File size: 106,779 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:28.889423Z"
    },
    "title": "Lightweight Models for Multimodal Sequential Data",
    "authors": [
        {
            "first": "Soumya",
            "middle": [],
            "last": "Sourav",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The University of Texas at Dallas",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Jessica",
            "middle": [],
            "last": "Ouyang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The University of Texas at Dallas",
                "location": {}
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Human language encompasses more than just text; it also conveys emotions through tone and gestures. We present a case study of three simple and efficient Transformer-based architectures for predicting sentiment and emotion in multimodal data. The Late Fusion model merges unimodal features to create a multimodal feature sequence, the Round Robin model iteratively combines bimodal features using cross-modal attention, and the Hybrid Fusion model combines trimodal and unimodal features together to form a final feature sequence for predicting sentiment. Our experiments show that our small models are effective and outperform the publicly released versions of much larger, state-of-the-art multimodal sentiment analysis systems.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Human language encompasses more than just text; it also conveys emotions through tone and gestures. We present a case study of three simple and efficient Transformer-based architectures for predicting sentiment and emotion in multimodal data. The Late Fusion model merges unimodal features to create a multimodal feature sequence, the Round Robin model iteratively combines bimodal features using cross-modal attention, and the Hybrid Fusion model combines trimodal and unimodal features together to form a final feature sequence for predicting sentiment. Our experiments show that our small models are effective and outperform the publicly released versions of much larger, state-of-the-art multimodal sentiment analysis systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Language is composed of three different modalities: text, audio, and video. These three modalities together make it easier for humans to convey emotion and sentiment. Thus, a machine learning model for sentiment analysis needs to learn the features and interactions of all three modalities. For example, a frown in the video can alter the emotion expressed in the text transcript, or audio intensity can help determine if a speaker is getting agitated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Multimodal learning has recently received a good deal of attention from the natural language processing community [Sun et al., 2016 , Chen et al., 2018 , Pham et al., 2019 . The Transformer network [Vaswani et al., 2017] , with its self-attention modules, has achieved strong performance in multimodal learning; attention provides a natural way to model the relationship between pairs of modalities.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 131,
                        "text": "[Sun et al., 2016",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 132,
                        "end": 151,
                        "text": ", Chen et al., 2018",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 152,
                        "end": 171,
                        "text": ", Pham et al., 2019",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 198,
                        "end": 220,
                        "text": "[Vaswani et al., 2017]",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work we investigate three small, lightweight, Transformer-based architectures for multimodal sentiment analysis and emotion recog-nition. Our first model is an implementation of the Late Fusion model commonly used as a baseline system, which assigns individual Transformer blocks to each of the three modalities for feature extraction and then combines these unimodal features to learn cross-modal interactions. The second model is an implementation of the Round Robin approach; the model generates bimodal features by using cross-modal attention to combine pairs of modalities, one pair at a time. Our last model is a Hybrid of the early and late fusion schemes. This model merges the features extracted using a late fusion pipeline, as well as those from an early fusion pipeline, where the three modalities are concatenated and passed through a single Transformer block for feature extraction;.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We present experiments using these three models on three multimodal datasets: IEMOCAP [Busso et al., 2008] , an emotion recognition dataset, and CMU-MOSI [Zadeh et al., 2016] and CMU-MOSEI [Zadeh et al., 2018b] , two multimodal sentiment analysis datasets. Our results show that our small models are competitive with state-of-the-art models that use much more complex architectures.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 106,
                        "text": "[Busso et al., 2008]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 154,
                        "end": 174,
                        "text": "[Zadeh et al., 2016]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 189,
                        "end": 210,
                        "text": "[Zadeh et al., 2018b]",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our main contributions are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We present three lightweight architectures for multimodal sentiment analysis that achieve comparable results to much larger, state-ofthe-art models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We analyze the effect of removing or simplifying components of state-of-the-art multimodal architectures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We conduct experiments on small training sets, demonstrating the ability of our lightweight architectures to leverage limited training data and computational resources.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We do not give an exhaustive list of prior work in multimodal sentiment analysis, but focus on recent neural approaches that achieved state-of-the-art performance at their times of publication.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The Memory Fusion Network (MFN) of Zadeh et al. [2018a] uses a separate LSTM to encode each of the three modalities and then uses attention to model cross-modal interactions for different combinations of modalities. The Recurrent Attended Variation Embedding Network (RAVEN) of Wang et al. [2019] encodes the audio and video features using two recurrent neural networks; these features are combined with the textual input using cross-modal attention in a Gated Modality Mixing Network. The Multi-Attention Recurrent Network (MARN) of Zadeh et al. [2018c] is an LSTM-based architecture that stores representations of each of the three modalities, which are then combined using a multi-attention block. Finally, the Multimodal Cyclic Translation Network (MCTN) of Pham et al.",
                "cite_spans": [
                    {
                        "start": 35,
                        "end": 55,
                        "text": "Zadeh et al. [2018a]",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 278,
                        "end": 296,
                        "text": "Wang et al. [2019]",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 534,
                        "end": 554,
                        "text": "Zadeh et al. [2018c]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recurrent Network Approaches",
                "sec_num": "2.1"
            },
            {
                "text": "[2019] produces multimodal features by translating one modality into another, learning a joint encoding in that direction, and then back-translating to learn a joint encoding in the other direction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recurrent Network Approaches",
