File size: 40,108 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
{
    "paper_id": "W98-0137",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:03:12.524797Z"
    },
    "title": "Exploiting Semantic Dependencies in Parsing",
    "authors": [
        {
            "first": "William",
            "middle": [],
            "last": "Schuler",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pennsylvania Philadelphia",
                "location": {
                    "postCode": "19103",
                    "region": "PA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we describe a semantic dependency model for estimating probabilities in a stochastic TAG parser (Resnik, 1992) (Schabes, 1992), and we compare it with the syntactic dependency model inherent in a TAG derivation using the flat treatment of modifiers described in (Schabes and Shieber, 1994).",
    "pdf_parse": {
        "paper_id": "W98-0137",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we describe a semantic dependency model for estimating probabilities in a stochastic TAG parser (Resnik, 1992) (Schabes, 1992), and we compare it with the syntactic dependency model inherent in a TAG derivation using the flat treatment of modifiers described in (Schabes and Shieber, 1994).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The use of syntactic dependencies to estimate parser probabilities is not uncommon (Eisner, 1996) (Collins, 1997) (Charniak, 1997) . Typically, a maximum probability parse is estimated from bigram statistics of lexical items that participate in head-modifier or head-complement dependencies with other lexical items. These dependencies can be characterized as ( head, label, modifier ) triples and ( head, label, complement ) triples -or as labeled directed arcs in a graph -which have the property that each lexical item may participate as a modifier or a complement in no more than one dependency. Using a TAG derivation tree (Joshi, 1987) with a flat treatment of modifiers (Schabes and Shieber, 1994) , it is possible to capture the long distance dependencies of wh-extractions and relative clauses as adjacent arcs in a dependency structure, making them available for probability estimates withiu the parser as well. In this case, the head-complement dependencies for a sentence correspond to a set S of substitution triples (/, rJ, a) (where tree a substitutes into tree 'Y at note address ?J), and the head-modifier dependencies correspond to a set A of adjunction triples (/, 1}; \u00df) (where tree \u00df adjoins into tree 'Y at node address 7J), in a probabilistic TAG (Resnik, 1992) .1",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 97,
                        "text": "(Eisner, 1996)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 98,
                        "end": 113,
                        "text": "(Collins, 1997)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 114,
                        "end": 130,
                        "text": "(Charniak, 1997)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 628,
                        "end": 641,
                        "text": "(Joshi, 1987)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 677,
                        "end": 704,
                        "text": "(Schabes and Shieber, 1994)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1270,
                        "end": 1284,
                        "text": "(Resnik, 1992)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Although the TAG-based syntactic dependency rnodel has the necessary domain of locality (in terms of adjacent arcs on the derivation tree) to accurately guide a statistical parser, it is still susceptible to sparse data effects, in part because it does not generalize attachment statistics across syntactic transformations. An adjective used as a declarative predicate, for example, could not draw on attachment statistics for the same adjective used as a modifier, or as a predicate in a relative clause, and vice versa, because each transformation uses a different syntactic dependency structure. The triples in the syntactic dependency sets S and A for the sentences, 11 The damaged handle is attached to the drawer,\" and {CThe handle attached to the drawer is damaged,\" are represented as arcs in Figure 1 .",
                "cite_spans": [
                    {
                        "start": 671,
                        "end": 673,
                        "text": "11",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 801,
                        "end": 809,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In order to group these attachment statistics into denser pools of data, we need to abstract a common semantic structure from the various syntactic structures, effectively adopting a common argument frame for each transformation. This means that each auxiliary tree must have an argument position corresponding to the subject substitution site in its predicative transformation if it is a modifier auxiliary, or corresponding to the wh-object substitution site in its object-extraction transformation if it is a predicative auxiliary. 2 For convention, we place 1 Although Resnik uses a direct function S(-y, 11, a) to the [O -1) interval where we use a probability of set membership 'P((\"{, fJ, a) E S). Also note that this correspondence between head-complement dependencies and substitution dependencies is not strictly true in the case of predicative auxiliaries (Schabes and Shieber, 1994) , which are handled by adjunction in TAG.",
                "cite_spans": [
                    {
                        "start": 867,
                        "end": 894,
