File size: 148,852 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:39.117450Z"
    },
    "title": "Exploring Implicit Sentiment Evoked by Fine-grained News Events",
    "authors": [
        {
            "first": "Cynthia",
            "middle": [],
            "last": "Van Hee",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team",
                "institution": "Ghent University Ghent",
                "location": {
                    "country": "Belgium"
                }
            },
            "email": ""
        },
        {
            "first": "Orph\u00e9e",
            "middle": [],
            "last": "De Clercq",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team",
                "institution": "Ghent University Ghent",
                "location": {
                    "country": "Belgium"
                }
            },
            "email": ""
        },
        {
            "first": "V\u00e9ronique",
            "middle": [
                "Hoste"
            ],
            "last": "Lt",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team",
                "institution": "Ghent University Ghent",
                "location": {
                    "country": "Belgium"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Why do we read the news that we read and how are news articles received by their audiences? Both research questions are important in the domains of news personalization, framing theory and sentiment and emotion analysis, among others. Digitization and globalization have profoundly changed the media ecology (Mitchelstein and Boczkowski, 2009; Deuze, 2003) . There is an increasing trend to consume news via the internet (54%, as opposed to 22% consuming print media 1 ), and more specifically via newspaper websites, smartphone apps, social media, etc. This (partial) shift to online news consumption assigns much more responsibility to citizens, who select from a wide variety of news sources, distributors and topics. Recommendation algorithms do part of the work by filtering, out of the extensive offer of information, news that sparks citizens' interest. Most commonly, such algorithms apply collaborative filtering, which is based on users' past reading behaviour and similar interests in their network. A detrimental side effect of this interplay between algorithms and user behaviour, especially on social media platforms, is that it may lead to a less diverse news consumption, a phenomenon often referred to as the 'filter bubble' (Parser, 2013) .",
                "cite_spans": [
                    {
                        "start": 308,
                        "end": 343,
                        "text": "(Mitchelstein and Boczkowski, 2009;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 344,
                        "end": 356,
                        "text": "Deuze, 2003)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1242,
                        "end": 1256,
                        "text": "(Parser, 2013)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A game changer in this respect are algorithms that use content diversity as the key driver for personalized news recommendation. To date, however, content-based filtering is largely based on topic clustering and keyword matching (Adnan et al., 2014; Liu et al., 2010) without considering semantic information including sentiment and controversy. The present study is part of the #News-DNA project which aims to investigate and develop a news recommendation algorithm that is driven by content-based diversity 2 . However, before implementing this type of diversity into a recommender, we need to be able to automatically derive sentiment from newswire text. To this end, we explore whether news events evoke implicit sentiment in the reader and, if so, whether this implicit sentiment can be derived automatically using lexicon-based and machine learning techniques. We focus on text spans that describe hard news events (i.e. covering important topics in the public debate, such as politics, finance and economics, war and crime, as well as international news (Shoemaker and Cohen, 2005; Patterson, 2000; Tuchman, 1973) ).",
                "cite_spans": [
                    {
                        "start": 229,
                        "end": 249,
                        "text": "(Adnan et al., 2014;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 250,
                        "end": 267,
                        "text": "Liu et al., 2010)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 1061,
                        "end": 1088,
                        "text": "(Shoemaker and Cohen, 2005;",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 1089,
                        "end": 1105,
                        "text": "Patterson, 2000;",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 1106,
                        "end": 1120,
                        "text": "Tuchman, 1973)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper is the first initiative to model the semantics of written editorial content (devoid of topic restrictions), where fine-grained news events' implicit sentiment is examined manually, and where attempts are made to model this sentiment automatically. Besides presenting a novel dataset for implicit sentiment detection in news texts, we aim to answer the following research question:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "-Can we automatically detect the implicit sentiment evoked by fine-grained news events?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "While sentiment and emotion analysis have a long history in review analysis and recommendation applications using user-generated content, one of the first studies on subjectivity analysis focused on newswire text (Bruce and Wiebe, 1999) . This work, among others, has inspired researchers to apply similar techniques to other data genres, and with the rise of Web 2.0, user-generated content (UGC) quickly became widely investigated, and the main genre under consideration for sentiment research. Compared to the high number of sentiment prediction pipelines that have been established for UGC analysis (Li and Hovy, 2017) , not a great deal of research has been done into sentiment analysis at a fine-grained (i.e. below the sentence) level, sentiment analysis in factual data, multi-modal data or in figurative language like irony and humour, etc. (Mohammad, 2017) . With this paper, we aim to tackle two of the above-mentioned challenges simultaneously by predicting implicit sentiment evoked by fine-grained (factual) news events. Sentiment analysis has a broader application range than detecting explicit sentiment clues in subjective texts. Objective utterances can express sentiment as well, be it indirectly by either specific language use (i.e. words that activate emotional values), or by the sentiment certain events evoke through cultural or personal emotional connection. This distinction brings up the terminological confusion around sentiment and opinion. As pointed out by Liu (2015) , the difference between the two is quite subtle, but dictionary definitions of both terms indicate that opinions represent a person's concrete view, whereas sentiments are more of a person's feeling. Although both are not completely independent of one another, it is worthwhile to mention this distinction so as to have a good understanding of the related research.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 236,
                        "text": "(Bruce and Wiebe, 1999)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 603,
                        "end": 622,
                        "text": "(Li and Hovy, 2017)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 850,
                        "end": 866,
                        "text": "(Mohammad, 2017)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 1489,
                        "end": 1499,
                        "text": "Liu (2015)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Implicit sentiment can thus be analyzed from the author's perspective (i.e. implicit opinions), as well as from the reader's (i.e. implicit sentiment). Research on implied opinions is prevalent in research areas such as electoral politics (e.g. Bansal and Srivastava, 2018; Chiu and Hsu, 2018) , political viewpoints and argumentation mining (e.g. Chen et al., 2010) and stock market predictions (e.g. Khedr et al., 2017) , but it is also gaining research interest in typical UGC analysis, for instance to detect irony and sarcasm (e.g. Van Hee et al., 2018) , and for analyzing newswire text.",
                "cite_spans": [
                    {
                        "start": 245,
                        "end": 273,
                        "text": "Bansal and Srivastava, 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 274,
                        "end": 293,
                        "text": "Chiu and Hsu, 2018)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 348,
                        "end": 366,
                        "text": "Chen et al., 2010)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 402,
                        "end": 421,
                        "text": "Khedr et al., 2017)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 531,
                        "end": 558,
                        "text": "(e.g. Van Hee et al., 2018)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Looking at the mere impact of news events on their audiences without having readers' reactions at hand, the focus of this research lies on detecting implicit sentiment rather than implied opinions. Irrespective of potential framing, when consuming news, readers may infer a positive or negative impression of an event or topic based on world knowledge, cultural background, historical context or even personal experiences. Such text spans are known as \"statements or phrases that describe positive or negative factual information about something without conveying a private state\" (Wilson, 2008 (Wilson, , p. 2741 . Later, Toprak et al. (2010) coined the term 'polar facts' to refer to such statements. In what follows, we discuss some seminal studies on sentiment analysis in factual text from both the author's and readers' perspectives.",
                "cite_spans": [
                    {
                        "start": 581,
                        "end": 594,
                        "text": "(Wilson, 2008",
                        "ref_id": "BIBREF57"
                    },
                    {
                        "start": 595,
                        "end": 613,
                        "text": "(Wilson, , p. 2741",
                        "ref_id": null
                    },
                    {
                        "start": 623,
                        "end": 643,
                        "text": "Toprak et al. (2010)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "2.1 Implicit sentiment analysis from the author's perspective Balahur et al. (2010) performed sentiment analysis on quotations in English newswire text. They defined the sentiment of named entities in quotations by applying sentiment lexicons to varying context windows inside the quotes. Jiang et al. (2017) combined a clustering algorithm with lexicon-based sentiment analysis using SentiWord-Net (Baccianella et al., 2010) at the sentence level to distinguish between positive and negative attitudes from UK news sources towards climate change-related topics. A similar methodology was applied by Burscher et al. (2016) to analyze the framing of the topic of nuclear power in English news articles. They found that within the frame of nuclear accidents or waste, articles were much more negative compared to articles that focused on the effects of nuclear power on climate change, or its economic aspects. Nozza et al. (2017) presented a multi-view corpus enriched with different variations of sentiment annotations; including objective versus subjective labels, implicit versus explicit sentiment, emotion categories, irony annotations, and so on. While the study presents clear definitions of the categories, the accompanying corpus examples are rather confusing (e.g. with \"Tonight @CinemaX #SuicideSquad!! Come to see #HarleyQuinn :)\" as an example of an objective text and \"I went out the cinema after 15 minutes #suicidesquad\" as an example of an implied opinion). Low inter-rater agreement scores also confirm the difficulty to distinguish between implicit and explicit opinions. Chen and Chen (2016) explored implicit aspectbased sentiment analysis in Chinese hotel reviews following the premise that implicit opinion expressions are located nearby explicit opinions. Fang et al. (2020) proposed an aspect-based approach to implicit opinion analysis of Chinese car reviews. They applied similarity metrics and clustering algorithms to extract and categorize feature expressions and aggregated their implicit sentiment based on pointwise mutual information (PMI).",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 83,