                "sec_num": "2.1"
            },
            {
                "text": "The Transformer network [Vaswani et al., 2017] has been used widely in neural machine translation [Tubay and Costa-juss\u00e0, 2018 , Edunov et al., 2018 , Xia et al., 2019 , Devlin et al., 2019 and has proven effective for sentiment analysis and emotion recognition. However, existing architectures are very dense compared to our three lightweight models. The Multimodal Transformer (MuLT) of Tsai et al. [2019] modifies the Transformer block to compute cross-modal attention for two modalities at a time. It combines modalities in directed pairs, using a total of six Transformers, whose outputs are then merged into a single multimodal representation. Unlike other works, MuLT is able to handle cases where the three modalities are not aligned at the word level; it learns soft alignments via the cross-modal attention weights for each pair of modalities. The model works well in the unaligned case, and in the aligned case, it gives state of the art performance the Happy emotion in IEMO-CAP.",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 46,
                        "text": "[Vaswani et al., 2017]",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 98,
                        "end": 126,
                        "text": "[Tubay and Costa-juss\u00e0, 2018",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 127,
                        "end": 148,
                        "text": ", Edunov et al., 2018",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 149,
                        "end": 167,
                        "text": ", Xia et al., 2019",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 168,
                        "end": 189,
                        "text": ", Devlin et al., 2019",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 389,
                        "end": 407,
                        "text": "Tsai et al. [2019]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Network Approaches",
                "sec_num": "2.2"
            },
            {
                "text": "The Factorized Multimodal Transformer (FMT)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Network Approaches",
                "sec_num": "2.2"
            },
            {
                "text": "of introduces Factorized Multimodal Self-Attention (FSM) modules, which compute self-attention over unimodal, bimodal, and trimodal inputs in parallel. FMT gives state of the art performance in the word-aligned case on CMU-MOSI and on the Sad, Angry, and Neutral emotions in IEMOCAP. We use FMT, along with the word-aligned version of MuLT, as baselines for comparison in our experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Network Approaches",
                "sec_num": "2.2"
            },
            {
                "text": "The Interaction Canonical Correlation Network (ICCN) [Sun et al., 2020] implements Deep Canonical Correlation Analysis (DCCA) [Andrew et al., 2013] to extract bimodal features from the outer product matrix of a pair of modalities. Sun et al. use two pairs, text with audio and text with video;",
                "cite_spans": [
                    {
                        "start": 53,
                        "end": 71,
                        "text": "[Sun et al., 2020]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 126,
                        "end": 147,
                        "text": "[Andrew et al., 2013]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Canonical Correlation Approach",
                "sec_num": "2.3"
            },
            {
                "text": "these \"text-based audio\" and \"text-based video\" features are concatenated with purely textual features to form a multimodal embedding for sentiment analysis. ICCN gives state-of-the-art performance on CMU-MOSEI and on the Sad emotion in IEMOCAP.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Canonical Correlation Approach",
                "sec_num": "2.3"
            },
            {
                "text": "3 Models",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Canonical Correlation Approach",
                "sec_num": "2.3"
            },
            {
                "text": "We use T , A, and V , to represent the three modalities: text, audio, and video, respectively. Following the notation in [Tsai et al., 2019] and , we denote the input as",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 140,
                        "text": "[Tsai et al., 2019]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "X T,A,V = {x T , x A , x V }",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "x i = [x t,i ] for i \u2208 [T, A, V ] and t \u2208 [1, \u03c4 ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "and \u03c4 is the length of the input sentence. Each of the three modalities has its own lowlevel features, such as the Mel spectrogram for audio or facial landmarks for video. These features are extracted at different sampling rates -one set of features per word or character for text, per millisecond for audio, and per frame for video -and thus the input sequences for the three modalities are often different. A five-thousand-millisecond audio sequence, for example, may be only a three-word sequence from a textual perspective and a 50-frame sequence from a video perspective.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "We align the audio and video to the text using the timestamps provided in the text transcripts. The set of audio or video samples that correspond to a word in the transcript are combined using a series of 1D convolutional layers:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "X {T,A,V } = conv1D X {T,A,V } \u2208 R d",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "where d is a common feature dimension size. This procedure ensures that the input sequence length is the same across modalities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Alignment",
                "sec_num": "3.1"
            },
            {
                "text": "Our three lightweight architectures are comprised of Transformer blocks [Vaswani et al., 2017] , which are non-recurrent neural networks that can process sequential data. It consists of alternating attention and linear layers. The attention block of a Transformer uses multi-head attention, where each head computes scaled dot product attention:",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 94,
                        "text": "[Vaswani et al., 2017]",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "attn(Q, K, V ) = softmax QK T \u221a d k V head i = attn QW Q i , KW K i , V W V i multi(Q, K, V ) = [head 1 ; . . . ; head h ]W O",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "where Q, K, V represent the query, key and value; d k is the key dimension size;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "W Q i , W K i , W V",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "i are learned projection matrices for head i; and W O is a learned projection matrix for the attention block.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "In addition, Vaswani et al. note that positional encodings must be added to Transformer input because there is no sequential information present in the Transformer itself: Figure 1 shows our Late Fusion architecture. Three unimodal Transformers learn high-level features from the low-level input features of each modality. The outputs of these unimodal Transformers are then merged together using a simple summation, rather than the merge layer used in previous work [Tsai et al., 2019] , and passed to a residual network of linear layers [Xie et al., 2017] for sentiment prediction. Figure 2 shows our Round Robin architecture, which is a simplification of MuTL [Tsai et al., 2019] . Three cross-modal Transformers learn bimodal feaatures for ordered pairs of modalities, where the query is one modality and the key/value is the other. We use only three pairs -text query and audio key/value, audio query and video key/value, and video query and text key/valuewith bimodal information flowing in only one direction; in contrast, MuLT uses six pairs of crossmodal Transformers, with information flowing in both directions. MuLT also uses three Transformers, one for each modality, to merge the two pairs sharing that modality as key/value; our pairwise features are simply concatenated and passed to the output residual network. Figure 3 shows our Hybrid Fusion architecture, which uses both an early fusion approach that concatenates the inputs and passes them to a single Transformer to learn trimodal features, as well as a late fusion approach that passes each modality through a separate Transformer to learn unimodal features. The trimodal and unimodal features are concatenated together and merged using a layer of Gated Recurrent Units . ",
