA.LR) may be applied. A graph-structured stack permits action conflicts and allows the parser to be used with uncertain input, typical of speech recognition applications. The sentence uncertainty is measured using entropy and is significantly lower for the grammar than for a first-order Markov model. * 1 I n t e r n a t i o n a l Parsing Workshop '89",
    "pdf_parse": {
        "paper_id": "W89-0211",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "An LR parser for probabilistic context-free grammars is described. Each of the standard versions of parser generator (SLR, canonical and LA.LR) may be applied. A graph-structured stack permits action conflicts and allows the parser to be used with uncertain input, typical of speech recognition applications. The sentence uncertainty is measured using entropy and is significantly lower for the grammar than for a first-order Markov model. * 1 I n t e r n a t i o n a l Parsing Workshop '89",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The automatic recognition of continuous speech requires more than signal processing and pattern matching: a model of the language is needed to give structure to the utterance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "At sub-word level, hidden Markov models [1] have proved of great value in pattern matching.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "The focus of this paper is modelling at the linguistic level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "Markov models are adaptable and can handle potentially any sequence of words [2] .",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 80,
                        "text": "[2]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "Being probabilistic they fit naturally into the context of uncertainty created by pattern matching. However, they do not capture the larger-scale structure of language and they do not provide an interpretation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "Grammar models capture more of the structure of language, but it can be difficult to recover from an early error in syntactic analysis and there is no watertight grammar.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "A systematic treatment of uncertainty is needed in this context, for the following reasons:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "(1 ) some words and grammar rules are used more often than others;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "(2) pattern matching (whether by dynamic time warping, hidden Markov modelling or multi-layer perceptron [3] ) returns a degree of fit for each word tested, rather than an absolute discrimination; a number of possible sentences therefore arise;",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 108,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "(3 ) at the end of an utterance it is desirable that each of these sentences receive an overall measure of support, given all the data so that the information is used efficiently.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "The type of language model which is the focus of this paper is the probabilistic context-free grammar (PCFG). This is an obvious enhancement of an ordinary CFG, the probability information initially intended to capture (1 ) above, but as will be seen this opens the way to satisfying (2 ) and (3).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "An LR parser [4, 5] is used with an adaptation [6 ] which enlarges the scope to include almost any practical CFG. This adaptation also allows the LR approach to be used with uncertain input [7] , and this approach enables a grammar model to interface with the speech recognition front end as naturally as does a Markov model",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 16,
                        "text": "[4,",
                        "ref_id": null
                    },
                    {
                        "start": 17,
                        "end": 19,
                        "text": "5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 47,
                        "end": 51,
                        "text": "[6 ]",
                        "ref_id": null
                    },
                    {
                        "start": 190,
                        "end": 193,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background",
                "sec_num": "1.1"
            },
            {
                "text": "A \"probabilistic context-free grammar (PCFG)\" [8-10] is a 4-tuple <N,T,R,S> where N is a nonterminal vocabulary including the start symbol S, T is a terminal vocabulary, and R is a set of production-rules each of which is a pair of form <A a , p>, with AeN, a\u20ac(NuT)*, and p a probability. The probabilities associated with all the rules having a particular nonterminal on the LHS must sum to one.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Context-Free Grammars",
                "sec_num": "1.2"
            },
            {
                "text": "A probability is associated with each derivation by multiplying the probabilities of those rules used, in keeping with the context-freeness of the grammar.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Context-Free Grammars",
                "sec_num": "1.2"
            },
            {
                "text": "A very simple PCFG can be seen in figure 1: the symbols in uppercase are the nonterminals, those in lowercase are the terminals (actually preterminals) and A denotes the null string.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probabilistic Context-Free Grammars",
                "sec_num": "1.2"
            },
            {
                "text": "The LR parsing strategy can be applied to a PCFG if the rule-probabilities are driven down into the parsing action table by the parser generator.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LR PARSING FOR PROBABILISTIC CFGs",
                "sec_num": "2."