                        "text": "Balahur et al. (2010)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 399,
                        "end": 425,
                        "text": "(Baccianella et al., 2010)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 600,
                        "end": 622,
                        "text": "Burscher et al. (2016)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 909,
                        "end": 928,
                        "text": "Nozza et al. (2017)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 1590,
                        "end": 1610,
                        "text": "Chen and Chen (2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1779,
                        "end": 1797,
                        "text": "Fang et al. (2020)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "2.2 Implicit sentiment analysis from the readers' perspective Henley et al. (2002) investigated framing effects on violence perception in news reporting of homophobic attacks. Apart from investigating author's perceptions, they performed a manual content analysis to investigate readers' viewpoints regarding the framing of events. It was shown that, for instance, more homophobic newspapers reported on violence against gay people more vaguely compared to violence against straight people, as a result of which the former incidents were perceived less harmful. Conversely, more neutral newspapers were found to report on all types of violence in the same manner. In 2007, a shared task was set up by Strapparava and Mihalcea (2007) focusing on valence and emotion classification of English newspaper headlines. The SemEval-2015 task on implicit sentiment detection of events (Russo et al., 2015) focused on predicting whether structured events (i.e. newspaper sentences containing the pattern \"I-we + [verbal/nominal keyword]\") are considered pleasant or unpleasant. While most work has been done on English data, similar approaches to detect sentiment and emotions in news from the readers' perspective have been applied to Czech (Burget et al., 2011) , Chinese (Lin et al., 2008) and Dutch (Atteveldt et al., 2008) . Related research has also focused on sentiment analysis of named entities in news (Godbole et al., 2007) and sentiment analysis for fake news detection (Kula et al., 2020; Bhutani et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 82,
                        "text": "Henley et al. (2002)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 701,
                        "end": 732,
                        "text": "Strapparava and Mihalcea (2007)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 876,
                        "end": 896,
                        "text": "(Russo et al., 2015)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 1232,
                        "end": 1253,
                        "text": "(Burget et al., 2011)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1256,
                        "end": 1282,
                        "text": "Chinese (Lin et al., 2008)",
                        "ref_id": null
                    },
                    {
                        "start": 1293,
                        "end": 1317,
                        "text": "(Atteveldt et al., 2008)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1402,
                        "end": 1424,
                        "text": "(Godbole et al., 2007)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1472,
                        "end": 1491,
                        "text": "(Kula et al., 2020;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1492,
                        "end": 1513,
                        "text": "Bhutani et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Most similar to the present research is the work by Atteveldt et al. (2008) , who classify implicit sentiment evoked by Dutch news on national politi-cal elections with a classification accuracy of 0.56 F 1 -score. To the best of our knowledge, they are the first to perform such sentiment classification at a more fine-grained level (i.e. considering entity relations, evaluations and performances), as opposed to the document or sentence level. However, their approach is limited in that only specific event structures are considered, and that the data are collected within one well-defined domain, i.e. political elections. Given that the ultimate goal of the present research is to detect sentiment in any kind of hard news, our corpus is not restricted to political events, but encompasses a wide variety of news topics. In addition, we aim to not only detect positively or negatively evoked sentiment, but also consider 'neutral' and 'conflict' as sentiment labels (see Table 4 ).",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 75,
                        "text": "Atteveldt et al. (2008)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 976,
                        "end": 983,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Striving for diversification driven by content analysis, our research focus is on fine-grained news events (see Section 1), and more specifically the implicit sentiment they evoke in the reader. In the following paragraphs, we zoom in on the data collection and annotation process and present the results of inter-rater-agreement experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Construction",
                "sec_num": "3"
            },
            {
                "text": "We collected a large set of Dutch news articles from major Flemish newspapers published in 2017 and 2018 3 . As mentioned before, our focus was on collecting hard news. Moreover, all articles were reduced to the title and lead, which include the most relevant information as defined by the inverted-pyramid structure applied in journalism.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection and Preparation",
                "sec_num": "3.1"
            },
            {
                "text": "A first step in the annotation process involved the identification of text spans that present news events. This was done as part of an important effort to create a new Dutch dataset in this research area by Colruyt et al. (2020) . Once identified, all news events were subsequently annotated for implicit sentiment (see Section 3.3.1). Since identifying the sentiment that is evoked by an isolated chunk of text is quite an arduous task, all events were presented to the annotators in their original context, being the news articles' titles and leads. In total, 1,735 articles were annotated with fine-grained news events and their implicit sentiment, as well as the sentiment triggers.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 228,
                        "text": "Colruyt et al. (2020)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Collection and Preparation",
                "sec_num": "3.1"
            },
            {
                "text": "All annotations were executed in the web-based annotation tool WebAnno (Eckart de Castilho et al., 2016) and by making use of a novel annotation scheme for implicit sentiment evoked by news events (Van Hee et al., 2021) . To sum up, news events are pieces of text that describe an event, situation or description that is newsworthy, i.e. that caused the reporter to write the article. In the first step of the annotation process, the annotators indicated the implicit sentiment evoked by each event (e.g. in 2040 stevige opwarming aarde [EN: in 2040 robust increase in global warming]). All events were assigned a sentiment label out of the following: 'positive', 'negative', 'neutral' and 'conflict'. Where 'positive' and 'negative' were used to mark events evoking a positive and negative sentiment in the reader, the 'neutral' label was used when no specific sentiment was elicited.",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 219,
                        "text": "(Van Hee et al., 2021)",
                        "ref_id": "BIBREF53"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "As the reception and evaluation of news events may largely depend on personal factors (e.g. sociocultural and historical background), we provided the annotators with an extra guideline stating that annotations should be made from a European/Western viewpoint. The annotators were instructed to use 'conflict' labels sparingly, and only in cases where an event's implicit sentiment was ambiguous or depended too heavily on the annotator's personal interests, background, ideology, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "Once an event was assigned a non-neutral sentiment, the annotators marked all words or word groups that are indicative of this sentiment. In the annotation scheme, such text spans are referred to as 'sentiment triggers', which have either a 'positive', 'negative', or 'conflict' sentiment and can be flagged as ironic if the annotator judges irony is involved. The challenge in annotating sentiment triggers resides in the fact that these are, given the data genre, no explicit subjectivity markers, but rather polar facts (see Section 2). Figure 1 shows an annotation example where events are linked to their sentiment triggers. Importantly, sentiment triggers can be, but are not necessarily, part of the event span and they can be non-consecutive spans.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 540,
                        "end": 548,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "An inter-annotator agreement study was conducted on a subset of the corpus to verify the consistency of sentiment annotations across the annotators and hence to substantiate the feasibility of annotating implicit sentiment evoked by newswire text. Forty randomly selected documents were reserved for this experiment, which were annotated by three annotators, independently from one another. The annotations were carried out after briefing and training the annotators for the task and before the remainder of the corpus was labeled so as to allow the guidelines to be revised or clarified where deemed necessary. Tables 1 and 2 present the data distribution statistics and inter-rater agreement scores, respectively. It is clear from Table 1 that most events in the IAA set evoked a negative implicit sentiment. More specifically, on average 97 out of 171 of the events or 57% were attributed a negative sentiment and 28 or 16% a positive one. On average, 5 events, or 3% of the events, were attributed the 'conflict' label, meaning that the event's evoked sentiment depended too heavily on its broader context or on the annotator's personal viewpoints. The above reveals that more than 3 in 4 news events in the corpus evoke a sentiment in the reader and can hence be considered polar facts. By contrast, on average 41 or 24% of the events were annotated as neutral.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inter-annotator Agreement",
                "sec_num": "3.3"
            },
            {
                "text": "Inter-rater agreement scores were calculated using the cloud-based version of AgreeStat360 4 , a software package for advanced statistical analysis of agreement among multiple raters (Gwet, 2014). The software allows to calculate the Krippendorff's Alpha (Krippendorff, 2011) with all of its weights and coefficients, including Fleiss' Kappa (Fleiss, 1971) , used for multiple raters' agreement calculation and AC1 (Gwet, 2014), which is a variation of Kappa that corrects an expected agreement in skewed data distributions that is artificially high. Table 2 presents agreement scores between the three raters in terms of defining individual news events' evoked sentiment. All metrics considered and following the interpreting guidelines by Landis and Koch (1977) , we can conclude that the annotations show a high level of agreement. Figure 1 : Pre-annotated events \"in 2040 robust increase in global warming\" and \"by 2040 the average temperature on earth will have risen by 1.5 degree\" are linked to their sentiment triggers \"robust increase in global warming\" and \"average temperature on earth\" + \"will have risen\".",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 275,