                "cite_spans": [
                    {
                        "start": 467,
                        "end": 486,
                        "text": "[Tsai et al., 2019]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 539,
                        "end": 557,
                        "text": "[Xie et al., 2017]",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 663,
                        "end": 682,
                        "text": "[Tsai et al., 2019]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 172,
                        "end": 180,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 584,
                        "end": 592,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1329,
                        "end": 1337,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "P E (pos,2i) = sin(pos/10000 2i/d model ) P E (pos,2i+1) = cos(pos/10000 2i/d model ) X =X + P E",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer Blocks",
                "sec_num": "3.2"
            },
            {
                "text": "We train our models on a single NVIDIA K80 GPU. We tune hyperparameter values for our model using the validation sets provided by our evaluation datasets; we achieve the best validation performance using 8 attention blocks per Transformer, each with 5 attention heads, and a hidden size was set to 40. The dropout rate was set to 0.15; the best learning rate for IEMOCAP was 0.02, while for CMU-MOSI and CMU-MOSEI it was 0.01, with batch sizes of 32, 128, and 40, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "IEMOCAP [Busso et al., 2008] consists of video recordings of 151 conversation sessions (dialogues), totaling around 6k verbal interactions. This dataset is intended for multilabel emotion classification; we evaluate on the four labeled emotions (Happy, Sad, Angry, and Neutral) used in previous work [Wang et al., 2019] ; also following previous work, we report binary accuracy and F1 score as the evaluation metrics on this dataset.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 28,
                        "text": "[Busso et al., 2008]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 300,
                        "end": 319,
                        "text": "[Wang et al., 2019]",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "CMU-MOSI [Zadeh et al., 2016 ] is a sentiment analysis dataset of 2199 short monologues labeled in the range [\u22123, 3], with \u22123 being strongly negative and +3 being strongly positive. Following previous work, we report seven-class and binary accuracy, F1 score, mean absolute error, and correlation with human judgments.",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 28,
                        "text": "[Zadeh et al., 2016",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "CMU-MOSEI [Zadeh et al., 2018b ] is a sentiment and emotion analysis dataset of 23K movie reviews from YouTube. As with CMU-MOSI, it is labeled in the range of [\u22123, 3], and its evaluation metrics are the same as in CMU-MOSI.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 30,
                        "text": "[Zadeh et al., 2018b",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.1"
            },
            {
                "text": "Text Features: For word-level textual features we use the pretrained, 300-dimensional, Common Crawl GloVe embeddings [Pennington et al., 2014] .",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 142,
                        "text": "[Pennington et al., 2014]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features and Alignment",
                "sec_num": "4.2"
            },
            {
                "text": "Audio features, including Mel-frequency cepstral coefficients and transformations thereof, as well as harmonic, percussive, and glottal source parameters. We also use COVERAP [Degottex et al., 2014 ] to extract pitch tracking and voiced/unvoiced sloping parameters, peak slope parameters, and maximum dispersion quotients. Video Features: We extract 35 facial units using Facet [iMotions, 2017] , as well as 35 facial action units and 30 facial landmark and gaze fea-tures using OpenFace [Baltrusaitis et al., 2018] .",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 197,
                        "text": "[Degottex et al., 2014",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 378,
                        "end": 394,
                        "text": "[iMotions, 2017]",
                        "ref_id": null
                    },
                    {
                        "start": 488,
                        "end": 515,
                        "text": "[Baltrusaitis et al., 2018]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features and Alignment",
                "sec_num": "4.2"
            },
            {
                "text": "We compare our results with the state-of-the-art Multimodal Transformer (MuLT) 1 [Tsai et al., 2019] and Factorized Multimodal Transformer (FMT) , as well as Memory Fusion Network (MFN) [Zadeh et al., 2018a] , Recurrent Attended Variation Embedding Network (RAVEN) [Wang et al., 2019] , Multi-Attention Recurrent Network (MARN) [Zadeh et al., 2018c] , and Multimodal Cyclic Translation Network (MCTN) [Pham et al., 2019] . These systems are described in Section 2; all attained state of the art on at least one of the evaluation datasets at their times of publication, and all use a similar feature set to our work.",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 100,
                        "text": "[Tsai et al., 2019]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 186,
                        "end": 207,
                        "text": "[Zadeh et al., 2018a]",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 265,
                        "end": 284,
                        "text": "[Wang et al., 2019]",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 328,
                        "end": 349,
                        "text": "[Zadeh et al., 2018c]",
                        "ref_id": null
                    },
                    {
                        "start": 401,
                        "end": 420,
                        "text": "[Pham et al., 2019]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baseline Models",
                "sec_num": "4.3"
            },
            {
                "text": "We present the results of our model compared to the reported results of our baseline models in Tables 1, 2, and 3. The best-performing MuLT and FMT models are extremely dense, with around 15 and 77 million parameters, respectively. In contrast, our models have between 7-9 million trainable parameters, depending on the architecture; despite using about half as many parameters as MuLT, we see that our models produce comparable results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "We perform fairly well on IEMOCAP, which has around 2717 training samples; we achieve scores around 1-2% below the best-performing model, FMT. On the tiny CMU-MOSI dataset, which has just 1284 training samples, our Hybrid Fusion and Late Fusion models give state of the art results on seven-way and binary accuracy, respectively. The CMU-MOSEI dataset is much larger than IEMOCAP and CMU-MOSI, with close to 16265 training samples. Our models perform the weakest on this dataset, falling short of the state of the art models by around 2-3%, suggesting that our models may be too small to learn the entire distribution. Neither MARN [Zadeh et al., 2018c] nor FMT reports results on CMU-MOSEI, so they are omitted from Table 3 .",