                        "text": "(Schabes and Shieber, 1994)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "attach to ~ handle door NPtod 'V darnage",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The damaged handle is attached to the door.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The handle attached to the door is damaged. Figure 1 : Syntactic dependencies in TAG this extra argument position at the foot node of the auxiliary tree, so the auxiliary takes the tree it adjoins into as an argument. This means that our semantic dependency model effectively reverses the direction of dependencies involved in adjunction from the syntactic model.The triples in the semantic dependency set 1) for the sentences, 11 The damaged handle is attached to the drawer,\" and \"The handle attached to the drawer is damaged,\" are represented as arcs in Figure 2 . Formally, we augment the syntactic dependency sets S and A with a semantic dependency set V of ( predicate, label, argument ) triples defined as follows:",
                "cite_spans": [
                    {
                        "start": 428,
                        "end": 430,
                        "text": "11",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 44,
                        "end": 52,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 557,
                        "end": 565,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For every substitution (head-complement) dependency ('Y, 71, a) in S add a predicateargument dependency (anchar(ry), argnum (J, 17) , anchor(a)} to V; and \u2022 For every adjunction (head-modifier) dependency",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 133,
                        "text": "(J, 17)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "('Y, 17, \u00df) in A add a predicate-argument dependency (anchar(\u00df), argnum(\u00df, f oot(\u00df)), anchar('Y)) to V;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "where anchor(a) returns the lexical and10r of tree a, and argnum(a,17} returns the semantic argument position corresponding to node 17 in tree a. In this way we can combine argument attachrnent distributions for initial tree trans-\u2022 formations and auxiliary tree transformations into a common attachment distribution for the underlying predicate. Parsing proceeds in three passes of O(n 6 ) complexity. First, the chart is filled in from the bottom up, as described in (Schabes et al., 1988) , and the input is recognized or rejected. The parser then constructs a shared forest (Vijay-Shanker and Weir, 1993) top-down from the elements in the chart, ignoring those items on bottom-up dead ends. Finally, the parser proceeds with the more expensive Operations of feature unification and probability estimation on the reduced set of nodes in the shared forest. The chart consists of a set of items that each specify a node address 77 in an elementary tree a, a top (T) or bottom (.l) marker denoting the phase of operation on the node, and four indices i,j,k, and l, composing the extent of the node's coverage in the sentence: (o:, 77, T 1 i, j, k, l). The shared forest consists of an and/or graph, with 'or' arcs from each non-dead-end chart item to instantiations of the parser productions that could have produced it, and 'and' arcs from each instantiation of a parser production to the chart items it would have required.",
                "cite_spans": [
                    {
                        "start": 469,
                        "end": 491,
                        "text": "(Schabes et al., 1988)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In order to select a most-preferred parse for an ambiguous input, a highest-probability item is selected from the top node in the shared forest, and a parse is read off below it by traversing the subordinate items with the most probable dependencies. The probability of each shared forest item is computed as the maximurn of the probabilities of its 'or'-adjacent parser productions. The probability of each instantiation of a parser production is cornputed as the proba-bility of the relevant dependency for that production multiplied by the probabilities of the chart items that production required. Finally, the probability of each parse must be multiplied by the probability of each elementary tree given a lexical item in the input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The probability model is adapted from (Resnik, 1992) , which assigns a probability to any arc (a, 7] , \u00df} (where tree \u00df is attached to tree a at node address 77) being in the set of substitutions S or adjunctions A in a derivation.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 52,
                        "text": "(Resnik, 1992)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 94,
                        "end": 100,
                        "text": "(a, 7]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The root of the derivation tree is represented as (MAIN, O, a} in S, and null adjunctions (which terminate the adjunction of modifiers at a node)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "are represented as (a, 7] , t} in A. Finally, the probability of a tree a is represented as the probability of the double {anchor(a), tree(a)) being in the set r of elementary trees used in a parse.",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 25,
                        "text": "(a, 7]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Probabilities for the dependencies in a parser production are estimated from observed frequencies that a child predicate c (the base-form anchor of a tree) occurs in argument position a of a parent predicate p (the base-form anchor of another tree), within some training set",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "'D of dependency structures: F( (a, p, c) E 'D).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The top-level dependency is represented in 'D as (MAIN, O, c) , and null adjunctions are represented as (NULL, 0, c) . 3 Note that we use the same dependencies as Resnik (the syntactic dependency sets Sand A) in describing the probability model, and use the semantic dependencies ('D) only in the estimation of those probabilities.",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 110,
