File size: 148,852 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:07:39.117450Z"
},
"title": "Exploring Implicit Sentiment Evoked by Fine-grained News Events",
"authors": [
{
"first": "Cynthia",
"middle": [],
"last": "Van Hee",
"suffix": "",
"affiliation": {
"laboratory": "Language and Translation Technology Team",
"institution": "Ghent University Ghent",
"location": {
"country": "Belgium"
}
},
"email": ""
},
{
"first": "Orph\u00e9e",
"middle": [],
"last": "De Clercq",
"suffix": "",
"affiliation": {
"laboratory": "Language and Translation Technology Team",
"institution": "Ghent University Ghent",
"location": {
"country": "Belgium"
}
},
"email": ""
},
{
"first": "V\u00e9ronique",
"middle": [
"Hoste"
],
"last": "Lt",
"suffix": "",
"affiliation": {
"laboratory": "Language and Translation Technology Team",
"institution": "Ghent University Ghent",
"location": {
"country": "Belgium"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "We investigate the feasibility of defining sentiment evoked by fine-grained news events. Our research question is based on the premise that methods for detecting implicit sentiment in news can be a key driver of content diversity, which is one way to mitigate the detrimental effects of filter bubbles that recommenders based on collaborative filtering may produce. Our experiments are based on 1,735 news articles from major Flemish newspapers that were manually annotated, with high agreement, for implicit sentiment. While lexical resources prove insufficient for sentiment analysis in this data genre, our results demonstrate that machine learning models based on SVM and BERT are able to automatically infer the implicit sentiment evoked by news events.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Why do we read the news that we read and how are news articles received by their audiences? Both research questions are important in the domains of news personalization, framing theory and sentiment and emotion analysis, among others. Digitization and globalization have profoundly changed the media ecology (Mitchelstein and Boczkowski, 2009; Deuze, 2003) . There is an increasing trend to consume news via the internet (54%, as opposed to 22% consuming print media 1 ), and more specifically via newspaper websites, smartphone apps, social media, etc. This (partial) shift to online news consumption assigns much more responsibility to citizens, who select from a wide variety of news sources, distributors and topics. Recommendation algorithms do part of the work by filtering, out of the extensive offer of information, news that sparks citizens' interest. Most commonly, such algorithms apply collaborative filtering, which is based on users' past reading behaviour and similar interests in their network. A detrimental side effect of this interplay between algorithms and user behaviour, especially on social media platforms, is that it may lead to a less diverse news consumption, a phenomenon often referred to as the 'filter bubble' (Parser, 2013) .",
"cite_spans": [
{
"start": 308,
"end": 343,
"text": "(Mitchelstein and Boczkowski, 2009;",
"ref_id": "BIBREF38"
},
{
"start": 344,
"end": 356,
"text": "Deuze, 2003)",
"ref_id": "BIBREF20"
},
{
"start": 1242,
"end": 1256,
"text": "(Parser, 2013)",
"ref_id": "BIBREF43"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "A game changer in this respect are algorithms that use content diversity as the key driver for personalized news recommendation. To date, however, content-based filtering is largely based on topic clustering and keyword matching (Adnan et al., 2014; Liu et al., 2010) without considering semantic information including sentiment and controversy. The present study is part of the #News-DNA project which aims to investigate and develop a news recommendation algorithm that is driven by content-based diversity 2 . However, before implementing this type of diversity into a recommender, we need to be able to automatically derive sentiment from newswire text. To this end, we explore whether news events evoke implicit sentiment in the reader and, if so, whether this implicit sentiment can be derived automatically using lexicon-based and machine learning techniques. We focus on text spans that describe hard news events (i.e. covering important topics in the public debate, such as politics, finance and economics, war and crime, as well as international news (Shoemaker and Cohen, 2005; Patterson, 2000; Tuchman, 1973) ).",
"cite_spans": [
{
"start": 229,
"end": 249,
"text": "(Adnan et al., 2014;",
"ref_id": "BIBREF0"
},
{
"start": 250,
"end": 267,
"text": "Liu et al., 2010)",
"ref_id": "BIBREF37"
},
{
"start": 1061,
"end": 1088,
"text": "(Shoemaker and Cohen, 2005;",
"ref_id": "BIBREF47"
},
{
"start": 1089,
"end": 1105,