                "cite_spans": [
                    {
                        "start": 632,
                        "end": 653,
                        "text": "[Zadeh et al., 2018c]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 717,
                        "end": 724,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "We also experiment with the open source code available for MuLT and FMT (denoted by *). Using the hyperparameter settings provided 2 , we were nevertheless unable to match those systems' reported performance, possibly due to differences 2 Batch size for FMT* is not given; we use 20, the default. resulting from random initialization. In training MuLT* and FMT*, we observe that the models are overfitting, with a mean difference of 15-20% between the train and test accuracy; in contrast, the largest train-test accuracy difference among our three models is only about 10%. The smaller number of parameters in our model reduces the risk of overfitting on smaller datasets, while still achieving good performance on larger datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "We compare the training time and memory footprint of our models with MuLT* and FMT* in Table 4 3 . All models are trained on a single NVIDIA K80 GPU with 24GB of memory. We train for 30 epochs on IEMOCAP, 100 on CMU-MOSI and 40 on CMU-MOSEI (the number of epochs needed for MuLT to converge, as reported by Tsai et al. [2019] ). On the smallest dataset, CMU-MOSI, training MuLT* took just over seven minutes, while FMT* took 2.5 hours. Our models train in under three minutes and outperform both MuLT* and FMT*, and this difference in training speed holds for CMU-MOSI and CMU-MOSEI as well. Thus our model, available in the supplementary materials 4 , is the fastest and best-performing multimodal sentiment system currently available for public use.",
                "cite_spans": [
                    {
                        "start": 307,
                        "end": 325,
                        "text": "Tsai et al. [2019]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of Lightweight Architectures",
                "sec_num": "5.1"
            },
            {
                "text": "We also conduct experiments on a substantially reduced IEMOCAP training subset of 1284 samples, matching the size of CMU-MOSI, which we create by randomly sampling from the full IEMO-CAP training set. Table 5 shows the results of our models, as well as MuLT* and FMT*, retrained on this smaller IEMOCAP training set, and evaluated on the full IEMOCAP test set. We see that our models, with their smaller numbers of parameters, are better able to learn from limited training data than are state-of-the-art models with double or more the number of trainable parameters.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 201,
                        "end": 208,
                        "text": "Table 5",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Lightweight Architectures",
                "sec_num": "5.1"
            },
            {
                "text": "We perform ablation experiments on our models using the IEMOCAP dataset; ablation results for CMU-MOSI and CMU-MOSEI are omitted due to space constraints, but exhibit similar trends. Table 6 presents the results of modality ablation on the simplest Late Fusion model; it clearly shows that unimodal and bimodal models are unable to match the performance of a full multimodal model. This demonstrates the importance of considering all modalities when analyzing spoken language, since some of the emotions or sentiment may be dependent more on the audio or the visual actions of the speaker, rather than the text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of Architecture Components",
                "sec_num": "5.2"
            },
            {
                "text": "Examining the unimodal results, we see that the Text modality is the most informative for predicting Happy, Sad, and Neutral, while Audio is the most informative for Angry. However, the bimodal results do not always match the unimodal results. The best-performing bimodal model for Happy is [V,A], despite Video being the worst-performing single modality, and [T,A] is the worst-performing bimodal model, despite both Text and Audio outperforming Video individually. Considering the other three emotions, we see that the best bimodal model varies between [T,A] and [V,A], with [T,V] generally performing the worst. Table 7 shows the results of modality ablation on the Round Robin model; as the architecture does not support unimodal experiments, only bimodal results are shown. Comparing Table 6 to Table 7 , we see that the cross-modal Transformers of the full Round Robin model are outperformed by the full Late Fusion model. However, the relative performance among modality pairs is consistent across Tables 6 and 7 .",
                "cite_spans": [
                    {
                        "start": 577,
                        "end": 582,
                        "text": "[T,V]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 615,
                        "end": 622,
                        "text": "Table 7",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 789,
                        "end": 796,
                        "text": "Table 6",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 800,
                        "end": 807,
                        "text": "Table 7",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 1005,
                        "end": 1019,
                        "text": "Tables 6 and 7",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Architecture Components",
                "sec_num": "5.2"
            },
            {
                "text": "Finally, Table 8 shows the results of modality ablation on the Hybrid Fusion model, where we compare the relative contributions of the early fusion and late fusion halves of the architecture. The top of the table shows the results of reducing the early fusion half to only two modalities while retaining all three modalities in the late fusion half, and the bottom shows the results of reducing the late fusion half to two modalities while retaining all three in the early fusion half; in both sets of experiments, the overall model has access to all three modalities, but only through either the early fusion path or the late fusion path.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 9,
                        "end": 16,
                        "text": "Table 8",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Analysis of Architecture Components",
                "sec_num": "5.2"
            },
            {
                "text": "Surprisingly, although standalone early fusion models are outperformed by standalone late fusion models [Tsai et al., 2019] , we find that a hybrid model containing a full, trimodal early fusion half is more robust to modality ablation in its late fusion half than a model with a full late fusion half is to an ablated early fusion half. Our results in this experiment also show greater variability among modality pairs. The [T,A] combination, which gave the best performance in the Late Fusion and Round Robin experiments, remains the strongest modality pair for the full early fusion, bimodal late fusion model. In contrast, for the bimodal early fusion, full late fusion model, [T,A] is outperformed by one of the two Video-based modality pairs, [T,V] or [V,A], on each of the four emotions, suggesting that the performance gap of early versus late fusion differs across modalities.",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 123,