                        "text": "(Krippendorff, 2011)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 342,
                        "end": 356,
                        "text": "(Fleiss, 1971)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 741,
                        "end": 763,
                        "text": "Landis and Koch (1977)",
                        "ref_id": "BIBREF32"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 551,
                        "end": 558,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 835,
                        "end": 843,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Implicit Sentiment of News Events",
                "sec_num": "3.3.1"
            },
            {
                "text": "Coeff StdErr 95% C.I. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": null
            },
            {
                "text": "Apart from annotating implicit sentiment evoked by news events, the annotators also marked in the same sentence all sentiment triggers that influenced their decision. Given the data genre, identifying such words was expected to be difficult because this depends on (i) the amount of context available and (ii) the extent to which an event has an intrinsic sentiment that humans are aware of by context or world knowledge. No specific guidelines were defined for the annotation of sentiment triggers; they could be single words or phrases of any type of syntactic structure. Annotators were, however, asked to select the minimal word span. Calculating inter-rater agreement for sentiment triggers requires a strategy to align the text spans between the different annotators. Matching text spans between two outputs (whether they are human annotations or system predictions) is a familiar challenge in sentiment annotation and detection tasks, and especially known in the field of aspect-based sentiment analysis. Depending on the importance of exact span overlap, text spans can be evaluated by searching for an exact or a relaxed match at the start and ending token boundaries. In Lee and Sun (2019) , an exact match imposes a 100% overlap between two text spans, whereas a relaxed match imposes that 1) either side of the boundaries is matched with at least one token or 2) at least one token overlaps between the spans.",
                "cite_spans": [
                    {
                        "start": 1181,
                        "end": 1199,
                        "text": "Lee and Sun (2019)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Triggers",
                "sec_num": "3.3.2"
            },
            {
                "text": "As no detailed guidelines were provided for the syntactic composition of sentiment triggers, an exact span match evaluation would affect the interrater agreement too negatively. In fact, we looked at the 100% overlap ratio for sentiment triggers when annotated for a specific event and found that (one or more) sentiment trigger(s) were annotated for 148 events. For 38 events (26%), all annotators indicated the exact same sentiment triggers. For 12 events (8%), half of the sentiment triggers were identical amongst the three annotators. For 92 events (62%), there were no exact matches. For the remaining 6 events (4%), 1 out of 3 or 4 sentiment triggers were annotated by all three raters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentiment Triggers",
                "sec_num": "3.3.2"
            },
            {
                "text": "Partial matches were not taken into account for the above statistics. In a second and more detailed examination, we considered two annotations to match if at least one character index between the two text spans overlapped, regardless of matching boundaries. Table 3 shows these agreement results as F 1 -scores per annotator pair, where the first rater mentioned served as the gold standard for the evaluation. As can be deduced from this table, with an average F 1 -score of 0.72 over all events, the interrater agreement for sentiment triggers is quite high. It means that out of 10 sentiment triggers annotated by the gold standard 7 are also found by a second, independent rater. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 258,
                        "end": 265,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Sentiment Triggers",
                "sec_num": "3.3.2"
            },
            {
                "text": "In the following paragraphs, we thoroughly investigate our research question by analyzing the full corpus and conducting experiments to examine whether detecting implicit sentiment evoked by news events is a feasible task. A qualitative, manual analysis of the annotations was performed to gain more insights into the differences between neutral and non-neutral news events. This analysis revealed that words that occur more frequently in neutral events compared to positive and negative events are topical words that occur frequently in the news bulletin, like 'government', 'minister', 'European' and 'American'. Neutral events also more often contain time indicators such as 'Monday', 'last week', 'today' and verbs expressing locutionary acts (e.g. 'said', 'asks', 'communicated'), compared to non-neutral events. Negative events more often contain nouns and adjectives like 'murder', 'attack', 'shooting', 'war', 'famine', and verbs including 'judging', 'arrested' and 'wounded' than positive and neutral events. The noun 'increase' also occurs most frequently in negative events, mostly associated with terms like 'tension' or terms related to addiction and disease. Frequently occurring terms in positive events are more difficult to pinpoint at the word level, but it is observed that words like 'solution', 'approved' and 'new' occur more frequently in positive events compared to negative and neutral ones. An analysis of the conflict events revealed that often, these mention highly topical nouns and named entities like 'Brexit' (56 out of 315 events), 'Trump' (24/315), 'Catalonia' (23/315), 'referendum' (16/315), 'Jerusalem' (12/315) and 'nuclear exit' (10/315). These are all examples of concepts that evoke ambivalent feelings depending on the reader and on the broader context, hence the events they occur in were labeled as 'conflict'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus analysis and experiments",
                "sec_num": "4"
            },
            {
                "text": "An analysis of the sentiment triggers (underlined in the examples) showed that they are mostly (>99% of the cases) included inside the event span, as shown in example 1. Interestingly, sentiment triggers outside of the event span (example 2) are often part of a subjective statement by the author or a quotation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotating Implicit Sentiment in News",
                "sec_num": "4.1"
            },
            {
                "text": "(1) [Brother of the presumed Giant of the Brabant Killers provides investigators with new tips]event.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotating Implicit Sentiment in News",
                "sec_num": "4.1"
            },
            {
                "text": "(2) [The billion-dollar takeover of 21st Century Fox]event creates a new major power.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotating Implicit Sentiment in News",
                "sec_num": "4.1"
            },
            {
                "text": "Having a news article corpus in place, in which annotators differentiated between neutral events and events that evoke a particular sentiment, we were able to investigate the feasibility of implicit sentiment detection. Filtering out the doubles lead to an experimental corpus of 7,425 events, which was split in a training partition of 6,683 events and a test set of 742 events. The label distributions in both sets remained the same as in Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 441,
                        "end": 448,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Automatically Predicting Implicit Sentiment in News",
                "sec_num": "4.2"
            },
            {
                "text": "We first explored the effectiveness of two lexiconbased approaches to automatically determine implicit sentiment in news events. For the first approach, we relied on four sentiment lexicons for Dutch, including the Pattern lexicon (De Smedt and Daelemans, 2012) composed of 3,223 qualitative adjectives, an in-house sentiment lexicon with size n= 434 composed of manual review annotations, the Duoman lexicon (Jijkoun and Hofmann, 2009) composed of 8,757 wordforms and the NRC Hashtag Lexicon (Mohammad and Turney, 2013) including 13,683 entries 5 . All lexicons were manually checked to filter irrelevant entries. The order in which these lexicons were consulted was determined by preliminary experiments (i.e. when a word had no match in the Pattern lexicon, the next step was to consult the in-house lexicon, next Duoman and finally NRC). For the second approach, we used Sentic-Net (Cambria and Hussain, 2015) , an automatically constructed semantic knowledge resource based on common sense knowledge from the Open Mind Common Sense initiative (Singh et al., 2002) and GECKA , combined with affective knowledge from WordNet-Affect (Strapparava and Valitutti, 2004) . SenticNet entries provide sentiment information for concepts of varying n-gram length, such as \"accomplish goal\", \"celebrate special occasion\", \"be on cloud nine\", etc. We considered it a potentially valuable resource for our task as it is not restricted to explicit sentiment terms, which are probably hard to find in newswire text. For our experiments, we made use of the Sen-ticNet 5 API (Cambria et al., 2018) , which returns sentiment values for the concepts it receives. Table 5 presents the results of the lexicon-based sentiment analysis approaches. Overall, the scores are low, with a top F 1 score of 0.47 obtained with the four combined lexicons that outperformed Sen-ticNet with 16%. Looking at the performance per class, we can conclude that the results are clearly better for the negative and neutral instances. Intuitively, we expected SenticNet to be better suited for the task, given the data genre and SenticNet's inclusion of implicit polar concepts. However, there are several hypotheses as to why it was outperformed by the other lexicons. Firstly, a qualitative analysis revealed that the coverage largely differs, with on average 3 or more matches per event for the regular lexicons, and only 1 for SenticNet. Secondly, all entries in the combined lexicons were manually verified, either by the authors of the lexica or by the authors of this paper, unlike Sentic-Net's entries, which are automatically collected from a small annotated seed set. Thirdly, as Sen-ticNet contains concepts rather than words, all text needed to be pre-processed using a concept parser (Rajagopal et al., 2013) 6 . As such a parser is currently unavailable for Dutch, we decided to translate all events to English using Google Translate 7 . Automatic translation, however, means that some of the semantics may be lost, which may have affected the results of this approach.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 261,
                        "text": "(De Smedt and Daelemans, 2012)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 409,
                        "end": 436,
                        "text": "(Jijkoun and Hofmann, 2009)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 493,
                        "end": 520,
                        "text": "(Mohammad and Turney, 2013)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 886,
                        "end": 913,
                        "text": "(Cambria and Hussain, 2015)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1048,
                        "end": 1068,
                        "text": "(Singh et al., 2002)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 1135,
                        "end": 1168,