"text": "Patterson, 2000;",
"ref_id": "BIBREF44"
},
{
"start": 1106,
"end": 1120,
"text": "Tuchman, 1973)",
"ref_id": "BIBREF52"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This paper is the first initiative to model the semantics of written editorial content (devoid of topic restrictions), where fine-grained news events' implicit sentiment is examined manually, and where attempts are made to model this sentiment automatically. Besides presenting a novel dataset for implicit sentiment detection in news texts, we aim to answer the following research question:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "-Can we automatically detect the implicit sentiment evoked by fine-grained news events?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "While sentiment and emotion analysis have a long history in review analysis and recommendation applications using user-generated content, one of the first studies on subjectivity analysis focused on newswire text (Bruce and Wiebe, 1999) . This work, among others, has inspired researchers to apply similar techniques to other data genres, and with the rise of Web 2.0, user-generated content (UGC) quickly became widely investigated, and the main genre under consideration for sentiment research. Compared to the high number of sentiment prediction pipelines that have been established for UGC analysis (Li and Hovy, 2017) , not a great deal of research has been done into sentiment analysis at a fine-grained (i.e. below the sentence) level, sentiment analysis in factual data, multi-modal data or in figurative language like irony and humour, etc. (Mohammad, 2017) . With this paper, we aim to tackle two of the above-mentioned challenges simultaneously by predicting implicit sentiment evoked by fine-grained (factual) news events. Sentiment analysis has a broader application range than detecting explicit sentiment clues in subjective texts. Objective utterances can express sentiment as well, be it indirectly by either specific language use (i.e. words that activate emotional values), or by the sentiment certain events evoke through cultural or personal emotional connection. This distinction brings up the terminological confusion around sentiment and opinion. As pointed out by Liu (2015) , the difference between the two is quite subtle, but dictionary definitions of both terms indicate that opinions represent a person's concrete view, whereas sentiments are more of a person's feeling. Although both are not completely independent of one another, it is worthwhile to mention this distinction so as to have a good understanding of the related research.",
"cite_spans": [
{
"start": 213,
"end": 236,
"text": "(Bruce and Wiebe, 1999)",
"ref_id": "BIBREF6"
},
{
"start": 603,
"end": 622,
"text": "(Li and Hovy, 2017)",
"ref_id": "BIBREF34"
},
{
"start": 850,
"end": 866,
"text": "(Mohammad, 2017)",
"ref_id": "BIBREF39"
},
{
"start": 1489,
"end": 1499,
"text": "Liu (2015)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "Implicit sentiment can thus be analyzed from the author's perspective (i.e. implicit opinions), as well as from the reader's (i.e. implicit sentiment). Research on implied opinions is prevalent in research areas such as electoral politics (e.g. Bansal and Srivastava, 2018; Chiu and Hsu, 2018) , political viewpoints and argumentation mining (e.g. Chen et al., 2010) and stock market predictions (e.g. Khedr et al., 2017) , but it is also gaining research interest in typical UGC analysis, for instance to detect irony and sarcasm (e.g. Van Hee et al., 2018) , and for analyzing newswire text.",
"cite_spans": [
{
"start": 245,
"end": 273,
"text": "Bansal and Srivastava, 2018;",
"ref_id": "BIBREF4"
},
{
"start": 274,
"end": 293,
"text": "Chiu and Hsu, 2018)",
"ref_id": "BIBREF16"
},
{
"start": 348,
"end": 366,
"text": "Chen et al., 2010)",
"ref_id": "BIBREF14"
},
{
"start": 402,
"end": 421,
"text": "Khedr et al., 2017)",
"ref_id": "BIBREF29"
},
{
"start": 531,
"end": 558,
"text": "(e.g. Van Hee et al., 2018)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "Looking at the mere impact of news events on their audiences without having readers' reactions at hand, the focus of this research lies on detecting implicit sentiment rather than implied opinions. Irrespective of potential framing, when consuming news, readers may infer a positive or negative impression of an event or topic based on world knowledge, cultural background, historical context or even personal experiences. Such text spans are known as \"statements or phrases that describe positive or negative factual information about something without conveying a private state\" (Wilson, 2008 (Wilson, , p. 2741 . Later, Toprak et al. (2010) coined the term 'polar facts' to refer to such statements. In what follows, we discuss some seminal studies on sentiment analysis in factual text from both the author's and readers' perspectives.",