                        "text": "[Tsai et al., 2019]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 749,
                        "end": 754,
                        "text": "[T,V]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of Architecture Components",
                "sec_num": "5.2"
            },
            {
                "text": "The effect of direction on our Round Robin model is shown in Table 9 ; this experiment shows the impact of the direction of information flow across modalities within the model. Comparing our results to those of MuLT and MuLT*, we see that capturing information flow in one direction, text to audio to video and back to text, is enough for a model to give good predictions, without requiring the additional overhead of handling both directions. We can also see that the direction does matter; the performance of the Round Robin model with information flowing in the opposite direction, from video to audio to text and back to video, is relatively poor. These results suggest that the interactions between pairs of modalities are directed.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 61,
                        "end": 68,
                        "text": "Table 9",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Order of Modalities in Round Robin",
                "sec_num": "5.2.1"
            },
            {
                "text": "We have presented three lightweight architectures for multimodal sentiment analysis and emotion recognition. The Late Fusion model merges unimodal features, the Round Robin model iteratively combines bimodal features, and the Hybrid Early-Late Fusion model combines early-fusion trimodal and late-fusion unimodal features. Our proposed models are much smaller in size compared to existing state-of-the-art models; they are able to attain new state-of-the-art scores on the CMU-MOSI and CMU-MOSEI datasets on two metrics, while remaining competitive on the others. Further, our experiments analyzing the relative contribution of modalities and architecture components in our models suggest new directions for developing multimodal systems. We hope that our simple architectures for sentiment and emotion detection, currently the fastest and best-performing publicly available system, as well as the insights revealed in our experimental results, can be useful for further research in the field.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We use the aligned version of MuLT for fair comparison with models that obligatorily use word alignments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "FMT* does not provide hyperparameter settings for CMU-MOSEI, so those results are omitted.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We will release it online after the anonymity period.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Deep canonical correlation analysis",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Arora",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bilmes",
                        "suffix": ""
                    },
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Livescu",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Andrew, R. Arora, J. Bilmes, and Karen Livescu. Deep canonical correlation analysis. In ICML, 2013.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Openface 2.0: Facial behavior analysis toolkit",
                "authors": [
                    {
                        "first": "Tadas",
                        "middle": [],
                        "last": "Baltrusaitis",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Chong",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018)",
                "volume": "",
                "issue": "",
                "pages": "59--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency. Openface 2.0: Facial behavior analysis toolkit. 2018 13th IEEE Inter- national Conference on Automatic Face Gesture Recognition (FG 2018), pages 59-66, 2018.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Iemocap: interactive emotional dyadic motion capture database",
                "authors": [
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Busso",
                        "suffix": ""
                    },
                    {
                        "first": "Murtaza",
                        "middle": [],
                        "last": "Bulut",
                        "suffix": ""
                    },
                    {
                        "first": "Chi-Chun",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Abe",
                        "middle": [],
                        "last": "Kazemzadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [
                            "Mower"
                        ],
                        "last": "Provost",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Jeannette",
                        "middle": [
                            "N"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Sungbok",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shrikanth",
                        "middle": [
                            "S"
                        ],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Language Resources and Evaluation",
                "volume": "42",
                "issue": "",
                "pages": "335--359",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower Provost, Samuel Kim, Jeannette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan. Iemocap: interactive emotional dyadic motion capture database. Language Resources and Evaluation, 42:335-359, 2008.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The best of both worlds: Combining recent advances in neural machine translation",
                "authors": [
                    {
                        "first": "Mia",
                        "middle": [],
                        "last": "Xu Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Orhan",
                        "middle": [],
                        "last": "Firat",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Bapna",
                        "suffix": ""
                    },
                    {
                        "first": "Melvin",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Zhi-Feng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Macduff",
                        "middle": [],
                        "last": "Hughes",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang Macherey, George Foster, Llion Jones, Niki Parmar, Michael Schuster, Zhi-Feng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds: Combining recent advances in neu- ral machine translation. In ACL, 2018.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Covarep -a collaborative voice analysis repository for speech technologies",
                "authors": [
                    {
                        "first": "Gilles",
                        "middle": [],
                        "last": "Degottex",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Kane",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Drugman",
                        "suffix": ""
                    },
                    {
                        "first": "Tuomo",
                        "middle": [],
                        "last": "Raitio",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "960--964",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gilles Degottex, John Kane, Thomas Drugman, Tuomo Raitio, and Stefan Scherer. Covarep -a collabo- rative voice analysis repository for speech technolo- gies. 2014 IEEE International Conference on Acous- tics, Speech and Signal Processing (ICASSP), pages 960-964, 2014.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi- rectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Understanding back-translation at scale",
                "authors": [
