File size: 41,817 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
{
    "paper_id": "W98-0128",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:04:28.501770Z"
    },
    "title": "TAGS M-CONSTRUCTED",
    "authors": [
        {
            "first": "Uwe",
            "middle": [],
            "last": "M\u00f6nnich",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T\u00fcbingen University",
                "location": {
                    "addrLine": "Wilhelmstrasse 113",
                    "postCode": "D-72074",
                    "settlement": "T\u00fcbingen"
                }
            },
            "email": ""
        },
        {
            "first": "Uwe",
            "middle": [],
            "last": "Moennich\u00a9uni-Tuebingen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T\u00fcbingen University",
                "location": {
                    "addrLine": "Wilhelmstrasse 113",
                    "postCode": "D-72074",
                    "settlement": "T\u00fcbingen"
                }
            },
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "De",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T\u00fcbingen University",
                "location": {
                    "addrLine": "Wilhelmstrasse 113",
                    "postCode": "D-72074",
                    "settlement": "T\u00fcbingen"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper puts TAGs into an algebraic perspective. The operation of tree adjunction is shown to be a special case of function substitution within a derived theory. The underlying process of theory derivation is illustrated with the concrete example of free continuous tree algebras.",
    "pdf_parse": {
        "paper_id": "W98-0128",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper puts TAGs into an algebraic perspective. The operation of tree adjunction is shown to be a special case of function substitution within a derived theory. The underlying process of theory derivation is illustrated with the concrete example of free continuous tree algebras.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The aim of this paper is to relate two notions. The first one is that of tree adjunction. The Operation of tree adjunction serves to seperate dependency and recursion within a mild extension of the context-free grammar formalism. The second notion is that of a polyadic procedure. lt generalizes the operation of making several identical copies of a string and was introduced in formal language theory by Fischer (1968) .",
                "cite_spans": [
                    {
                        "start": 405,
                        "end": 419,
                        "text": "Fischer (1968)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The two notions are related in the following way. The operation of tree adjunction builds a new tree t from two input trees t 1 and tz by replacing a subtree of ti displaying a root label identical to tz's root label with the tree tz and appending the replaced subtree of ti to an especially marked leaf node of tz. The name of a polyadic procedure in a tree can similary be replaced by a tree with dummy symbols at some of its leaves into which the arguments of the replaced procedure are to be inserted. lt has long been realized that the introduction of higher order auxiliairy symbols into a grammar formalism is an iterable process that leads to an algebraic refinement of the Chomsky hierarchy. The most general characterization of this iterable process is due to the ADJ group and presented by them within the category theoretic framework of finitary algebraic theories (Bloom et al. 1983 ). Based on their presentation, we propose an abstract formulation of tree-adjoining grammars in which its rule systems correspond to morphisms of an algebraic theory that is constructed from the algebraic theory of context-free grammars along the lines indicated by the ADJ group.",
                "cite_spans": [
                    {
                        "start": 877,
                        "end": 895,
                        "text": "(Bloom et al. 1983",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The notion of an algebraic refinement of the Chomsky hierarchy was first formulated by Wand (1975) . He shows that solving regular equations in function spaces over languages leads to a hierarchy of language families beginning with the regular languages, the contex-free languages and the indexed language. His conjecture that these language families are but the first.steps in an infinite hierarchy was later confirmed by Damm (1982) .",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 98,
                        "text": "Wand (1975)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 423,
                        "end": 434,
                        "text": "Damm (1982)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The original motivation for our interest is an algebraic formulation of tree adjoining grammars has come from a long term project on denotational semantics for grammar formalisms. Algebraic semantics seems to provide a uniform framework for such an attempt. In the present connection the algebraic perspective not only adds another characterization of the tree adjoining languages to the already long !ist of equivalences with restricted production systems, but it also makes available the whole gamut of techniques that have been developed in the tradition of algebraic language theory (Maibaum 1978 , Mehlhorn 1979 , Schimpf and Gallier 1985 .",
                "cite_spans": [
                    {
                        "start": 587,
                        "end": 600,
                        "text": "(Maibaum 1978",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 601,
                        "end": 616,