"cite_spans": [
{
"start": 581,
"end": 594,
"text": "(Wilson, 2008",
"ref_id": "BIBREF57"
},
{
"start": 595,
"end": 613,
"text": "(Wilson, , p. 2741",
"ref_id": null
},
{
"start": 623,
"end": 643,
"text": "Toprak et al. (2010)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "2.1 Implicit sentiment analysis from the author's perspective Balahur et al. (2010) performed sentiment analysis on quotations in English newswire text. They defined the sentiment of named entities in quotations by applying sentiment lexicons to varying context windows inside the quotes. Jiang et al. (2017) combined a clustering algorithm with lexicon-based sentiment analysis using SentiWord-Net (Baccianella et al., 2010) at the sentence level to distinguish between positive and negative attitudes from UK news sources towards climate change-related topics. A similar methodology was applied by Burscher et al. (2016) to analyze the framing of the topic of nuclear power in English news articles. They found that within the frame of nuclear accidents or waste, articles were much more negative compared to articles that focused on the effects of nuclear power on climate change, or its economic aspects. Nozza et al. (2017) presented a multi-view corpus enriched with different variations of sentiment annotations; including objective versus subjective labels, implicit versus explicit sentiment, emotion categories, irony annotations, and so on. While the study presents clear definitions of the categories, the accompanying corpus examples are rather confusing (e.g. with \"Tonight @CinemaX #SuicideSquad!! Come to see #HarleyQuinn :)\" as an example of an objective text and \"I went out the cinema after 15 minutes #suicidesquad\" as an example of an implied opinion). Low inter-rater agreement scores also confirm the difficulty to distinguish between implicit and explicit opinions. Chen and Chen (2016) explored implicit aspectbased sentiment analysis in Chinese hotel reviews following the premise that implicit opinion expressions are located nearby explicit opinions. Fang et al. (2020) proposed an aspect-based approach to implicit opinion analysis of Chinese car reviews. They applied similarity metrics and clustering algorithms to extract and categorize feature expressions and aggregated their implicit sentiment based on pointwise mutual information (PMI).",
"cite_spans": [
{
"start": 62,
"end": 83,
"text": "Balahur et al. (2010)",
"ref_id": "BIBREF3"
},
{
"start": 399,
"end": 425,
"text": "(Baccianella et al., 2010)",
"ref_id": "BIBREF2"
},
{
"start": 600,
"end": 622,
"text": "Burscher et al. (2016)",
"ref_id": "BIBREF8"
},
{
"start": 909,
"end": 928,
"text": "Nozza et al. (2017)",
"ref_id": "BIBREF41"
},
{
"start": 1590,
"end": 1610,
"text": "Chen and Chen (2016)",
"ref_id": "BIBREF15"
},
{
"start": 1779,
"end": 1797,
"text": "Fang et al. (2020)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "2.2 Implicit sentiment analysis from the readers' perspective Henley et al. (2002) investigated framing effects on violence perception in news reporting of homophobic attacks. Apart from investigating author's perceptions, they performed a manual content analysis to investigate readers' viewpoints regarding the framing of events. It was shown that, for instance, more homophobic newspapers reported on violence against gay people more vaguely compared to violence against straight people, as a result of which the former incidents were perceived less harmful. Conversely, more neutral newspapers were found to report on all types of violence in the same manner. In 2007, a shared task was set up by Strapparava and Mihalcea (2007) focusing on valence and emotion classification of English newspaper headlines. The SemEval-2015 task on implicit sentiment detection of events (Russo et al., 2015) focused on predicting whether structured events (i.e. newspaper sentences containing the pattern \"I-we + [verbal/nominal keyword]\") are considered pleasant or unpleasant. While most work has been done on English data, similar approaches to detect sentiment and emotions in news from the readers' perspective have been applied to Czech (Burget et al., 2011) , Chinese (Lin et al., 2008) and Dutch (Atteveldt et al., 2008) . Related research has also focused on sentiment analysis of named entities in news (Godbole et al., 2007) and sentiment analysis for fake news detection (Kula et al., 2020; Bhutani et al., 2019) .",
"cite_spans": [
{
"start": 62,
"end": 82,
"text": "Henley et al. (2002)",
"ref_id": "BIBREF26"
},
{
"start": 701,
"end": 732,
"text": "Strapparava and Mihalcea (2007)",
"ref_id": "BIBREF49"
},
{
"start": 876,
"end": 896,