                    {
                        "first": "Sergey",
                        "middle": [],
                        "last": "Edunov",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "In EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at scale. In EMNLP, 2018.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Facial expression analysis",
                "authors": [],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "iMotions. Facial expression analysis, 2017. URL https://rb.gy/hkrcc4.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Multimodal language analysis with recurrent multistage fusion",
                "authors": [
                    {
                        "first": "Ziyin",
                        "middle": [],
                        "last": "Paul Pu Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paul Pu Liang, Ziyin Liu, Amir Zadeh, and Louis- Philippe Morency. Multimodal language analysis with recurrent multistage fusion. EMNLP, 2018.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Efficient low-rank multimodal fusion with modality-specific factors",
                "authors": [
                    {
                        "first": "Zhun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Varun",
                        "middle": [],
                        "last": "Bharadhwaj Lakshminarasimhan",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhun Liu, Ying Shen, Varun Bharadhwaj Lakshmi- narasimhan, Paul Pu Liang, Amir Zadeh, and Louis- Philippe Morency. Efficient low-rank multimodal fusion with modality-specific factors. In ACL, 2018.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Neurospeech: An open-source software for parkinson's speech analysis",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Juan",
                        "suffix": ""
                    },
                    {
                        "first": "Juan",
                        "middle": [
                            "Camilo"
                        ],
                        "last": "Orozco-Arroyave",
                        "suffix": ""
                    },
                    {
                        "first": "Jesus",
                        "middle": [
                            "Francisco"
                        ],
                        "last": "Vasquez-Correa",
                        "suffix": ""
                    },
                    {
                        "first": "Raman",
                        "middle": [],
                        "last": "Vargas-Bonilla",
                        "suffix": ""
                    },
                    {
                        "first": "Najim",
                        "middle": [],
                        "last": "Arora",
                        "suffix": ""
                    },
                    {
                        "first": "Phani",
                        "middle": [
                            "S"
                        ],
                        "last": "Dehak",
                        "suffix": ""
                    },
                    {
                        "first": "Heidi",
                        "middle": [],
                        "last": "Nidadavolu",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Christensen",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Rudzicz",
                        "suffix": ""
                    },
                    {
                        "first": "Hamid",
                        "middle": [
                            "R"
                        ],
                        "last": "Yancheva",
                        "suffix": ""
                    },
                    {
                        "first": "Alyssa",
                        "middle": [],
                        "last": "Chinaei",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolai",
                        "middle": [],
                        "last": "Vann",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Vogler",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Tobias Bocklet, Milos Cernak, Julius Hannink, and Elmar Noth",
                "volume": "77",
                "issue": "",
                "pages": "207--221",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Juan R. Orozco-Arroyave, Juan Camilo Vasquez- Correa, Jesus Francisco Vargas-Bonilla, Raman Arora, Najim Dehak, Phani S. Nidadavolu, Heidi Christensen, Frank Rudzicz, Maria Yancheva, Hamid R. Chinaei, Alyssa Vann, Nikolai Vogler, To- bias Bocklet, Milos Cernak, Julius Hannink, and El- mar Noth. Neurospeech: An open-source software for parkinson's speech analysis. Digital Signal Pro- cess., 77:207-221, 2018.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Glove: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word represen- tation. In EMNLP, 2014.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Found in translation: Learning robust joint representations by cyclic translations between modalities",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Manzini",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Pham, Paul Pu Liang, Thomas Manzini, Louis- Philippe Morency, and Barnabas Poczos. Found in translation: Learning robust joint representations by cyclic translations between modalities. In AAAI, 2019.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Look, listen, and decode: Multimodal speech recognition with images",
                "authors": [
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "F"
                        ],
                        "last": "Harwath",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "IEEE Spoken Language Technology Workshop (SLT)",
                "volume": "",
                "issue": "",
                "pages": "573--578",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Felix Sun, David F. Harwath, and James R. Glass. Look, listen, and decode: Multimodal speech recog- nition with images. 2016 IEEE Spoken Language Technology Workshop (SLT), pages 573-578, 2016.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis",
                "authors": [
                    {
                        "first": "Zhongkai",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Sarma",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Sethares",
                        "suffix": ""
                    },
                    {
                        "first": "Yingyu",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhongkai Sun, P. Sarma, W. Sethares, and Yingyu Liang. Learning relationships between text, audio, and video via deep canonical correlation for mul- timodal language analysis. ArXiv, abs/1911.05544, 2020.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Multimodal transformer for unaligned multimodal language sequences",
                "authors": [
                    {
                        "first": "Yao-Hung Hubert",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "Shaojie",
                        "middle": [],
                        "last": "Bai",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "Zico"
                        ],
                        "last": "Kolter",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the conference. Association for Computational Linguistics. Meeting",
                "volume": "",
                "issue": "",
                "pages": "6558--6569",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang, J. Zico Kolter, Louis-Philippe Morency, and Rus- lan Salakhutdinov. Multimodal transformer for un- aligned multimodal language sequences. Proceed- ings of the conference. Association for Computa- tional Linguistics. Meeting, 2019:6558-6569, 2019. version 2.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Neural machine translation with the transformer and multisource romance languages for the biomedical wmt 2018 task",
                "authors": [