            },
            {
                "text": "In addition, one of the objectives of using the parser in speech recognition is for providing a set of prior probabilities for possible next words at successive stages in the recognition of a sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LR PARSING FOR PROBABILISTIC CFGs",
                "sec_num": "2."
            },
            {
                "text": "The use of these prior probabilities will be described in section 3.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LR PARSING FOR PROBABILISTIC CFGs",
                "sec_num": "2."
            },
            {
                "text": "In what follows it will be assumed that the grammars are non-left-recursive, although null rules are allowed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LR PARSING FOR PROBABILISTIC CFGs",
                "sec_num": "2."
            },
            {
                "text": "The first aspect of parser construction is the closure function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": ". 1 SLR Parser",
                "sec_num": "2"
            },
            {
                "text": "The item probability p can be thought of as a posterior probability of the item given the terminal string up to that point.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "<A -\u00bb a-\u00a3, p>",
                "sec_num": null
            },
            {
                "text": "The computation of closure(I) requires that items <B -> \u25a0 7r\u00bb PbPt> be added to the set for each rule <B -\u00bb 7 r, pr> with B on the LHS, provided pBpr exceeds some small probability threshold e, where pB is the total probability of items with B appearing after the dot (in the closed set). is another set which has the same number of elements, an exact counterpart for each dotted item, and a probability for each item that differs from that for its counterpart in the new set by at most e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "<A -\u00bb a-\u00a3, p>",
                "sec_num": null
            },
            {
                "text": "where S' is an auxiliary start symbol, this process continues until no further sets are created. They can then be listed as I0 ,Ii,....",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Starting from an initial state I0 consisting of the closure of {<S' -> -S, 1>>",
                "sec_num": null
            },
            {
                "text": "Ir a generates state m and a row in the parsing tables \"action\" and \"goto\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Each state set",
                "sec_num": null
            },
            {
                "text": "The goto table simply contains the numbers of the destination states, as for the deterministic LR algorithm, but the action table also inherits probabilistic information from the grammar. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Each state set",
                "sec_num": null
            },
            {
                "text": "For a probabilistic grammar, the probability p attached to the reduce item cannot be distributed over those entries because when the tables are compiled it is not determined which of those terminals can actually occur next in that context, so the probability p is attached to the whole range of entries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The range of terminal symbols which can follow a B-reduction is given by the set FOLLOW(B) which can be obtained from the grammar by a standard algorithm [4],",
                "sec_num": null
            },
            {
                "text": "Completing the set of prior probabilities involves following up each reduce action using local copies of the stack until shift actions block all further progress.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The probability associated with a shift action is the prior probability of that terminal occurring next at that point in the input string (assuming no conflicts).",
                "sec_num": null
            },
            {
                "text": "The reduce action probability must be distributed over the shift terminals which emerge. This is done by allocating this probability to the entries in the action table row for the state reached after the reduction, in proportion to the probability of each entry.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The probability associated with a shift action is the prior probability of that terminal occurring next at that point in the input string (assuming no conflicts).",
                "sec_num": null
            },
            {
                "text": "Some of these entries may be further reduce actions in which case a similar procedure must be followed, and so on. The closure operation is more complex than for the SLR parser, because of the propagation of lookaheads through the non-kernel items. The items to be added to a kernel set to close it take the form ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The probability associated with a shift action is the prior probability of that terminal occurring next at that point in the input string (assuming no conflicts).",
                "sec_num": null
            },
            {
                "text": "Merging the states of the canonical parser which differ only in lookaheads for each item causes the probability distribution of lookaheads to be lost, so for the LALR parser the LR(1) items take the form",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LALR Parser",
                "sec_num": "2.3"
            },
            {
                "text": "The preferred method for generating the states as described in [4] can be adapted to the probabilistic case.",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 66,