                        "text": ", Mehlhorn 1979",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 617,
                        "end": 643,
                        "text": ", Schimpf and Gallier 1985",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the interest of a more concrete presentation we restrict ourselves to the special case of tree algebras. The basic notions from universal algebra which we need in the sequel are introduced in the next section. For reasons of space we have refrained from supplying the details of the general M-functor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Let S be a set of sorts. A many-sorted signature r is an indexed family (rw,slw \u20ac 5\u2022, s E S) of disjoint sets. A symbol in rw, s is called an Operator of type (w,s), arityw, sorts and ranki(w), where t(w) denotes the length of w, In the case of a single-sorted signature we write rs\",s as l:n. The set of n -ary trees over such a single-sorted signature .L is built up from a finite set Xn = {x1, ... ,Xn} of variables using the operators in the expected way: If er E Ln and t1, ... , tn are n-ary trees, then er(t1, ... , tn) is an n-ary tree.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "The operator symbols induce Operations on analgebra of the appropiate structure. A L.-algebra A consists of an S-indexed faIQily of sets A = (As)ses and for each operator er E Lw,s, a function er :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "A w ~ As where A w = Af x \u2022 \u2022 \u2022 x A~ and w = W1 \u2022 \u2022 \u2022 Wn.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "The set of n-ary trees T ( L, Xn) can be made into a L-algebra by specifiying the operations as follows.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "For every er E Ln and every ti 1 \". ,tn E T(.L,Xn)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "we identify O'r (l:,Xnl (t1,. \" , tn) with er(t1, \". , tnl\u2022",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Definitions",
                "sec_num": "2"
            },
            {
                "text": "Our main notion is that of an algebraic (Lawvere) theory. Given a set of sorts S, an algebraic theory, as an algebra; is ans",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "\u2022 X s\u2022-sorted algebra T, whose carriers {T ( u, v )lu, v E s\u2022)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "consist of the morphisms of the theory and whose operations are of the following types:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "\u2022 projection: xr E T(u,ut) (u = u1 ... Un Es\u2022) \u2022 composition: \u2022u,v,w E T{u,v) x T(v,w) ~ T(u,w)(u,v,wE s\u2022) \u2022 target tupling: { , \". , )u,v E T(u, v1) x \". xT(u,Vn) ~ T(u,v)(u 1 v=v1 \".Vn E $\u2022)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "The projections and the Operations of target tupling are required to satisfy the obvious identities for products and the composition Operations are required to be associative:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "\u2022 xy \u2022 (1X1 1 \u2022\u2022\u2022 ,cxn)u,v = iXt for all ext E T(u,vl) \u2022 (x) \u2022 \u00df,.\" ,x;;_ \u2022 \u00df)u,v = \u00df for all \u00df E T(u,v), where v = v1 \u2022 \u2022 \u2022Vn \u2022 (y \u2022 \u00df) \u2022IX= 'Y \u2022 (\u00df \u2022 \"-'.) for all ex. E T(u, v), \u00df E T(v,w),yE T(w,z) \u2022ex.\u2022 {x~,\". ,x~)u,u = y for all IX E T(u,v), whereu=u1 \u2022\u2022\u2022Un",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "By rearranging the ingredients of the prededing definition algebraic theories can be looked upon as categories. Under this conceptualization an algebraic theory T has as objects ITI the set of sortstrings s\u2022, the elernents of the Carrier Sets become morphisms in the category theoretic sense and the following tuples of the projection morphisms {xi \" \" , x~ )u,u function as identities. The axioms for the composition operation ensure that it behaves 109 as is required by the basic category theoretic postulates for the operation of the same name and the axioms for target tupling ensure its status as a category theoretic product.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "With S being a singleton, the powerset ~(T(L)) of n-ary trees constitutes the central example of interest for formal language theory. The carriers (giT(n, m)ln, m E w) consist of sets of m-tuples of n-ary trees {(t1, ... , tm)}. The operation of composition is defined as substitution for the projection constants and target tupling is just tupling.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "The M-construction can be characterized as a functorial generalization of the device of signature extension. For lack of space we abstain from giving the general definition and restrict ourselves to outlining the relevant features for the case of free continuous theories. Suppose that L is an one-sorted signature. Elements of s\u2022 X s\u2022 can then be identified with elements of w x w. Given a finite set of function variables F, we obtain the extended signature r.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "+ F, where (.L + F)n = Ln U {flf E F & arity{f) = n}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "Based on this signature we are able to define the notion of a finite tree t of recursion-sort n and recursion-arity w, w E w\u2022. This says that nodes in t dominating Wi daughters may be labeled with f E F of arity Wt and that its projection labels come from Xn = {x1 1 \"., Xn}. Given L and F, we can now define the M-constructed continuous, one-sorted recursion theory M(~(T(r.))) as follows. ) is the powerset of all n-tuples of trees t = (t1 1 .\", tn), where tt is of recursion sort Vt and of recursion arity w. Tupling is again tupling, the function variables play the role of \"higher-order\" projections, but composition is specified as substitution for function-variables which la-be} internal tree nodes; rather than as substitution for projection labels at the leaves of trees. For u E wn, v E wP and w E w\u2022, let T' be a set of p-tuples of trees t' = ( tl \"\", t~) of recursion arity w and of recursion sort v and Jet T be a set of n-tuples of trees t = (t1, ... , tnl of recursion arity v and of recursion sort u , then their composition T \u2022 T' = {t\"} = {(tl', .\", t~)} = {{t1 \u2022 t', .\", tn \u2022 t')} is defined recursively as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 391,