                        "text": "(Strapparava and Valitutti, 2004)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 1562,
                        "end": 1584,
                        "text": "(Cambria et al., 2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 2759,
                        "end": 2785,
                        "text": "(Rajagopal et al., 2013) 6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1648,
                        "end": 1655,
                        "text": "Table 5",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Lexicon-based Approach to Event Sentiment Detection",
                "sec_num": "4.2.1"
            },
            {
                "text": "Using machine learning, we investigated a featurebased and end-to-end architecture. For the featurebased approach, we applied Support Vector Machines using the LibSVM library (Chang and Lin, 2011) . For the latter approach, we applied two state-of-the-art transformer-based architectures for Dutch, i.e. BERTje (Vries et al., 2019) and Rob-BERT (Delobelle et al., 2020) . While both models are based on the BERT architecture originally released for English (Devlin et al., 2019) , they were each pre-trained on different corpora. BERTje is pre-trained on a 12 GB Dutch corpus composed of different genres, including books, social media data, Wikipedia and -especially relevant for our task-newswire text. By contrast, RobBERT is based on the Dutch section of the OSCAR corpus (Ortiz Su\u00e1rez et al., 2019) , a 39 GB large subcorpus of the Common Crawl corpus 8 , the largest web crawl corpus available. Although the latter is pre-trained on much more data, we expect BERTje to be better suited for the current task. SVM parameter settings for the classifier and feature extraction were simultaneously optimized using a grid search in a nested cross-validation setup. For the classification algorithm, we varied the kernel type, cost and gamma parameters and tested equal versus balanced class weighting. Regarding feature engineering, we varied the n-gram length and type (i.e. words versus characters and uni-/bi-/trigrams) and tested with a maximum feature threshold (i.e. None; 5,000; 10,000; 20,000). In both transformer setups, 3 epochs were defined with preliminary experiments. However, actual training did not even require that many epochs, as from epoch 1 (BERTje) and 2 (RobBERT) onwards, validation loss surpassed training loss, which may suggest overfitting. For all classifiers, the parameter settings and feature combinations that yielded the best results in the cross-validation experiments were used to train the final model that was subsequently applied to the held-out test set 9 .",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 196,
                        "text": "(Chang and Lin, 2011)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 311,
                        "end": 331,
                        "text": "(Vries et al., 2019)",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 345,
                        "end": 369,
                        "text": "(Delobelle et al., 2020)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 457,
                        "end": 478,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 776,
                        "end": 803,
                        "text": "(Ortiz Su\u00e1rez et al., 2019)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Machine Learning Approach to Event Polarity Detection",
                "sec_num": "4.2.2"
            },
            {
                "text": "The results (Table 6 ) reveal that all three classifiers perform in a similar way, especially when considering the weight-averaged F 1 scores. Ranging between F 1 = 0.69 and 0.72, the scores clearly outperform the combined sentiment lexicons approach and the majority baseline (predicting the negative class only). The SVM classifier seems to handle the underrepresented classes 'positive' and 'conflict' better than RobBERT and BERTje.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 20,
                        "text": "(Table 6",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Machine Learning Approach to Event Polarity Detection",
                "sec_num": "4.2.2"
            },
            {
                "text": "We also conducted a qualitative analysis, the results of which are presented in Table 7 . Predictions for the first event suggest that the SVM predic- tion might be triggered by the positive words in the event, whereas they do not influence the predictions of the BERT models. The second example shows the difficulty of nested events, i.e. \"RNA gun lobby\" which is annotated as \"conflict\", but is nested inside the neutral event \"a speech Trump gave (...)\". Here as well, the SVM seems rather triggered by purely lexical items. The third example demonstrates the importance of context for accurate sentiment prediction at a more fine-grained level. The event's context is a proposition to make two Belgian ports work more closely together, which is welcomed by one party, but not by the port of Antwerp. The last two events (\"een inferno\" and \"een deal\" in Dutch) are examples of correct predictions by RobBERT while the predictions by BERTje are incorrect. An explanation could be that the web crawl data Rob-BERT is trained on is more likely to contain English terms, unlike the cleaner corpus at the basis of BERTje. Lastly, while some events are extensive in terms of context (example 1), others are more constrained, which complicates their prediction.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 80,
                        "end": 87,
                        "text": "Table 7",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Machine Learning Approach to Event Polarity Detection",
                "sec_num": "4.2.2"
            },
            {
                "text": "With this paper, we investigated the detection of implicit sentiment evoked by Dutch newswire text. While related research approaches the task mainly at the document or sentence level using lexiconbased methods, we focused on fine-grained events below the sentence level and experimented with lexicon-based approaches and machine learning. For the latter, we compared the performance of SVMs, which have proven successful in sentiment analysis tasks, with two transformer-based models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Our results demonstrate that the machine learning approach performs accurately with a top F 1 score of 0.72 and shows a considerable improvement over the majority baseline. The experiments also demonstrate that machine learning clearly outperforms the lexicon-based approach, even when extensive (implicit) sentiment lexicons are used. Furthermore, we created and manually annotated a Dutch corpus of news events and were able to show high inter-rater agreement for event sentiment and sentiment span annotations. In future research, it will be interesting to explore whether additional context, including named entities and co-referring events, inside and across sentence boundaries, can improve implicit sentiment detection further.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "Figures from the yearly imec.digimeter report (Vandendriessche and De Marez, 2019), publishing recent information about media and technology use in Flanders.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.ugent.be/mict/en/research/newsdna.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The data were provided as JSON files by Mediahuis, a media company that publishes national and regional newspapers in Belgium, the Netherlands and Ireland.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://agreestat360.com.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The original lexicon of 14,182 unigrams, which had been automatically translated to Dutch, was manually filtered by a Translation student.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/SenticNet/concept-parser.7 Translations done on 22/09/2020.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://commoncrawl.org/ 9 Best SVM parameters and features: linear kernel with cost C=10; balanced class weighting; 45,973 uni-and bigram word n-grams without threshold. Best settings for BERT: dropout: 0; sequence length: 128; learning rate (Adam): 5e-05; batch size 64; number of epochs: 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We thank Siel Debouver and Anna\u00efs Airapetian for their invaluable contribution to the corpus annotation and Bram Vanroy for his code contribution. This research was funded by the Special Research Fund of Ghent University and supported by #News-DNA.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Content based news recommendation system based on fuzzy logic",
                "authors": [
                    {
                        "first": "Md",
                        "middle": [],
                        "last": "Adnan",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Chowdury",
                        "suffix": ""
                    },
                    {
                        "first": "Iftifar",
                        "middle": [],
                        "last": "Taz",
                        "suffix": ""
                    },
                    {
                        "first": "Tauqir",
                        "middle": [],
                        "last": "Ahmed",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Rahman",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "International Conference on Informatics, Electronics and Vision (ICIEV 2014)",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICIEV.2014.6850800"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Md Adnan, Mohammed Chowdury, Iftifar Taz, Tauqir Ahmed, and Mohammad Rahman. 2014. Content based news recommendation system based on fuzzy logic. In International Conference on Informatics, Electronics and Vision (ICIEV 2014), pages 1-6.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Good news or bad news? conducting sentiment analysis on dutch text to distinguish between positive and negative relations",
                "authors": [
                    {
                        "first": "Wouter",
                        "middle": [],
                        "last": "Atteveldt",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Kleinnijenhuis",
                        "suffix": ""
                    },
                    {
                        "first": "Nel",
                        "middle": [],
                        "last": "Ruigrok",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Schlobach",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Journal of Information Technology & Politics",
                "volume": "5",
                "issue": "",
                "pages": "73--94",
                "other_ids": {
                    "DOI": [
                        "10.1080/19331680802154145"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wouter Atteveldt, Jan Kleinnijenhuis, Nel Ruigrok, and Stefan Schlobach. 2008. Good news or bad news? conducting sentiment analysis on dutch text to distinguish between positive and negative rela- tions. Journal of Information Technology & Politics, 5:73-94.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining",
                "authors": [
                    {
                        "first": "Stefano",
                        "middle": [],
                        "last": "Baccianella",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "Fabrizio",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas- tiani. 2010. Sentiwordnet 3.0: An enhanced lexi- cal resource for sentiment analysis and opinion min- ing. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. ELRA.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Sentiment analysis in the news",
                "authors": [
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Balahur",
                        "suffix": ""
                    },
                    {
                        "first": "Raf",
                        "middle": [],
                        "last": "Steinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Mijail",
                        "middle": [],
                        "last": "Kabadjov",
                        "suffix": ""
                    },
                    {
                        "first": "Vanni",
                        "middle": [],