                        "text": "[4]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "<A -\u00bb a-(3, p, L> where LCT.",
                "sec_num": null
            },
            {
                "text": "Reduce entries in the parsing tables are then controlled by the lookahead sets, with the prior probabilities found as for the SLR parser.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "<A -\u00bb a-(3, p, L> where LCT.",
                "sec_num": null
            },
            {
                "text": "An action conflict arises whenever the parser generator attempts to put two (or more) different entries into the same place in the action table, and there are two ways to deal with them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conflicts and Interprecat Lon",
                "sec_num": "2.4"
            },
            {
                "text": "The first approach is to resolve each conflict [11] .",
                "cite_spans": [
                    {
                        "start": 47,
                        "end": 51,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conflicts and Interprecat Lon",
                "sec_num": "2.4"
            },
            {
                "text": "The second approach is to split the stack and pursue all options, conceptually in parallel.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "This is a dubious practice in the probabilistic case because there is no clear basis for resolving the probabilities of the actions in conflict.",
                "sec_num": null
            },
            {
                "text": "Toraita [6 ] has devised an efficient enhancement of the LR parser which operates in this way.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 12,
                        "text": "[6 ]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "This is a dubious practice in the probabilistic case because there is no clear basis for resolving the probabilities of the actions in conflict.",
                "sec_num": null
            },
            {
                "text": "A graphstructured stack avoids duplication of effort and maintains (so far as possible) the speed and compactness of Che parser.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "This is a dubious practice in the probabilistic case because there is no clear basis for resolving the probabilities of the actions in conflict.",
                "sec_num": null
            },
            {
                "text": "With this approach the LR algorithm can handle almost any practical CFG, and is highly suited to probabilistic grammars, the main distinction being that a probability becomes attached to each branch.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "This is a dubious practice in the probabilistic case because there is no clear basis for resolving the probabilities of the actions in conflict.",
                "sec_num": null
            },
            {
                "text": "This is in keeping with the further adaptation of the algorithm to deal with uncertain input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The generation and action of the probabilistic LR parser can be supported by a Bayesian interpretation.",
                "sec_num": null
            },
            {
                "text": "The situation envisaged for applications of the probabilistic LR parser in speech recognition is depicted in figure 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 109,
                        "end": 117,
                        "text": "figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "The parser forms part of a linguistic analyser whose purpose is to maintain and extend those partial sentences which are compatible with the input so far.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "With each partial sentence there is associated an overall probability and partial sentences with very low probability are suspended.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "It is assumed that the pattern matcher returns likelihoods of words, which is true if hidden Markov models are used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "Other ---------------------------------------P(a\" I (D) ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 6,
                        "end": 55,
                        "text": "---------------------------------------P(a\" I (D)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ")",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Prediction and Updating Algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "This shows that the posterior probability of a\u2122 is distributed over the extended partial sentences in proportion to their root sentences s ^ contribution to the total prior probability of that word. Each path through the stack graph corresponds to one or more partial sentences and the probability P(r^|{D)m} has to be associated with each partial sentence r^.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "P (a j | (D ) )",
                "sec_num": null
            },
            {