                        "end": 392,
                        "text": ")",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "For v E wn, w E w\u2022, M(gi(T(L)))(w,v",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "e tt' = {er(\"[' 1 ' t I 1 \u2022 \u2022 \u2022 1 \"[' q ' t I}}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "for tt = er(-r1, . \" , 't' q) (er E Lq)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "\u2022 t{' = {tj(-r1 \u2022t' 1 \". ,tr\u2022t')} for tt = fj ('t'1, \". ,'t'r)(fi E Fr) Observe again that the preceding equational system looks suspiciously similar to the usual production system for the \"same\" language in a concate- where n occurrences of a precede the same num-, ber of occurrences of b for n ;:::: 0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lawvere Theories",
                "sec_num": "3"
            },
            {
                "text": "The foHowing result expresses the fact that the situation above characterizes already the whole dass of context-free languages: Every context-free language can be represented as the solution of a morphism in an algebraic theory that is M-constructed on the basis of a monadic tree theory.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "There is actually a mechanical procedure that allows one to convert an arbitrary context-free grammar G = (V, N, S, P} in Chomsky Normal Form into a weakly equivalent equational system E = (rv, F, E} that has asolution in the space of monadic trees (Maibaum 1974) . The procedure consists in first forming the monadic signature r v corresponding to the terminal vocabulary V of G:",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 263,
                        "text": "(Maibaum 1974)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "(rv)o ={t:} (rvh ={V}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "The new function variables F are similarly in a oneto-one correspondence with the nonterminals of G:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "Fo = {S} F1 ={AJA E N}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "The equational system E is then obtained through the following replacements: Recall that context-free languages are also captured by the notion of a frontier or yield of a regular tree set. The obvious question that presents itself in this connection is which language family is reached by the addition of monadic function variables to an arbitrary signature.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "In the way of motivating the ans wer to this question it is useful to consider once more the exam- In tree form the last equation has the following shape:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "s 11\\ Q s d S(x)= 1 s 11\\ b X C",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "This system specifies the string language {anbncndn}. Apart from minor notational modifications the grammar in the last example corresponds to a well-known tree adjoining grammar. Note that apart from the start symbol the only other nonterminal is of arity one. As was the case in connection with the context-free string languages, the preceding example is a particular instance of the general situation. The tree adjoining languages correspond to languages that are M-constructed from arbitrary signatures through the addition of monadic function variables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "As in the case of context-free gramrnars there exists a mechanical procedure that allows one to produce for any given tree adjoining grarnmar G a weakly equivalent equational system E that specifies the \"same\" set of trees. Strict identity is not guaranteed for grammars that contain nonterminals with variable arities. Toremain within the algebraic setup, nonterminals that label nodes which brauch out into different numbers of daughters, have to be assigned to different components of the indexed set .L Otherwise the procedure that resulted in the system of the example is completely general. Terminals and nonterminals alike are collected into the new signature r. All nonterminals that are free for an adjunction become duplicated by a monadic member of t}le set of function variables F. Adjunction constraints have to be taken over with one modification: When sa is the empty set the nonterminal has no duplicate in F.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "110",
                "sec_num": null
            },
            {
                "text": "The M-construction in its general form is conceived for Lawvere theories regarded as categories. The main prerequisites a category of such theories has to satisfy in order for it to be M-able is the existence of a free theory and of coproducts. Both conditions are fulfilled by the powerset of n-ary trees.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In compliance with the spirit of algebraic semantics I have considered tree adjoining languages as solutions of morphisms in a derived theory. Under the perspective of an operational semantics an analoguous characterization can be obtained by considering tree adjoining grammars as a restricted form of context-free tree grammars (Engelfriet and Schmidt 111 1977) . This has been the topic of a previous publication where it is shown that not only any tree adjoining language is presentable as a monadic contextfree tree language, but that the opposite implication holds as well (M\u00f6nnich 1997) . The proof in that paper for this opposite direction of the implication is easily adapted to the framework of denotational semantics. As was adumbrated in the introductory section, the particular conception of denotational semantics that is being developed within the algebraic tradition promises to provide the right level of abstraction from where to investigate the connections between different types of grammatical formalisms.",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 363,