                        "last": "Zavarella",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Van Der Goot",
                        "suffix": ""
                    },
                    {
                        "first": "Matina",
                        "middle": [],
                        "last": "Halkia",
                        "suffix": ""
                    },
                    {
                        "first": "Bruno",
                        "middle": [],
                        "last": "Pouliquen",
                        "suffix": ""
                    },
                    {
                        "first": "Jenya",
                        "middle": [],
                        "last": "Belyaeva",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexandra Balahur, Raf Steinberger, Mijail Kabadjov, Vanni Zavarella, Erik van der Goot, Matina Halkia, Bruno Pouliquen, and Jenya Belyaeva. 2010. Sen- timent analysis in the news. In Proceedings of the Seventh International Conference on Language Re- sources and Evaluation (LREC'10), Valletta, Malta. ELRA.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "On predicting elections with hybrid topic based sentiment analysis of tweets",
                "authors": [
                    {
                        "first": "Barkha",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Sangeet",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life",
                "volume": "135",
                "issue": "",
                "pages": "346--353",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.procs.2018.08.183"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Barkha Bansal and Sangeet Srivastava. 2018. On pre- dicting elections with hybrid topic based sentiment analysis of tweets. Procedia Computer Science, 135:346 -353. The 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Fake news detection using sentiment analysis",
                "authors": [
                    {
                        "first": "Bhavika",
                        "middle": [],
                        "last": "Bhutani",
                        "suffix": ""
                    },
                    {
                        "first": "Neha",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Priyanshu",
                        "middle": [],
                        "last": "Sehgal",
                        "suffix": ""
                    },
                    {
                        "first": "Archana",
                        "middle": [],
                        "last": "Purwar",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Twelfth International Conference on Contemporary Computing (IC3)",
                "volume": "",
                "issue": "",
                "pages": "1--5",
                "other_ids": {
                    "DOI": [
                        "10.1109/IC3.2019.8844880"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bhavika Bhutani, Neha Rastogi, Priyanshu Sehgal, and Archana Purwar. 2019. Fake news detection using sentiment analysis. In 2019 Twelfth Inter- national Conference on Contemporary Computing (IC3), pages 1-5.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Recognizing subjectivity: A case study of manual tagging",
                "authors": [
                    {
                        "first": "Rebecca",
                        "middle": [
                            "F"
                        ],
                        "last": "Bruce",
                        "suffix": ""
                    },
                    {
                        "first": "Janyce",
                        "middle": [
                            "M"
                        ],
                        "last": "Wiebe",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Natural Language Engineering",
                "volume": "5",
                "issue": "",
                "pages": "187--205",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rebecca F. Bruce and Janyce M. Wiebe. 1999. Recog- nizing subjectivity: A case study of manual tagging. Natural Language Engineering, 5:187-205.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Recognition of emotions in czech newspaper headlines. Radioengineering",
                "authors": [
                    {
                        "first": "Radim",
                        "middle": [],
                        "last": "Burget",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Karasek",
                        "suffix": ""
                    },
                    {
                        "first": "Zden\u011bk",
                        "middle": [],
                        "last": "Sm\u00e9kal",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "20",
                "issue": "",
                "pages": "39--47",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Radim Burget, Jan Karasek, and Zden\u011bk Sm\u00e9kal. 2011. Recognition of emotions in czech newspaper head- lines. Radioengineering, 20:39-47.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Frames beyond words",
                "authors": [
                    {
                        "first": "Bjorn",
                        "middle": [],
                        "last": "Burscher",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Vliegenthart",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "D"
                        ],
                        "last": "Vreese",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Social Science Computer Review",
                "volume": "34",
                "issue": "",
                "pages": "530--545",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bjorn Burscher, R. Vliegenthart, and C. D. Vreese. 2016. Frames beyond words. Social Science Com- puter Review, 34:530-545.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Hussain",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik Cambria and Amir Hussain. 2015. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis, 1st edition. Springer Publishing Company, Incorporated.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Discovering conceptual primitives for sentiment analysis by means of context embeddings",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    },
                    {
                        "first": "Devamanyu",
                        "middle": [],
                        "last": "Hazarika",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Kwok",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "5",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik Cambria, Soujanya Poria, Devamanyu Hazarika, and Kenneth Kwok. 2018. Senticnet 5: Discov- ering conceptual primitives for sentiment analysis by means of context embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Gecka: Game engine for commonsense knowledge acquisition",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Dheeraj",
                        "middle": [],
                        "last": "Rajagopal",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Kwok",
                        "suffix": ""
                    },
                    {
                        "first": "Jose",
                        "middle": [],
                        "last": "Sepulveda",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik Cambria, Dheeraj Rajagopal, Kenneth Kwok, and Jose Sepulveda. 2015. Gecka: Game engine for commonsense knowledge acquisition. In Proceed- ings of the Twenty-Eighth International Florida Ar- tificial Intelligence Research Society Conference.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A web-based tool for the integrated annotation of semantic and syntactic structures",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Eckart De Castilho",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c9va",
                        "middle": [],
                        "last": "M\u00fajdricza-Maydt",
                        "suffix": ""
                    },
                    {
                        "first": "Silvana",
                        "middle": [],
                        "last": "Seid Muhie Yimam",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Hartmann",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)",
                "volume": "",
                "issue": "",
                "pages": "76--84",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Eckart de Castilho,\u00c9va M\u00fajdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna Gurevych, Anette Frank, and Chris Biemann. 2016. A web-based tool for the integrated annotation of se- mantic and syntactic structures. In Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH), pages 76-84, Osaka, Japan. The COLING 2016 Organiz- ing Committee.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Libsvm: A library for support vector machines",
                "authors": [
                    {
                        "first": "Chih-Chung",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Chih-Jen",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "ACM Transactions on Intelligent Systems and Technology Journal",
                "volume": "2",
                "issue": "3",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/1961189.1961199"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: A library for support vector machines. ACM Trans- actions on Intelligent Systems and Technology Jour- nal, 2(3).",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "What is an opinion about? exploring political standpoints using opinion scoring model",
                "authors": [
                    {
                        "first": "Bi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Leilei",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Kifer",
                        "suffix": ""
                    },
                    {
                        "first": "Dongwon",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI'10",
                "volume": "",
                "issue": "",
                "pages": "1007--1012",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bi Chen, Leilei Zhu, Daniel Kifer, and Dongwon Lee. 2010. What is an opinion about? exploring politi- cal standpoints using opinion scoring model. In Pro- ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI'10, page 1007-1012. AAAI Press.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Implicit polarity and implicit aspect recognition in opinion mining",
                "authors": [
                    {
                        "first": "Hsin-Hsi",
                        "middle": [],
                        "last": "Huan-Yuan Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "20--25",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-2004"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Huan-Yuan Chen and Hsin-Hsi Chen. 2016. Implicit polarity and implicit aspect recognition in opinion mining. pages 20-25.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Predicting political tendency of posts on facebook",
                "authors": [
                    {
                        "first": "-I",
                        "middle": [],
                        "last": "Shu",
                        "suffix": ""
                    },
                    {
                        "first": "Kuo-Wei",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 7th International Conference on Software and Computer Applications, ICSCA 2018",
                "volume": "",
                "issue": "",
                "pages": "110--114",
                "other_ids": {
                    "DOI": [
                        "10.1145/3185089.3185094"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shu-I Chiu and Kuo-Wei Hsu. 2018. Predicting po- litical tendency of posts on facebook. In Proceed- ings of the 2018 7th International Conference on Software and Computer Applications, ICSCA 2018, page 110-114, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "EventDNA: a dataset for Dutch news event extraction as a basis for news diversification",
                "authors": [
                    {
                        "first": "Camiel",
                        "middle": [],
                        "last": "Colruyt",
                        "suffix": ""
                    },
                    {
                        "first": "Orph\u00e9e",
                        "middle": [],