                        "text": "(NULL,",
                        "ref_id": null
                    },
                    {
                        "start": 111,
                        "end": 113,
                        "text": "0,",
                        "ref_id": null
                    },
                    {
                        "start": 114,
                        "end": 116,
                        "text": "c)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 49,
                        "end": 61,
                        "text": "(MAIN, O, c)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Probabilities are estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For any topmost item in a derivation tree: (a,O, T,0,-,-,n} the initial probability would be:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "'P({MAIN,O,a) ES 1 (MAIN,O, _)ES)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "which we estimate as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F((M AI N,O,anchor(o:))E'D) F( (MAI N,0,-)ED)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For any chart production for the substitution of initiai tree a into / at node address 17, where i and j are indices, and 17 is a substitution site in 'Y with the same label as the root of a:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(a,O, T,i,-,-,j) ('y, 17, T, i, -, -, j) the probability would be:",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 40,
                        "text": "('y, 17, T, i, -, -, j)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "'P( ('y, 7] 1 a} E S 1 ('y, 7], -} E S)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "which we estimate as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F (( a'!chor( 'Y) ,a rgnum( 'Y ,ry) ,anchor ( o: )}E'D)",
                "cite_spans": [
                    {
                        "start": 2,
                        "end": 17,
                        "text": "(( a'!chor( 'Y)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F ( (anchor('Y) ,argnum( -y,77) 1 -}E'D)",
                "cite_spans": [
                    {
                        "start": 2,
                        "end": 15,
                        "text": "( (anchor('Y)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For any chart production for adjunction of auxiliary tree \u00df into 'Y at node address 77, where i,j,i 1 ,j 1 ,p and q are indices, and 17 is an adjunction site in/' with the same label as the root of \u00df; ('Y,7J,1-,i1,p,q,j1} (\u00df,O, T,i,i',j',j) (!', 77, 1-, i, p, q, j) the probability would be:",
                "cite_spans": [
                    {
                        "start": 203,
                        "end": 242,
                        "text": "('Y,7J,1-,i1,p,q,j1} (\u00df,O, T,i,i',j',j)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "'P((\"f, 17,\u00df) E A 1 {'Y, 7J, -) E A)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "which we estimate as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F({anchor(\u00df),~rgnum(\u00df,foot(\u00df)),anchor(-y))E1>) F( (_,_,anchor( -y))E'D)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For any chart production for closing adjunction at a node address 17 in tree 'Y:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "('Y,7], T,i,j,k,l) ()\" 17, 1-, i, j, k, l)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "the probability would be:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "'P(('Y,7J,\u20ac) E A j ('Y,77,_) E A)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "which we estimate as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F{(NU LL,O,anchor('Y))E'D)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Fe (-,-,anchor('Y ) )ED)",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 19,
                        "text": "(-,-,anchor('Y )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 For any other chart production, the probability would be l.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Finally, the probability that each elementary tree a is in the set of trees r used in the parse, given a lexical item is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "P((anchor(a), tree(a)) E Tl(anchor(a), _)ET)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "which we estimate as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "F((anchor( o) ,tree( o))ET) F((anchor(o:},-)ET) 3 Practical Issues",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The extended goal of this project was to provide a natural language interface for \"Jack\" (Badler et al., 1993) , a human-like agent that answers questions and carries out instructions in a virtual 3-D environment. The system's restricted domain makes unknown words and unknown syntactic structures unlikely, and th~ goal of translating inputs into a formal language for the agent avoids the <langer of modifier scoping ambiguity (which our model does not evaluate), since the scoping of modifier adjuncts can usually be ignored in transfer. lt is for this reason that we concentrate our attention on parsing attachment ambiguity at the expense of other problems which might seem more relevant in free text applications. We consider our approach orthogonal to statistical smoothing techniques such as ( Charniak, 1997) for addressing the sparse data problem, and for this reason do not discuss them.",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 110,