                        "text": "(Engelfriet and Schmidt 111 1977)",
                        "ref_id": null
                    },
                    {
                        "start": 579,
                        "end": 593,
                        "text": "(M\u00f6nnich 1997)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Recursion and iteration in continuous theories: The M-construction",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "L"
                        ],
                        "last": "Bloom",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "W"
                        ],
                        "last": "Thatcher",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "G"
                        ],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "B"
                        ],
                        "last": "Wright",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "J. of Computer and System Sciences",
                "volume": "27",
                "issue": "2",
                "pages": "148--164",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bloom, S.L., J.W. Thatcher, E.G. Wagner, and J.B. Wright. 1983. Recursion and iteration in contin- uous theories: The M-construction. J. of Com- puter and System Sciences, 27(2):148-164.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The IO-and OI-hierarchies",
                "authors": [
                    {
                        "first": "Werner",
                        "middle": [],
                        "last": "Damm",
                        "suffix": ""
                    }
                ],
                "year": 1982,
                "venue": "Theoretical Computer Science",
                "volume": "20",
                "issue": "",
                "pages": "95--207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Damm, Werner. 1982. The IO-and OI-hierarchies. Theoretical Computer Science, 20:95-207.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "IO and OI, part 1",
                "authors": [
                    {
                        "first": "Joost",
                        "middle": [],
                        "last": "Engelfriet",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "M"
                        ],
                        "last": "Schmidt",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "J. Comput. System Sei",
                "volume": "15",
                "issue": "",
                "pages": "328--353",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Engelfriet, Joost and E.M. Schmidt. 1977. IO and OI, part 1. J. Comput. System Sei., 15:328-353.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Grammars with macrolike productions",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [
                            "J"
                        ],
                        "last": "Fischer",
                        "suffix": ""
                    }
                ],
                "year": 1968,
                "venue": "Proceedings of the 9th Annual Symposium on Switching and Automata Theory",
                "volume": "",
                "issue": "",
                "pages": "131--142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fischer, Michael J. 1968. Grammars with macro- like productions. In Proceedings of the 9th Annual Symposium on Switching and Automata Theory, pages 131-142. IEEE.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Tree-adjoining grammars",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Schabes",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Handbook of Formal Languages Val. 3: Beyond Words",
                "volume": "3",
                "issue": "",
                "pages": "69--124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshi, A.K. and Y. Schabes. 1997. Tree-adjoining grammars. In G. Rozenberg and A. Salomaa, ed- itors, Handbook of Formal Languages Val. 3: Be- yond Words, volume 3. Springer, pages 69-124.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A generalized approach to formal languages",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "S E"
                        ],
                        "last": "Maibaum",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "J. Comput. System Sei",
                "volume": "8",
                "issue": "",
                "pages": "409--439",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maibaum, T.S.E. 1974. A generalized approach to formal languages. J. Comput. System Sei\" 8:409- 439.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Pumping lemmas for term languages",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "S E"
                        ],
                        "last": "Maibaum",
                        "suffix": ""
                    }
                ],
                "year": 1978,
                "venue": "Journal of Computer and System Science",
                "volume": "17",
                "issue": "",