                        "last": "De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Camiel Colruyt, Orph\u00e9e De Clercq, and V\u00e9ronique Hoste. 2020. EventDNA: a dataset for Dutch news event extraction as a basis for news diversification. Manuscript under review.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "vreselijk mooi!\" (terribly beautiful): A subjectivity lexicon for Dutch adjectives",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Smedt",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
                "volume": "",
                "issue": "",
                "pages": "3568--3572",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom De Smedt and Walter Daelemans. 2012. \"vre- selijk mooi!\" (terribly beautiful): A subjectivity lexicon for Dutch adjectives. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 3568- 3572, Istanbul, Turkey. ELRA.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Robbert: a dutch roberta-based language model",
                "authors": [
                    {
                        "first": "Pieter",
                        "middle": [],
                        "last": "Delobelle",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Winters",
                        "suffix": ""
                    },
                    {
                        "first": "Bettina",
                        "middle": [],
                        "last": "Berendt",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pieter Delobelle, Thomas Winters, and Bettina Berendt. 2020. Robbert: a dutch roberta-based language model.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "The web and its journalisms: Considering the consequences of different types of newsmedia online",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Deuze",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "New Media & Society",
                "volume": "5",
                "issue": "2",
                "pages": "203--230",
                "other_ids": {
                    "DOI": [
                        "10.1177/1461444803005002004"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mark Deuze. 2003. The web and its journalisms: Con- sidering the consequences of different types of news- media online. New Media & Society, 5(2):203-230.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. ACL.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "An implicit opinion analysis model based on feature-based implicit opinion patterns",
                "authors": [
                    {
                        "first": "Zhao",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Qiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoan",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Anning",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Claude",
                        "middle": [],
                        "last": "Baron",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Artificial Intelligence Review",
                "volume": "53",
                "issue": "",
                "pages": "4547--4574",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10462-019-09801-9"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhao Fang, Qiang Zhang, Xiaoan Tang, Anning Wang, and Claude Baron. 2020. An implicit opin- ion analysis model based on feature-based implicit opinion patterns. Artificial Intelligence Review, 53:4547-4574.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Measuring nominal scale agreement among many raters",
                "authors": [
                    {
                        "first": "Joseph",
                        "middle": [
                            "L"
                        ],
                        "last": "Fleiss",
                        "suffix": ""
                    }
                ],
                "year": 1971,
                "venue": "Psychological bulletin",
                "volume": "76",
                "issue": "5",
                "pages": "378--382",
                "other_ids": {
                    "DOI": [
                        "10.1037/h0031619"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Joseph L. Fleiss. 1971. Measuring nominal scale agree- ment among many raters. Psychological bulletin, 76(5):378-382.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Large-scale sentiment analysis for news and blogs",
                "authors": [
                    {
                        "first": "Namrata",
                        "middle": [],
                        "last": "Godbole",
                        "suffix": ""
                    },
                    {
                        "first": "Manjunath",
                        "middle": [],
                        "last": "Srinivasaiah",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Skiena",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "ICWSM 2007 -International Conference on Weblogs and Social Media",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Namrata Godbole, Manjunath Srinivasaiah, and Steven Skiena. 2007. Large-scale sentiment analysis for news and blogs. In ICWSM 2007 -International Conference on Weblogs and Social Media.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "The Definitive Guide to Measuring the Extent of Agreement Among Raters",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Kilem",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gwet",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Advanced Analytics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kilem L. Gwet. 2014. Handbook of Inter-Rater Relia- bility (Fourth Edition), The Definitive Guide to Mea- suring the Extent of Agreement Among Raters. Ad- vanced Analytics, LLC, Gaithersburg, USA.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Frequency and specificity of referents to violence in news reports of anti-gay attacks",
                "authors": [
                    {
                        "first": "Nancy",
                        "middle": [
                            "M"
                        ],
                        "last": "Henley",
                        "suffix": ""
                    },
                    {
                        "first": "Michelle",
                        "middle": [
                            "D"
                        ],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "Jo",
                        "middle": [
                            "Anne"
                        ],
                        "last": "Beazley",
                        "suffix": ""
                    },
                    {
                        "first": "Diane",
                        "middle": [
                            "N"
                        ],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Dana",
                        "middle": [],
                        "last": "Kaminsky",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Sanders",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Discourse & Society",
                "volume": "13",
                "issue": "1",
                "pages": "75--104",
                "other_ids": {
                    "DOI": [
                        "10.1177/0957926502013001004"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nancy M. Henley, Michelle D. Miller, Jo Anne Beaz- ley, Diane N. Nguyen, Dana Kaminsky, and Robert Sanders. 2002. Frequency and specificity of refer- ents to violence in news reports of anti-gay attacks. Discourse & Society, 13(1):75-104.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Comparing attitudes to climate change in the media using sentiment analysis based on Latent Dirichlet Allocation",
                "authors": [
                    {
                        "first": "Ye",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Xingyi",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Jackie",
                        "middle": [],
                        "last": "Harrison",
                        "suffix": ""
                    },
                    {
                        "first": "Shaun",
                        "middle": [],
                        "last": "Quegan",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Maynard",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism",
                "volume": "",
                "issue": "",
                "pages": "25--30",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4205"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ye Jiang, Xingyi Song, Jackie Harrison, Shaun Quegan, and Diana Maynard. 2017. Comparing attitudes to climate change in the media using sentiment anal- ysis based on Latent Dirichlet Allocation. In Pro- ceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pages 25- 30, Copenhagen, Denmark. ACL.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Generating a non-english subjectivity lexicon: Relations that matter",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Jijkoun",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL'09",
                "volume": "",
                "issue": "",
                "pages": "398--405",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valentin Jijkoun and Katja Hofmann. 2009. Generat- ing a non-english subjectivity lexicon: Relations that matter. In Proceedings of the 12th Conference of the European Chapter of the Association for Computa- tional Linguistics, EACL'09, page 398-405, USA. ACL.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Predicting stock market behavior using data mining technique and news sentiment analysis",
                "authors": [
                    {
                        "first": "Ayman",
                        "middle": [],
                        "last": "Khedr",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "E"
                        ],
                        "last": "Salama",
                        "suffix": ""
                    },
                    {
                        "first": "Nagwa",
                        "middle": [],
                        "last": "Yaseen",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "International Journal of Intelligent Systems and Applications",
                "volume": "9",
                "issue": "",
                "pages": "22--30",
                "other_ids": {
                    "DOI": [
                        "10.5815/ijisa.2017.07.03"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ayman Khedr, S.E. Salama, and Nagwa Yaseen. 2017. Predicting stock market behavior using data min- ing technique and news sentiment analysis. Inter- national Journal of Intelligent Systems and Applica- tions, 9:22-30.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Computing krippendorff's alpha-reliability",
                "authors": [
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Krippendorff",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Klaus Krippendorff. 2011. Computing krippendorff's alpha-reliability. Online: https://repository.upenn.edu/asc papers/43/.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Sentiment analysis for fake news detection by means of neural networks",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Kula",
                        "suffix": ""
                    },
                    {
                        "first": "Micha\u0142",
                        "middle": [],
                        "last": "Chora\u015b",
                        "suffix": ""
                    },
                    {
                        "first": "Rafa\u0142",
                        "middle": [],
                        "last": "Kozik",
                        "suffix": ""
                    },
                    {
                        "first": "Pawe\u0142",
                        "middle": [],
                        "last": "Ksieniewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Micha\u0142",
                        "middle": [],
                        "last": "Wo\u017aniak",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Computational Science (ICCS 2020)",
                "volume": "",
                "issue": "",
                "pages": "653--666",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Kula, Micha\u0142 Chora\u015b, Rafa\u0142 Kozik, Pawe\u0142 Ksieniewicz, and Micha\u0142 Wo\u017aniak. 2020. Sentiment analysis for fake news detection by means of neural networks. In Computational Science (ICCS 2020), pages 653-666, Cham, Switzerland. Springer Inter- national Publishing.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "The measurement of observer agreement for categorical data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Richard",