"text": "(Russo et al., 2015)",
"ref_id": "BIBREF46"
},
{
"start": 1232,
"end": 1253,
"text": "(Burget et al., 2011)",
"ref_id": "BIBREF7"
},
{
"start": 1256,
"end": 1282,
"text": "Chinese (Lin et al., 2008)",
"ref_id": null
},
{
"start": 1293,
"end": 1317,
"text": "(Atteveldt et al., 2008)",
"ref_id": "BIBREF1"
},
{
"start": 1402,
"end": 1424,
"text": "(Godbole et al., 2007)",
"ref_id": "BIBREF24"
},
{
"start": 1472,
"end": 1491,
"text": "(Kula et al., 2020;",
"ref_id": "BIBREF31"
},
{
"start": 1492,
"end": 1513,
"text": "Bhutani et al., 2019)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "Most similar to the present research is the work by Atteveldt et al. (2008) , who classify implicit sentiment evoked by Dutch news on national politi-cal elections with a classification accuracy of 0.56 F 1 -score. To the best of our knowledge, they are the first to perform such sentiment classification at a more fine-grained level (i.e. considering entity relations, evaluations and performances), as opposed to the document or sentence level. However, their approach is limited in that only specific event structures are considered, and that the data are collected within one well-defined domain, i.e. political elections. Given that the ultimate goal of the present research is to detect sentiment in any kind of hard news, our corpus is not restricted to political events, but encompasses a wide variety of news topics. In addition, we aim to not only detect positively or negatively evoked sentiment, but also consider 'neutral' and 'conflict' as sentiment labels (see Table 4 ).",
"cite_spans": [
{
"start": 52,
"end": 75,
"text": "Atteveldt et al. (2008)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [
{
"start": 976,
"end": 983,
"text": "Table 4",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Related Research",
"sec_num": "2"
},
{
"text": "Striving for diversification driven by content analysis, our research focus is on fine-grained news events (see Section 1), and more specifically the implicit sentiment they evoke in the reader. In the following paragraphs, we zoom in on the data collection and annotation process and present the results of inter-rater-agreement experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus Construction",
"sec_num": "3"
},
{
"text": "We collected a large set of Dutch news articles from major Flemish newspapers published in 2017 and 2018 3 . As mentioned before, our focus was on collecting hard news. Moreover, all articles were reduced to the title and lead, which include the most relevant information as defined by the inverted-pyramid structure applied in journalism.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Collection and Preparation",
"sec_num": "3.1"
},
{
"text": "A first step in the annotation process involved the identification of text spans that present news events. This was done as part of an important effort to create a new Dutch dataset in this research area by Colruyt et al. (2020) . Once identified, all news events were subsequently annotated for implicit sentiment (see Section 3.3.1). Since identifying the sentiment that is evoked by an isolated chunk of text is quite an arduous task, all events were presented to the annotators in their original context, being the news articles' titles and leads. In total, 1,735 articles were annotated with fine-grained news events and their implicit sentiment, as well as the sentiment triggers.",
"cite_spans": [
{
"start": 207,
"end": 228,
"text": "Colruyt et al. (2020)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Collection and Preparation",
"sec_num": "3.1"
},
{
"text": "All annotations were executed in the web-based annotation tool WebAnno (Eckart de Castilho et al., 2016) and by making use of a novel annotation scheme for implicit sentiment evoked by news events (Van Hee et al., 2021) . To sum up, news events are pieces of text that describe an event, situation or description that is newsworthy, i.e. that caused the reporter to write the article. In the first step of the annotation process, the annotators indicated the implicit sentiment evoked by each event (e.g. in 2040 stevige opwarming aarde [EN: in 2040 robust increase in global warming]). All events were assigned a sentiment label out of the following: 'positive', 'negative', 'neutral' and 'conflict'. Where 'positive' and 'negative' were used to mark events evoking a positive and negative sentiment in the reader, the 'neutral' label was used when no specific sentiment was elicited.",
"cite_spans": [
{
"start": 197,
"end": 219,
"text": "(Van Hee et al., 2021)",
"ref_id": "BIBREF53"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Annotation",
"sec_num": "3.2"
},
{