                "text": "Despite the pruning the number of partial sentences maintained by the parser tends to grow with the length of input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "It seems sensible to base the measure of complexity upon the probabilities of the sentences rather than their number, and the obvious measure is the entropy of the distribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "The discussion here will assume that the proliferation of sentences is caused by input uncertainty rather than by action conflicts. This is likely to be the dominant factor in speech applications. The upper bound is very pessimistic because it ignores the discriminative power of the pattern matcher. This could be measured in various ways but it is convenient to define a \"likelihood entropy\" as and the \"likelihood perplexity\" is _ jn P\u2122 \" exp(K^).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "The maximum sentence entropy subject to a fixed likelihood entropy can be found by simulation. Sets of random likelihoods with a given entropy can be generated from sets of independent uniform random numbers by raising these to an appropriate power.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "Permuting these so as to maximise the sentence entropy greatly reduces the number of sample runs needed to get a good result.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "These likelihoods are then fed into the parser and the procedure repeated to simulate the recognition process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "The sentence entropy is maximised over a number of such runs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "The likelihoods which produce the upper bound line shown in figure 5(a) have a perplexity which is approximately constant at 6 .6 . This line is reproduced almost exactly by the above simulation procedure, using a fixed J3L \u00b0f 6 .6 with 30 sample runs.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 60,
                        "end": 71,
                        "text": "figure 5(a)",
                        "ref_id": "FIGREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Entropy of the Partial Sentences",
                "sec_num": "3.2"
            },
            {
                "text": "to compute the average sentence entropy over the sample runs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The simulation method is easily adapted",
                "sec_num": null
            },
            {
                "text": "For this it is preferable to average the entropy and then convert to a perplexity rather than average the measured perplexity values.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The simulation method is easily adapted",
                "sec_num": null
            },
            {
                "text": "This process provides an indication of how the parser will perform in a typical case, assuming a fixed likelihood perplexity as a parameter (although this could be varied from stage to stage if required). ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The simulation method is easily adapted",
                "sec_num": null
            },
            {
                "text": "Markov models have some advantages over grammar models for speech recognition in flexibility and ease of use but a major disadvantage is their limited memory of past events. For an extended utterance the number of possible sentences compatible with a Markov model may be much greater than for a grammar model, for the same data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Inferred Markov Model",
                "sec_num": "3.3"
            },
            {
                "text": "Demonstrating this in the present context requires the derivation of a first-order Markov model from a probabilistic grammar [13] .",
                "cite_spans": [
                    {
                        "start": 125,
                        "end": 129,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Inferred Markov Model",
                "sec_num": "3.3"
            },
            {
                "text": "The uncertainty algorithm of section 3.1 will operate largely unchanged with the prior probabilities obtained from the transition probabilities rather than from the LR parser. The upper bound reaches 409 after 10 words, for a likelihood perplexity of approximately 6.3, reducing to 37 for the average (after 30 sample runs).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Inferred Markov Model",
                "sec_num": "3.3"
            },
            {
                "text": "This falls with the likelihood perplexity but is higher than for the grammar model. The sentence perplexity for the grammar is twice that for the inferred Markov model after from six to nine words depending on This comparison is reproduced for other grammars considered. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparison with Inferred Markov Model",
                "sec_num": "3.3"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "An Introduction to the Application of the Theory of Probabilistic Functions of a Markov Process to Automatic Speech Recognition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "S E Levinson",
                        "suffix": ""
                    },
                    {
                        "first": "M M",
                        "middle": [],
                        "last": "R Rabiner",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sondhi",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "BSTJ",
                "volume": "62",
                "issue": "",
                "pages": "35--1074",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S E Levinson, L R Rabiner and M M Sondhi, \"An Introduction to the Application of the Theory of Probabilistic Functions of a Markov Process to Automatic Speech Recognition\", BSTJ vol 62, ppl035-1074, 1983.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The Computational Analysis of English, a Corpus-Based Approach",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Garside",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Leech",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sampson",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R Garside, G Leech and G Sampson (eds), \"The Computational Analysis of English, a Corpus-Based Approach\", Longman, 1987.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Speech Pattern Discrimination and Multilayer Perceptrons",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bourland",