                        "suffix": ""
                    },
                    {
                        "first": "Gary",
                        "middle": [
                            "G"
                        ],
                        "last": "Landis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Biometrics",
                "volume": "33",
                "issue": "1",
                "pages": "159--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard J. Landis and Gary G. Koch. 1977. The mea- surement of observer agreement for categorical data. Biometrics, 33(1):159-174.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "A study on agreement in pico span annotations",
                "authors": [
                    {
                        "first": "Grace",
                        "middle": [
                            "E"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Aixin",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'19",
                "volume": "",
                "issue": "",
                "pages": "1149--1152",
                "other_ids": {
                    "DOI": [
                        "10.1145/3331184.3331352"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Grace E. Lee and Aixin Sun. 2019. A study on agree- ment in pico span annotations. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'19, page 1149-1152, New York, NY, USA. ACM.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Reflections on sentiment/opinion analysis",
                "authors": [
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "A Practical Guide to Sentiment Analysis",
                "volume": "",
                "issue": "",
                "pages": "41--61",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiwei Li and Eduard Hovy. 2017. Reflections on sen- timent/opinion analysis. In Erik Cambria, Das Di- pankar, Sivaji Bandyopadhyay, and Antonio Feraco, editors, A Practical Guide to Sentiment Analysis, chapter 3, pages 41-61. Springer International Pub- lishing AG, Cham, Switzerland.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Emotion classification of online news articles from the reader's perspective",
                "authors": [
                    {
                        "first": "K",
                        "middle": [
                            "H"
                        ],
                        "last": "-Y Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Changhua",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Hsin-Hsi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "ACM International Conference on Web Intelligence and Intelligent Agent Technology",
                "volume": "1",
                "issue": "",
                "pages": "220--226",
                "other_ids": {
                    "DOI": [
                        "10.1109/WIIAT.2008.197"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "K.H.-Y Lin, Changhua Yang, and Hsin-Hsi Chen. 2008. Emotion classification of online news articles from the reader's perspective. In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, volume 1, pages 220- 226.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Sentiment analysis: mining opinions, sentiments, and emotions",
                "authors": [
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bing Liu. 2015. Sentiment analysis: mining opinions, sentiments, and emotions, 1st edition. New York: Cambridge University Press.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Personalized news recommendation based on click behavior",
                "authors": [
                    {
                        "first": "Jiahui",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Dolan",
                        "suffix": ""
                    },
                    {
                        "first": "Elin",
                        "middle": [
                            "R\u00f8nby"
                        ],
                        "last": "Pedersen",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI '10",
                "volume": "",
                "issue": "",
                "pages": "31--40",
                "other_ids": {
                    "DOI": [
                        "10.1145/1719970.1719976"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiahui Liu, Peter Dolan, and Elin R\u00f8nby Pedersen. 2010. Personalized news recommendation based on click behavior. In Proceedings of the 15th Interna- tional Conference on Intelligent User Interfaces, IUI '10, page 31-40, New York, NY, USA. ACM.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Between tradition and change: A review of recent research on online news production",
                "authors": [
                    {
                        "first": "Eugenia",
                        "middle": [],
                        "last": "Mitchelstein",
                        "suffix": ""
                    },
                    {
                        "first": "Pablo",
                        "middle": [],
                        "last": "Boczkowski",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Journalism",
                "volume": "10",
                "issue": "5",
                "pages": "562--586",
                "other_ids": {
                    "DOI": [
                        "10.1177/1464884909106533"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Eugenia Mitchelstein and Pablo Boczkowski. 2009. Between tradition and change: A review of recent research on online news production. Journalism, 10(5):562-586.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Challenges in sentiment analysis",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "A Practical Guide to Sentiment Analysis",
                "volume": "",
                "issue": "",
                "pages": "61--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad. 2017. Challenges in sentiment analy- sis. In Erik Cambria, Das Dipankar, Sivaji Bandy- opadhyay, and Antonio Feraco, editors, A Practi- cal Guide to Sentiment Analysis, chapter 4, pages 61-85. Springer International Publishing AG, Cham, Switzerland.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Crowdsourcing a word-emotion association lexicon",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "D"
                        ],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Computational Intelligence",
                "volume": "29",
                "issue": "3",
                "pages": "436--465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad and Peter D. Turney. 2013. Crowd- sourcing a word-emotion association lexicon. Com- putational Intelligence, 29(3):436-465.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "A multi-view sentiment corpus",
                "authors": [
                    {
                        "first": "Debora",
                        "middle": [],
                        "last": "Nozza",
                        "suffix": ""
                    },
                    {
                        "first": "Elisabetta",
                        "middle": [],
                        "last": "Fersini",
                        "suffix": ""
                    },
                    {
                        "first": "Enza",
                        "middle": [],
                        "last": "Messina",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "273--280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Debora Nozza, Elisabetta Fersini, and Enza Messina. 2017. A multi-view sentiment corpus. In Proceed- ings of the 15th Conference of the European Chap- ter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 273-280, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures",
                "authors": [
                    {
                        "first": "Pedro Javier Ortiz",
                        "middle": [],
                        "last": "Su\u00e1rez",
                        "suffix": ""
                    },
                    {
                        "first": "Beno\u00eet",
                        "middle": [],
                        "last": "Sagot",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Romary",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7)",
                "volume": "",
                "issue": "",
                "pages": "9--16",
                "other_ids": {
                    "DOI": [
                        "10.14618/ids-pub-9021"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pedro Javier Ortiz Su\u00e1rez, Beno\u00eet Sagot, and Laurent Romary. 2019. Asynchronous pipelines for process- ing huge corpora on medium to low resource in- frastructures. In Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7), pages 9-16, Mannheim. Leibniz-Institut f\u00fcr Deutsche Sprache.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "The Filter Bubble: What The Internet Is Hiding From You. Penguin Books Limited",
                "authors": [
                    {
                        "first": "Eli",
                        "middle": [],
                        "last": "Parser",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eli Parser. 2013. The Filter Bubble: What The Internet Is Hiding From You. Penguin Books Limited, Lon- don, England.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Doing Well and Doing Good: How Soft News Are Shrinking the News Audience and Weakening Democracy",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Patterson",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas E. Patterson. 2000. Doing Well and Doing Good: How Soft News Are Shrinking the News Au- dience and Weakening Democracy. Harvard Univer- sity Press, Cambridge, MA.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "A graph-based approach to commonsense concept extraction and semantic similarity detection",
                "authors": [
                    {
                        "first": "Dheeraj",
                        "middle": [],
                        "last": "Rajagopal",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Olsher",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Kwok",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "WWW 2013 Companion -Proceedings of the 22nd International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "565--570",
                "other_ids": {
                    "DOI": [
                        "10.1145/2487788.2487995"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dheeraj Rajagopal, Erik Cambria, Daniel Olsher, and Kenneth Kwok. 2013. A graph-based approach to commonsense concept extraction and semantic sim- ilarity detection. In WWW 2013 Companion -Pro- ceedings of the 22nd International Conference on World Wide Web, pages 565-570.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "SemEval-2015 task 9: CLIPEval implicit polarity of events",
                "authors": [
                    {
                        "first": "Irene",
                        "middle": [],
                        "last": "Russo",
                        "suffix": ""
                    },
                    {
                        "first": "Tommaso",
                        "middle": [],
                        "last": "Caselli",
                        "suffix": ""
                    },
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 9th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "443--450",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S15-2077"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Irene Russo, Tommaso Caselli, and Carlo Strapparava. 2015. SemEval-2015 task 9: CLIPEval implicit po- larity of events. In Proceedings of the 9th Interna- tional Workshop on Semantic Evaluation (SemEval 2015), pages 443-450, Denver, Colorado. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "News around the world: Content, practitioners, and the public",
                "authors": [
                    {
                        "first": "Pamela",
                        "middle": [],
                        "last": "Shoemaker",
                        "suffix": ""
                    },
                    {