"text": "As the reception and evaluation of news events may largely depend on personal factors (e.g. sociocultural and historical background), we provided the annotators with an extra guideline stating that annotations should be made from a European/Western viewpoint. The annotators were instructed to use 'conflict' labels sparingly, and only in cases where an event's implicit sentiment was ambiguous or depended too heavily on the annotator's personal interests, background, ideology, etc.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Data Annotation",
"sec_num": "3.2"
},
{
"text": "Once an event was assigned a non-neutral sentiment, the annotators marked all words or word groups that are indicative of this sentiment. In the annotation scheme, such text spans are referred to as 'sentiment triggers', which have either a 'positive', 'negative', or 'conflict' sentiment and can be flagged as ironic if the annotator judges irony is involved. The challenge in annotating sentiment triggers resides in the fact that these are, given the data genre, no explicit subjectivity markers, but rather polar facts (see Section 2). Figure 1 shows an annotation example where events are linked to their sentiment triggers. Importantly, sentiment triggers can be, but are not necessarily, part of the event span and they can be non-consecutive spans.",
"cite_spans": [],
"ref_spans": [
{
"start": 540,
"end": 548,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Data Annotation",
"sec_num": "3.2"
},
{
"text": "An inter-annotator agreement study was conducted on a subset of the corpus to verify the consistency of sentiment annotations across the annotators and hence to substantiate the feasibility of annotating implicit sentiment evoked by newswire text. Forty randomly selected documents were reserved for this experiment, which were annotated by three annotators, independently from one another. The annotations were carried out after briefing and training the annotators for the task and before the remainder of the corpus was labeled so as to allow the guidelines to be revised or clarified where deemed necessary. Tables 1 and 2 present the data distribution statistics and inter-rater agreement scores, respectively. It is clear from Table 1 that most events in the IAA set evoked a negative implicit sentiment. More specifically, on average 97 out of 171 of the events or 57% were attributed a negative sentiment and 28 or 16% a positive one. On average, 5 events, or 3% of the events, were attributed the 'conflict' label, meaning that the event's evoked sentiment depended too heavily on its broader context or on the annotator's personal viewpoints. The above reveals that more than 3 in 4 news events in the corpus evoke a sentiment in the reader and can hence be considered polar facts. By contrast, on average 41 or 24% of the events were annotated as neutral.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Inter-annotator Agreement",
"sec_num": "3.3"
},
{
"text": "Inter-rater agreement scores were calculated using the cloud-based version of AgreeStat360 4 , a software package for advanced statistical analysis of agreement among multiple raters (Gwet, 2014). The software allows to calculate the Krippendorff's Alpha (Krippendorff, 2011) with all of its weights and coefficients, including Fleiss' Kappa (Fleiss, 1971) , used for multiple raters' agreement calculation and AC1 (Gwet, 2014), which is a variation of Kappa that corrects an expected agreement in skewed data distributions that is artificially high. Table 2 presents agreement scores between the three raters in terms of defining individual news events' evoked sentiment. All metrics considered and following the interpreting guidelines by Landis and Koch (1977) , we can conclude that the annotations show a high level of agreement. Figure 1 : Pre-annotated events \"in 2040 robust increase in global warming\" and \"by 2040 the average temperature on earth will have risen by 1.5 degree\" are linked to their sentiment triggers \"robust increase in global warming\" and \"average temperature on earth\" + \"will have risen\".",
"cite_spans": [
{
"start": 255,
"end": 275,
"text": "(Krippendorff, 2011)",
"ref_id": "BIBREF30"
},
{
"start": 342,
"end": 356,
"text": "(Fleiss, 1971)",
"ref_id": "BIBREF23"
},
{
"start": 741,
"end": 763,
"text": "Landis and Koch (1977)",
"ref_id": "BIBREF32"
}
],
"ref_spans": [
{
"start": 551,
"end": 558,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 835,
"end": 843,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Implicit Sentiment of News Events",
"sec_num": "3.3.1"
},
{
"text": "Coeff StdErr 95% C.I. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Method",
"sec_num": null
},
{