                        "suffix": ""
                    },
                    {
                        "first": "C J",
                        "middle": [],
                        "last": "Wellekens",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Computer Speech and Language",
                "volume": "3",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H Bourland and C J Wellekens, \"Speech Pattern Discrimination and Multilayer Perceptrons\", Computer Speech and Language, vol 3, ppl-19, 1989.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Compilers: Principles, Techniques and Tools",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "A V Aho",
                        "suffix": ""
                    },
                    {
                        "first": "J D",
                        "middle": [],
                        "last": "Sethi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ullman",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A V Aho, R Sethi and J D Ullman, \"Compilers: Principles, Techniques and Tools\", Addison-Wesley, 1985.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "LR Parsing, Theory and Practice",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "N P Chapman",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N P Chapman, \"LR Parsing, Theory and Practice\", Cambridge University Press, 1987.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Efficient Parsing for Natural Language",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Tomita",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M Tomita, \"Efficient Parsing for Natural Language\", Kluwer Academic Publishers, 1986.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Linguistic Control in Speech Recognition",
                "authors": [
                    {
                        "first": "J H",
                        "middle": [],
                        "last": "Wright",
                        "suffix": ""
                    },
                    {
                        "first": "E N",
                        "middle": [],
                        "last": "Wrigley",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Proceedings of the 7th FASE Symposium",
                "volume": "",
                "issue": "",
                "pages": "545--552",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J H Wright and E N Wrigley, \"Linguistic Control in Speech Recognition\", Proceedings of the 7th FASE Symposium, pp545-552, 1988.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Probabilistic Grammars for Natural Languages",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Suppes",
                        "suffix": ""
                    }
                ],
                "year": 1968,
                "venue": "Synthese",
                "volume": "22",
                "issue": "",
                "pages": "95--116",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P Suppes, \"Probabilistic Grammars for Natural Languages\", Synthese, vol 22, pp95-116, 1968.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Formal Grammars in Linguistics and Psycholinguistics",
                "authors": [
                    {
                        "first": "W J M",
                        "middle": [],
                        "last": "Levelt",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W J M Levelt, \"Formal Grammars in Linguistics and Psycholinguistics, volume 1\", Mouton, 1974.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Probabilistic Languages: A Review and Some Open Questions",
                "authors": [
                    {
                        "first": "C S",
                        "middle": [],
                        "last": "Wetherall",
                        "suffix": ""
                    }
                ],
                "year": 1980,
                "venue": "Computing Surveys",
                "volume": "12",
                "issue": "",
                "pages": "361--379",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C S Wetherall, \"Probabilistic Languages: A Review and Some Open Questions\", Computing Surveys vol 12, pp361-379, 1980.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Sentence Disambiguation by a Shift-Reduce Parsing Technique",
                "authors": [
                    {
                        "first": "S M",
                        "middle": [],
                        "last": "Shieber",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "Proc. 21st Annual Meeting of Assoc, for Comp. Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S M Shieber, \"Sentence Disambiguation by a Shift-Reduce Parsing Technique\", Proc. 21st Annual Meeting of Assoc, for Comp. Linguistics, ppll3-118, 1983.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A Maximum Likelihood Approach to Continuous Speech Recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "L R Bahl",
                        "suffix": ""
                    },
                    {
                        "first": "R L",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "IEEE Trans, on Pattern Analysis and Machine Intelligence",
                "volume": "",
                "issue": "5",