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Tubay",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "WMT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brian Tubay and Marta R. Costa-juss\u00e0. Neural ma- chine translation with the transformer and multi- source romance languages for the biomedical wmt 2018 task. In WMT, 2018.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998-6008, 2017.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Words can shift: Dynamically adjusting word representations using nonverbal behaviors",
                "authors": [
                    {
                        "first": "Yansen",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Zhun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "7216--7223",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yansen Wang, Ying Shen, Zhun Liu, Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Words can shift: Dynamically adjusting word representa- tions using nonverbal behaviors. Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, 33 1:7216- 7223, 2019.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Tied transformers: Neural machine translation with shared encoder and decoder",
                "authors": [
                    {
                        "first": "Yingce",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Tian",
                        "suffix": ""
                    },
                    {
                        "first": "Di",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. Tied transformers: Neural machine trans- lation with shared encoder and decoder. In AAAI, 2019.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Aggregated residual transformations for deep neural networks",
                "authors": [
                    {
                        "first": "Saining",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Ross",
                        "middle": [
                            "B"
                        ],
                        "last": "Girshick",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Doll\u00e1r",
                        "suffix": ""
                    },
                    {
                        "first": "Zhuowen",
                        "middle": [],
                        "last": "Tu",
                        "suffix": ""
                    },
                    {
                        "first": "Kaiming",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "5987--5995",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saining Xie, Ross B. Girshick, Piotr Doll\u00e1r, Zhuowen Tu, and Kaiming He. Aggregated residual transfor- mations for deep neural networks. 2017 IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR), pages 5987-5995, 2017.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Multimodal sentiment intensity analysis in videos: Facial gestures and verbal messages",
                "authors": [
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Rowan",
                        "middle": [],
                        "last": "Zellers",
                        "suffix": ""
                    },
                    {
                        "first": "Eli",
                        "middle": [],
                        "last": "Pincus",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "IEEE Intelligent Systems",
                "volume": "31",
                "issue": "",
                "pages": "82--88",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis- Philippe Morency. Multimodal sentiment intensity analysis in videos: Facial gestures and verbal mes- sages. IEEE Intelligent Systems, 31:82-88, 2016.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Memory fusion network for multi-view sequential learning",
                "authors": [
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Navonil",
                        "middle": [],
                        "last": "Mazumder",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amir Zadeh, Paul Pu Liang, Navonil Mazumder, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Memory fusion network for multi-view sequential learning. In AAAI, 2018a. version 1.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Erik Cambria, and Louis-Philippe Morency. Multimodal language analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph",
                "authors": [
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amir Zadeh, Paul Pu Liang, Soujanya Poria, Erik Cam- bria, and Louis-Philippe Morency. Multimodal lan- guage analysis in the wild: Cmu-mosei dataset and interpretable dynamic fusion graph. In ACL, 2018b.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Prateek Vij, Erik Cambria, and Louis-Philippe Morency. Multi-attention recurrent network for human communication comprehension",
                "authors": [
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amir Zadeh, Paul Pu Liang, Soujanya Poria, Pra- teek Vij, Erik Cambria, and Louis-Philippe Morency. Multi-attention recurrent network for human com- munication comprehension. Proceedings of the ...",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence",
                "authors": [],
                "year": 2018,
                "venue": "",
                "volume": "2018",
                "issue": "",
                "pages": "5642--5649",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "AAAI Conference on Artificial Intelligence. AAAI Conference on Artificial Intelligence, 2018:5642- 5649, 2018c. version 2.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Factorized multimodal transformer for multimodal sequential learning. ArXiv, abs",
                "authors": [
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Zadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Chengfeng",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Kelly",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Yiwei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [
                            "Pu"
                        ],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 1911,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amir Zadeh, Chengfeng Mao, Kelly Shi, Yiwei Zhang, Paul Pu Liang, Soujanya Poria, and Louis- Philippe Morency. Factorized multimodal trans- former for multimodal sequential learning. ArXiv, abs/1911.09826, 2019.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "Architecture of our Late Fusion model. Unimodal Transformers process each modality separately; the outputs of these Transformers are summed and passed through a residual network of linear layers to produce the final prediction.",
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "text": "Architecture of our Round Robin model. Modalities are combined in a round-robin fashion via thrree cross-modal Transformers, one for each ordered pair of modalities: [T, A], [A, V ], [V, T ]. The outputs of these cross-modal Transformers are concatenated and passed through a residual network of linear layers to produce the final prediction.",
                "type_str": "figure",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "text": "Architecture of our Hybrid Fusion model. All three modalities are passed through an early fusion Transformer to produce trimodal features; in parallel, they are individually passed to separate Transformers to produce unimodal features. All features are then concatenated and passed through a GRU and a residual network of linear layers to produce the final prediction.",
                "type_str": "figure",
                "uris": null
            },
            "TABREF1": {
                "type_str": "table",
                "num": null,
                "text": "Emotion recognition results on IEMOCAP. The metrics are binary (one vs all) accuracy and the F1 score for each of the four emotions. * indicates results from open source code. Bold indicates scores higher than that of our model.",
                "html": null,