                        "first": "Akiba",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Content, Practitioners, and the Public",
                "volume": "",
                "issue": "",
                "pages": "1--409",
                "other_ids": {
                    "DOI": [
                        "10.4324/9780203959091"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pamela Shoemaker and Akiba Cohen. 2005. News around the world: Content, practitioners, and the public. News Around the World: Content, Practi- tioners, and the Public, pages 1-409.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Open mind common sense: Knowledge acquisition from the general public",
                "authors": [
                    {
                        "first": "Push",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [
                            "T"
                        ],
                        "last": "Mueller",
                        "suffix": ""
                    },
                    {
                        "first": "Grace",
                        "middle": [],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "Travell",
                        "middle": [],
                        "last": "Perkins",
                        "suffix": ""
                    },
                    {
                        "first": "Wan",
                        "middle": [
                            "Li"
                        ],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE",
                "volume": "",
                "issue": "",
                "pages": "1223--1237",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and Wan Li Zhu. 2002. Open mind common sense: Knowledge acquisition from the general public. In On the Move to Mean- ingful Internet Systems 2002: CoopIS, DOA, and ODBASE, pages 1223-1237, Berlin, Heidelberg. Springer Berlin Heidelberg.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "SemEval-2007 task 14: Affective text",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007)",
                "volume": "",
                "issue": "",
                "pages": "70--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava and Rada Mihalcea. 2007. SemEval- 2007 task 14: Affective text. In Proceedings of the Fourth International Workshop on Semantic Evalua- tions (SemEval-2007), pages 70-74, Prague, Czech Republic. ACL.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Wordnet affect: an affective extension of wordnet",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Valitutti",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava and Alessandro Valitutti. 2004. Wordnet affect: an affective extension of word- net. In Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04), Lisbon, Portugal. ELRA.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Sentence and expression level annotation of opinions in user-generated discourse",
                "authors": [
                    {
                        "first": "Cigdem",
                        "middle": [],
                        "last": "Toprak",
                        "suffix": ""
                    },
                    {
                        "first": "Niklas",
                        "middle": [],
                        "last": "Jakob",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "575--584",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cigdem Toprak, Niklas Jakob, and Iryna Gurevych. 2010. Sentence and expression level annotation of opinions in user-generated discourse. In Proceed- ings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 575-584, Up- psala, Sweden. ACL.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Making news by doing work: Routinizing the unexpected",
                "authors": [
                    {
                        "first": "Gaye",
                        "middle": [],
                        "last": "Tuchman",
                        "suffix": ""
                    }
                ],
                "year": 1973,
                "venue": "American journal of Sociology",
                "volume": "79",
                "issue": "1",
                "pages": "110--131",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gaye Tuchman. 1973. Making news by doing work: Routinizing the unexpected. American journal of Sociology, 79(1):110-131.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Guidelines for annotating implicit sentiment evoked by fine-grained news events (version 1.0)",
                "authors": [
                    {
                        "first": "Cynthia",
                        "middle": [],
                        "last": "Van Hee",
                        "suffix": ""
                    },
                    {
                        "first": "Orph\u00e9e",
                        "middle": [],
                        "last": "De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "LT3, Faculty of Arts, Humanities and Law",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cynthia Van Hee, Orph\u00e9e De Clercq, and V\u00e9ronique Hoste. 2021. Guidelines for annotating implicit sen- timent evoked by fine-grained news events (version 1.0). Technical report, LT3, Faculty of Arts, Human- ities and Law, Ghent University (Ghent, Belgium).",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "We usually don't like going to the dentist : using common sense to detect irony on twitter",
                "authors": [
                    {
                        "first": "Cynthia",
                        "middle": [],
                        "last": "Van Hee",
                        "suffix": ""
                    },
                    {
                        "first": "Els",
                        "middle": [],
                        "last": "Lefever",
                        "suffix": ""
                    },
                    {
                        "first": "Veronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Computational Linguistics",
                "volume": "44",
                "issue": "4",
                "pages": "793--832",
                "other_ids": {
                    "DOI": [
                        "10.1162/coli_a_00337"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Cynthia Van Hee, Els Lefever, and Veronique Hoste. 2018. We usually don't like going to the dentist : us- ing common sense to detect irony on twitter. Com- putational Linguistics, 44(4):793-832.",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Measuring digital media trends in flanders",
                "authors": [
                    {
                        "first": "Karel",
                        "middle": [],
                        "last": "Vandendriessche",
                        "suffix": ""
                    },
                    {
                        "first": "Lieven",
                        "middle": [],
                        "last": "De Marez",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "2019",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karel Vandendriessche and Lieven De Marez. 2019. imec.digimeter 2019: Measur- ing digital media trends in flanders. On- line: https://www.imec.be/nl/expertises/imec- digimeter/digimeter-2019.",
                "links": null
            },
            "BIBREF56": {
                "ref_id": "b56",
                "title": "BERTje: A Dutch BERT Model",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Wietse De Vries",
                        "suffix": ""
                    },
                    {
                        "first": "Arianna",
                        "middle": [],
                        "last": "Van Cranenburgh",
                        "suffix": ""
                    },
                    {
                        "first": "Tommaso",
                        "middle": [],
                        "last": "Bisazza",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Caselli",
                        "suffix": ""
                    },
                    {
                        "first": "Malvina",
                        "middle": [],
                        "last": "Gertjan Van Noord",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nissim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1912.09582"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord, and Malvina Nissim. 2019. BERTje: A Dutch BERT Model. arXiv:1912.09582 [cs].",
                "links": null
            },
            "BIBREF57": {
                "ref_id": "b57",
                "title": "Annotating subjective content in meetings",
                "authors": [
                    {
                        "first": "Theresa",
                        "middle": [],
                        "last": "Wilson",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)",
                "volume": "",
                "issue": "",
                "pages": "2738--2745",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theresa Wilson. 2008. Annotating subjective content in meetings. In Proceedings of the Sixth Interna- tional Conference on Language Resources and Eval- uation (LREC'08), pages 2738-2745, Marrakech, Morocco. ELRA.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "text": "Event distribution by rater and sentiment.",
                "content": "<table/>",
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table/>",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "text": "Inter-rater scores for sentiment trigger annotation amongst three annotator pairs.",
                "content": "<table/>",
                "num": null
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td colspan=\"5\">reveals the sentiment distribution in the</td></tr><tr><td colspan=\"5\">full corpus, which contains 7,652 news events in</td></tr><tr><td colspan=\"5\">total. We observe that, comparable to the results of</td></tr><tr><td colspan=\"5\">the inter-rater experiment (see Section 3.3), most</td></tr><tr><td colspan=\"5\">events have a negative sentiment or are considered</td></tr><tr><td colspan=\"5\">neutral. Only 1 in 10 news events evokes a positive</td></tr><tr><td colspan=\"5\">sentiment, and 4% were considered ambiguous.</td></tr><tr><td/><td/><td colspan=\"2\">Event sentiment</td></tr><tr><td/><td>Pos</td><td>Neg</td><td>Neu</td><td>Conf</td></tr><tr><td># events</td><td colspan=\"3\">849 3,699 2,789</td><td>315</td></tr><tr><td colspan=\"2\">Percentage 11%</td><td>48%</td><td>36%</td><td>4%</td></tr></table>",
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "text": "Event sentiment distribution in the full corpus.",
                "content": "<table/>",
                "num": null
            },
            "TABREF9": {
                "type_str": "table",
                "html": null,
                "text": "Scores obtained by the lexicon-based approaches on the held-out test set (n= 742).",
                "content": "<table><tr><td/><td/><td colspan=\"2\">Performance held-out test set</td><td/><td colspan=\"2\">Performance per class</td><td/></tr><tr><td>Classifier</td><td colspan=\"7\">Accuracy Macro-avg F1 Weight.-avg F1 F1Pos F1Neg F1Neu F1Conf</td></tr><tr><td>SVM</td><td>0.69</td><td>0.61</td><td>0.69</td><td>0.49</td><td>0.76</td><td>0.65</td><td>0.53</td></tr><tr><td>RobBERT</td><td>0.72</td><td>0.60</td><td>0.72</td><td>0.48</td><td>0.80</td><td>0.70</td><td>0.43</td></tr><tr><td>BERTje</td><td>0.74</td><td>0.54</td><td>0.72</td><td>0.48</td><td>0.81</td><td>0.71</td><td>0.15</td></tr><tr><td>Majority baseline</td><td>0.50</td><td>0.17</td><td>0.33</td><td>0.00</td><td>0.66</td><td>0.00</td><td>0.00</td></tr></table>",
                "num": null
            },
            "TABREF10": {
                "type_str": "table",
                "html": null,
                "text": "Scores obtained by the machine learning approach on the held-out test set (n= 742). In the night of July 14th, the day of national celebration, and after the country's World Cup win, 845 vehicles went up in flames.",
                "content": "<table><tr><td>Gold</td><td>Event</td></tr></table>",
                "num": null
            },
            "TABREF11": {
                "type_str": "table",
                "html": null,
                "text": "Qualitative analysis examples: gold label, event text and predictions by SVM, BERTje and RobBERT.",
                "content": "<table/>",
                "num": null
            }
        }
    }
}