                "pages": "319--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maibaum, T.S.E. 1978. Pumping lemmas for term languages. Journal of Computer and System Sci- ence, 17:319-330.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Parsing macro grammars top down",
                "authors": [
                    {
                        "first": "Kurt",
                        "middle": [],
                        "last": "Mehlhorn",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "Information and Control",
                "volume": "40",
                "issue": "",
                "pages": "123--143",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mehlhorn, Kurt. 1979. Parsing macro grammars top down. Information and Control, 40:123-143.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Adjunction as substitution",
                "authors": [
                    {
                        "first": "U",
                        "middle": [],
                        "last": "M\u00f6nnich",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the Conference",
                "volume": "",
                "issue": "",
                "pages": "169--178",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M\u00f6nnich, U. 1997. Adjunction as substitution. In G-J. M. Kruijff, G.V. Morrill, and R.T. Oehrle, editors, Formal Grommar 1997: Proceedings of the Conference. Aix-en-Provence, pages 169-178.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Tree pushdown automata",
                "authors": [
                    {
                        "first": "Karl",
                        "middle": [],
                        "last": "Schimpf",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Gallier",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Journal of Computer and System Sciences",
                "volume": "30",
                "issue": "",
                "pages": "25--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schimpf, Karl and Jean Gallier. 1985. Tree push- down automata. Journal of Computer and Sys- tem Sciences, 30:25-40.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Algebraic semantics",
                "authors": [
                    {
                        "first": "E",
                        "middle": [
                            "G"
                        ],
                        "last": "Wagner",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wagner, E.G. 1994. Algebraic semantics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Handbook of Logic in Computer Science",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Maibaum",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "323--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maibaum, editors, Handbook of Logic in Com- puter Science Vol. 3: Semantic Str'1ctures. OUP\" pages 323-393.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An algebraic formufation of the chomsky hierarchy",
                "authors": [
                    {
                        "first": "Michell",
                        "middle": [],
                        "last": "Wand",
                        "suffix": ""
                    }
                ],
                "year": 1975,
                "venue": "Category Theory Applied to Computation and Control, number 25 in Lecture Notes in Computer Science",
                "volume": "",
                "issue": "",
                "pages": "209--213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wand, Michell. 1975. An algebraic formufation of the chomsky hierarchy. In Category Theory Ap- plied to Computation and Control, number 25 in Lecture Notes in Computer Science, pages 209- 213.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "text": "Context~Free and Tree Adjoining LanguagesConsider the example of a single-sorted signature of monadic algebras:ro = {e:} r1 = {ala E V}Due to the fact that r is a monadic signature trees in T ( r, X) may not contain more than a single variable. Observe that this corresponds exactly to the rule format of regular (string) languages, where the righthand sides of production rules are either strings in the terminal alphabet or concatenations of such a string with a single non-terminal.The regular language v\u2022, e.g., is the solution of the set of equations {x = a(x)ja}(a E V) in the space p(T(r)). lt should be pointed out that v\u2022 and the set of all variable-free trees in the monadic signature r, introduced a moment ago, are, strictly speaking, not the same sets. They are nevertheless related by an obvious one-to-one correspondence. Once the signature r is extended with one nullary and one monadic variable, the following example shows tliat we obtain the context-free language l = {a%n} as solution in the same space p(T (!:)), where r1 = {a, b}: S) = {a(a \". (b(b ... (e) \".)} The pair of equations E in the preceding example is represented by a morphism E =(Eo, El) : 0 \u2022 1 ~ 0 \u2022 1 in the recursion theory M(P(T(a))) and the language L = {anbn} is the first component ofthe least fixpoint that solves the equational system E.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "text": "~ el\"\"'(a, .-...(S, b))} l(G', S) = {.-...(a, \"\"'( ... , '\"\"\"'(t:, b) ... b) ... )}",
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "uris": null,
                "text": "S) equals the least solution of E at its Scomponent.",
                "type_str": "figure"
            },
            "FIGREF3": {
                "num": null,
                "uris": null,
                "text": "ple of a simple morphisrn E 1 : 0 \u2022 1 -+ 0 \u2022 1 in an M-constructed recursion theory that is based on a signature r of arity 3: [ = I:o U .1:3 where I:c = {a, b, c; d} and t3 = {S} F = Fo U F1 where Fo = {S'} and F1 = {S} E = {S' = {S(t:)}, S(x) = {S( a., S(S(b, x, c)), d), x}}",
                "type_str": "figure"
            }
        }
    }
}