                "content": "<table><tr><td>Model</td><td colspan=\"3\">ACC7 ACC2 F1</td><td colspan=\"2\">MAE Corr</td></tr><tr><td>MARN</td><td>-</td><td>77.1</td><td>77.0</td><td>0.97</td><td>0.63</td></tr><tr><td>MFN</td><td>-</td><td>77.4</td><td>77.3</td><td>0.97</td><td>0.63</td></tr><tr><td>RAVEN</td><td>33.2</td><td>78.0</td><td>76.6</td><td>0.92</td><td>0.69</td></tr><tr><td>MCTN</td><td>35.6</td><td>79.3</td><td>79.1</td><td>0.91</td><td>0.68</td></tr><tr><td>ICCN</td><td>39.0</td><td>83.1</td><td>83.0</td><td>0.86</td><td>0.71</td></tr><tr><td>MuLT</td><td>40.0</td><td>83.0</td><td>82.8</td><td>0.87</td><td>0.70</td></tr><tr><td>MuLT*</td><td>30.7</td><td>77.5</td><td>76.9</td><td>1.04</td><td>0.66</td></tr><tr><td>FMT</td><td>-</td><td>83.5</td><td>83.5</td><td>0.84</td><td>0.74</td></tr><tr><td>FMT*</td><td>-</td><td>78.3</td><td>77.8</td><td>0.91</td><td>0.70</td></tr><tr><td>Late Fusion</td><td>40.2</td><td>83.6</td><td>80.0</td><td>0.92</td><td>0.69</td></tr><tr><td>Round Robin</td><td>39.3</td><td>78.1</td><td>76.7</td><td>0.96</td><td>0.68</td></tr><tr><td colspan=\"2\">Hybrid Fusion 40.6</td><td>82.1</td><td>79.9</td><td>0.94</td><td>0.69</td></tr></table>"
            },
            "TABREF2": {
                "type_str": "table",
                "num": null,
                "text": "Sentiment analysis results on CMU-MOSI. ACC7",
                "html": null,
                "content": "<table><tr><td colspan=\"6\">was not reported by some baselines. The metrics are seven-</td></tr><tr><td colspan=\"6\">way and binary accuracy, F1 score, mean absolute error, and</td></tr><tr><td colspan=\"6\">correlation with human judgments. All metrics are better</td></tr><tr><td colspan=\"4\">when higher, except for mean absolute error.</td><td/><td/></tr><tr><td>Model</td><td colspan=\"3\">ACC7 ACC2 F1</td><td colspan=\"2\">MAE Corr</td></tr><tr><td>MFN</td><td>45.0</td><td>76.9</td><td>77.0</td><td>0.71</td><td>0.54</td></tr><tr><td>RAVEN</td><td>50.0</td><td>79.1</td><td>79.5</td><td>0.61</td><td>0.66</td></tr><tr><td>MCTN</td><td>49.6</td><td>79.8</td><td>80.6</td><td>0.61</td><td>0.67</td></tr><tr><td>ICCN</td><td>51.6</td><td>84.2</td><td>84.2</td><td>0.57</td><td>0.71</td></tr><tr><td>MuLT</td><td>51.8</td><td>82.5</td><td>82.3</td><td>0.58</td><td>0.70</td></tr><tr><td>MuLT*</td><td>48.9</td><td>80.7</td><td>80.9</td><td>0.63</td><td>0.65</td></tr><tr><td>Late Fusion</td><td>52.3</td><td>80.7</td><td>80.7</td><td>0.61</td><td>0.69</td></tr><tr><td>Round Robin</td><td>51.4</td><td>80.6</td><td>79.9</td><td>0.62</td><td>0.66</td></tr><tr><td colspan=\"2\">Hybrid Fusion 51.9</td><td>80.6</td><td>80.5</td><td>0.61</td><td>0.68</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "text": "Sentiment analysis results on CMU-MOSEI. The metrics used are the same as inTable 2.",
                "html": null,
                "content": "<table/>"
            },
            "TABREF5": {
                "type_str": "table",
                "num": null,
                "text": "Comparison of training time and memory use among MuLT*, FMT*, and our models.",
                "html": null,
                "content": "<table><tr><td>Model</td><td/><td>Happy</td><td/><td>Sad</td><td/><td>Angry</td><td/><td>Neutral</td></tr><tr><td>Metric</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td></tr><tr><td>MuLT*</td><td>82.6</td><td>81.5</td><td>79.4</td><td>80.7</td><td>78.3</td><td>78.9</td><td>60.1</td><td>60.7</td></tr><tr><td>FMT*</td><td>82.1</td><td>81.2</td><td>80.2</td><td>80.9</td><td>80.0</td><td>81.7</td><td>60.5</td><td>60.2</td></tr><tr><td>Late Fusion</td><td>84.1</td><td>82.4</td><td>80.3</td><td>76.5</td><td>81.0</td><td>79.4</td><td>61.6</td><td>61.2</td></tr><tr><td>Round Robin</td><td>85.2</td><td>81.2</td><td>79.9</td><td>77.2</td><td>79.0</td><td>76.6</td><td>63.2</td><td>58.1</td></tr><tr><td colspan=\"2\">Hybrid Fusion 85.5</td><td>80.7</td><td>80.8</td><td>79.9</td><td>81.0</td><td>80.8</td><td>64.7</td><td>63.5</td></tr></table>"
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "text": "Results on the reduced IEMOCAP dataset of 1284 training samples. The metrics used are the same as inTable 1.",
                "html": null,
                "content": "<table><tr><td>Model</td><td/><td>Happy</td><td/><td>Sad</td><td/><td>Angry</td><td/><td>Neutral</td></tr><tr><td>Metric</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td></tr><tr><td>Unimodal [T]</td><td>86.4</td><td>84.0</td><td>82.7</td><td>78.5</td><td>81.6</td><td>78.3</td><td>67.9</td><td>65.9</td></tr><tr><td>Unimodal [A]</td><td>85.9</td><td>79.0</td><td>82.2</td><td>81.5</td><td>85.9</td><td>85.9</td><td>62.8</td><td>60.5</td></tr><tr><td>Unimodal [V]</td><td>85.1</td><td>81.0</td><td>79.1</td><td>70.4</td><td>75.6</td><td>74.1</td><td>58.8</td><td>56.3</td></tr><tr><td>Bimodal [T,A]</td><td>84.5</td><td>82.6</td><td>84.8</td><td>84.1</td><td>85.8</td><td>86.1</td><td>68.9</td><td>67.2</td></tr><tr><td>Bimodal [T,V]</td><td>85.3</td><td>85.1</td><td>80.1</td><td>80.7</td><td>84.2</td><td>83.5</td><td>66.4</td><td>65.4</td></tr><tr><td>Bimodal [V,A]</td><td>86.8</td><td>82.9</td><td>81.4</td><td>77.9</td><td>86.4</td><td>86.1</td><td>62.5</td><td>62.6</td></tr><tr><td colspan=\"2\">Late Fusion [T,A,V] 87.7</td><td>86.8</td><td>87.3</td><td>86.8</td><td>87.9</td><td>87.0</td><td>72.0</td><td>71.5</td></tr></table>"
            },
            "TABREF7": {
                "type_str": "table",
                "num": null,
                "text": "Ablation results on IEMOCAP for our Late Fusion model.",
                "html": null,
                "content": "<table><tr><td>Model</td><td/><td>Happy</td><td/><td>Sad</td><td/><td>Angry</td><td/><td>Neutral</td></tr><tr><td>Metric</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td></tr><tr><td>Bimodal [T,A]</td><td>85.2</td><td>82.9</td><td>82.9</td><td>83.9</td><td>86.2</td><td>86.4</td><td>70.2</td><td>69.5</td></tr><tr><td>Bimodal [T,V]</td><td>86.4</td><td>83.9</td><td>79.3</td><td>77.4</td><td>81.4</td><td>81.4</td><td>65.1</td><td>65.0</td></tr><tr><td>Bimodal [V,A]</td><td>86.4</td><td>82.5</td><td>79.6</td><td>78.6</td><td>85.6</td><td>85.2</td><td>63.1</td><td>62.7</td></tr><tr><td colspan=\"2\">Round Robin [T,A,V] 87.5</td><td>84.9</td><td>85.2</td><td>87.4</td><td>87.5</td><td>86.8</td><td>70.0</td><td>69.4</td></tr></table>"
            },
            "TABREF8": {
                "type_str": "table",
                "num": null,
                "text": "Ablation results on IEMOCAP for our Round Robin model.",
                "html": null,
                "content": "<table/>"
            },
            "TABREF10": {
                "type_str": "table",
                "num": null,
                "text": "Ablation results on IEMOCAP for our Hybrid Fusion model: bimodal early fusion with trimodal late fusion (top) and trimodal early fusion with bimodal late fusion (bottom).",
                "html": null,
                "content": "<table><tr><td>Model</td><td/><td>Happy</td><td/><td>Sad</td><td/><td>Angry</td><td/><td>Neutral</td></tr><tr><td>Metric</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td><td>BA</td><td>F1</td></tr><tr><td>MuLT</td><td>90.7</td><td>88.6</td><td>86.7</td><td>86.0</td><td>87.4</td><td>87.0</td><td>72.4</td><td>70.7</td></tr><tr><td>MuLT*</td><td>84.7</td><td>83.5</td><td>84.5</td><td>84.1</td><td>84.85</td><td>84.7</td><td>70.4</td><td>70.7</td></tr><tr><td colspan=\"2\">Round Robin [T \u2192 A \u2192 V] 87.5</td><td>84.9</td><td>85.2</td><td>84.4</td><td>87.4</td><td>87.5</td><td>70.0</td><td>69.4</td></tr><tr><td colspan=\"2\">Round Robin [V \u2192 A \u2192 T] 83.0</td><td>81.8</td><td>82.2</td><td>83.7</td><td>85.9</td><td>82.7</td><td>68.2</td><td>68.3</td></tr></table>"
            },
            "TABREF11": {
                "type_str": "table",
                "num": null,
                "text": "Results on IEMOCAP for our Round Robin model, comparing information flow in each direction, alongside MuLT and MuLT*, which capture information flowing in both directions.",
                "html": null,
                "content": "<table/>"
            }
        }
    }
}