                "pages": "79--190",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L R Bahl, J Jelinek and R L Mercer, \"A Maximum Likelihood Approach to Continuous Speech Recognition\", IEEE Trans, on Pattern Analysis and Machine Intelligence, vol PAMI-5, ppl79-190, 1983.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Linguistic Modelling for Application in Speech Recognition",
                "authors": [
                    {
                        "first": "J H",
                        "middle": [],
                        "last": "Wright",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Proceedings of the 7th FASE Symposium",
                "volume": "",
                "issue": "",
                "pages": "391--398",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J H Wright, \"Linguistic Modelling for Application in Speech Recognition\", Proceedings of the 7th FASE Symposium, pp391-398, 1988.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "New kernel sets are generated from a closed set of items by the goto function. If all the items with symbol Xe(NuT) after the dot in a set I are <Ak ak-X/9k , pk> for k-l,...,nx, with px -\u00a3 pk k-1 then the new kernel set corresponding to X is (<Ak -> akX-\u00a3k, pk/px> for k-1, . . . , nx} and goto(I,X) is the closure of this set. The set already exists if there",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "text": "For each terminal symbol b, if there are items in Im such that the total Pb>f, and the shift state n is given by goto(Im,b) -In, then action[m,b] -<shift-to-n, pb> For each nonterminal symbol B, if Pb>\u00ab and goto(Im ,B)-In then goto[m,B] -n If <S' -> S \u2022 , p> G Im then action[m,$] -<accept, p> If <B -> 7 * , p> E Ir a where BhS' then action[m , FOLLOW(B) ] -<reduce-by B -\u00bb 7 , p> with shift-reduce optimisation [4,5] applied. The probability of each entry is underneath.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "text": "Canonical LR Parser For the canonical LR parser each item possesses a lookahead distribution: <A -> a* / ? , p, {P(at)",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "num": null,
                "text": "PbPt i (PB(aj))j = l.... i t i ) so that all the items with B after the dot are then <Ak -> a j j \u2022 , pk, { Pk(ai ) } 1=1, ..Pb iwhere P (^ka1,aJ) is the probability of aj occurring first in a string derived from \u00a3kai, which is easily evaluated. A justification of this will be published elsewhere. The lookahead distribution is copied to the new kernel set by the goto function. The first three steps of parsing table construction are essentially the same as for the SLR parser. In step (4), the item in Im takes the form <B -\u00bb 7 \u2022 , p, (P(a1) ) 1=1., T|> where B*S ' The total probability p has to be distributed over the possible next input symbols at, using the lookahead distribution: actionfm.ai] -<reduce-by B -\u00bb 7 , pP(at)> for all i such that pP(ai)>c. The prior probabilities during parsing action can now be read directly from the action table.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "num": null,
                "text": "methods of pattern matching return measures which it is assumed can be interpreted as likelihoods, perhaps via a transformation. let (s-1 ,2 ,...) represent partial sentences up to stage m (the stage denoted by a superscript). let D represent the data at stage m, and (D) represent all the data up to stage m.Each branch 1^ predicts words a\u2122 (perhaps via the LR parser) with probability P(aj|r^ ), so the total prior probability for each word aj",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "num": null,
                "text": "If P(rsj| (D) )<e then the branch is suspended. The next set of prior probabilities can now be derived and the cycle continues. These results are derived using the following independence assumptions: P(a?|a*,D\") -P(a^ | a\") and P(D\"|a\" ,Dk) -P(D' |a\") which decouple the data at different stages.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "num": null,
                "text": "shows successive likelihoods, entered by hand for a (rather contrived) illustration using the grammar in figure 1.At the end the two viable sentences (with probabilities) are \"pn tv det n pron tv pn\" (0.897) \"det n pron tv pn tv pn\" (0.103) Notice that the string which maximises the likelihood at each stage, \"pn tv pron tv pron tv pn\" might correspond to a line of poetry but is not a sentence in the language.The graph-structured stack approach of Tomita[6 ]  is used for nondeterministic input.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF7": {
                "num": null,
                "text": "(in entropy) number of equally-likely sentences. Substituting for P( j | {D }\u2122) from equation (1contributed by the sentences at stage m -1 predicting word aj. The quantities / i j can be evaluated with the prior probabilities. It can be shown that the sentence entropy has an upper bound as a function of the likelihoods: w s < log Ijexp(*j) . \" e x p (A * ) withequality when P(D | a % ) < x ----------------------.upper bound for the grammar in figure 1, and it can be seen chat che perplexity is equivalent to 35 equally-1 ikely sentences after 10 words",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF8": {
                "num": null,
                "text": "a) shows how the average compares with the maximum for a fixed T L of 6 .6 , and how the sentence perplexity is reduced when the likelihoods are progressively more constrained -5.0, 3.0 and 2.0).",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF9": {
                "num": null,
                "text": "b) contains results corresponding to those in (a), for the Markov model inferred from the grammar in figure 1.",
                "uris": null,
                "type_str": "figure"
            }
        }
    }
}