                        "text": "(Badler et al., 1993)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 800,
                        "end": 817,
                        "text": "( Charniak, 1997)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "See(Schabes and Shieber, 1994) for a description of the distinction between modifier and predicative auxiliaries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Although since the null-adjunction probability only conditions on the parent tree, it will be a constant in every case, and can be ignored in estimating the maximum probability.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Simulating humans: Computer graphics animation and control",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Badler",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Phillips",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Webber",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Badler, N., Phillips, C., and Webber, B. (1993). Simulating humans: Computer graphics ani- mation and control. Oxford University Press, New York, NY.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Statistical parsing with a context-free grammar and word statistics",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Fourteenth National Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics. In Fourteenth National Conference on Artificial Intelligence, Providence, Rhode Island.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Three generative, lexicalised models for statistical parsing",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics {ACL '97)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics {ACL '97).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Three new probabilistic models for dependency grammar",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the Sixteenth International Conference on Computational Linguistics {COLING '96}",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eisner, J. (1996). Three new probabilistic mod- els for dependency grammar. In Proceedings of the Sixteenth International Conference on Computational Linguistics {COLING '96}.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "An introduction to tree adjoining grammars",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "Mathematics of Language. John Benjamins",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshi, A. K. (1987). An introduction to tree ad- joining grammars. In Manaster-Ramer, A., editor, Mathematics of Language. John Ben- jamins, Amsterdam.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Probabilistic tree-adjoining grammar as a framework for statistical natural language processing",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Resnik",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings of the Fourteenth International Conference on Computational Linguistics (COLING '92}",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Resnik, P. (1992). Probabilistic tree-adjoining grammar as a framework for statistical nat- ural language processing. In Proceedings of the Fourteenth International Conference on Computational Linguistics (COLING '92}, Nantes, France.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Stochastic lexicalized tree-adjoining grammars",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Schabes",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings of the Fourteenth International Conference on Computational Linguistics (COLING '92}",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schabes, Y. (1992). Stochastic lexicalized tree-adjoining grammars. In Proceedings of the Fourteenth International Conference on Computational Linguistics (COLING '92}, Nantes, France.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Parsing strategies with lexicalized grammars: Applications to tree adjoining grammars",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Schabes",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Abeille",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Proceedings of the 12th International Conference on Computational Linguistics (COLING '88}",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schabes, Y., Abeille, A., and Joshi, A. K. (1988). Parsing strategies with lexicalized grammars: Applications to tree adjoining grammars. In Proceedings of the 12th Inter- national Conference on Computational Lin- guistics (COLING '88}, Budapest, Hungary.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An alternative conception of tree-adjoining derivation",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Schabes",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "M"
                        ],
                        "last": "Shieber",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Linguistics",
                "volume": "20",
                "issue": "1",
                "pages": "91--124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Schabes, Y. and Shieber, S. M. (1994). An al- ternative conception of tree-adjoining deriva- tion. Computational Linguistics, 20(1):91- 124.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The use of shared forests in tree adjoining grammar parsing",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Vijay-Shanker",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Weir",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proceedings of EA CL '93",
                "volume": "",
                "issue": "",
                "pages": "384--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vijay-Shanker, K. and Weir, D. (1993). The use of shared forests in tree adjoining grammar parsing. In Proceedings of EA CL '93, pages 384-393.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Figure 2: Semantic dependencies"
            }
        }
    }
}