"text": "Apart from annotating implicit sentiment evoked by news events, the annotators also marked in the same sentence all sentiment triggers that influenced their decision. Given the data genre, identifying such words was expected to be difficult because this depends on (i) the amount of context available and (ii) the extent to which an event has an intrinsic sentiment that humans are aware of by context or world knowledge. No specific guidelines were defined for the annotation of sentiment triggers; they could be single words or phrases of any type of syntactic structure. Annotators were, however, asked to select the minimal word span. Calculating inter-rater agreement for sentiment triggers requires a strategy to align the text spans between the different annotators. Matching text spans between two outputs (whether they are human annotations or system predictions) is a familiar challenge in sentiment annotation and detection tasks, and especially known in the field of aspect-based sentiment analysis. Depending on the importance of exact span overlap, text spans can be evaluated by searching for an exact or a relaxed match at the start and ending token boundaries. In Lee and Sun (2019) , an exact match imposes a 100% overlap between two text spans, whereas a relaxed match imposes that 1) either side of the boundaries is matched with at least one token or 2) at least one token overlaps between the spans.",
"cite_spans": [
{
"start": 1181,
"end": 1199,
"text": "Lee and Sun (2019)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Sentiment Triggers",
"sec_num": "3.3.2"
},
{
"text": "As no detailed guidelines were provided for the syntactic composition of sentiment triggers, an exact span match evaluation would affect the interrater agreement too negatively. In fact, we looked at the 100% overlap ratio for sentiment triggers when annotated for a specific event and found that (one or more) sentiment trigger(s) were annotated for 148 events. For 38 events (26%), all annotators indicated the exact same sentiment triggers. For 12 events (8%), half of the sentiment triggers were identical amongst the three annotators. For 92 events (62%), there were no exact matches. For the remaining 6 events (4%), 1 out of 3 or 4 sentiment triggers were annotated by all three raters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentiment Triggers",
"sec_num": "3.3.2"
},
{
"text": "Partial matches were not taken into account for the above statistics. In a second and more detailed examination, we considered two annotations to match if at least one character index between the two text spans overlapped, regardless of matching boundaries. Table 3 shows these agreement results as F 1 -scores per annotator pair, where the first rater mentioned served as the gold standard for the evaluation. As can be deduced from this table, with an average F 1 -score of 0.72 over all events, the interrater agreement for sentiment triggers is quite high. It means that out of 10 sentiment triggers annotated by the gold standard 7 are also found by a second, independent rater. ",
"cite_spans": [],
"ref_spans": [
{
"start": 258,
"end": 265,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Sentiment Triggers",
"sec_num": "3.3.2"
},
{
"text": "In the following paragraphs, we thoroughly investigate our research question by analyzing the full corpus and conducting experiments to examine whether detecting implicit sentiment evoked by news events is a feasible task. A qualitative, manual analysis of the annotations was performed to gain more insights into the differences between neutral and non-neutral news events. This analysis revealed that words that occur more frequently in neutral events compared to positive and negative events are topical words that occur frequently in the news bulletin, like 'government', 'minister', 'European' and 'American'. Neutral events also more often contain time indicators such as 'Monday', 'last week', 'today' and verbs expressing locutionary acts (e.g. 'said', 'asks', 'communicated'), compared to non-neutral events. Negative events more often contain nouns and adjectives like 'murder', 'attack', 'shooting', 'war', 'famine', and verbs including 'judging', 'arrested' and 'wounded' than positive and neutral events. The noun 'increase' also occurs most frequently in negative events, mostly associated with terms like 'tension' or terms related to addiction and disease. Frequently occurring terms in positive events are more difficult to pinpoint at the word level, but it is observed that words like 'solution', 'approved' and 'new' occur more frequently in positive events compared to negative and neutral ones. An analysis of the conflict events revealed that often, these mention highly topical nouns and named entities like 'Brexit' (56 out of 315 events), 'Trump' (24/315), 'Catalonia' (23/315), 'referendum' (16/315), 'Jerusalem' (12/315) and 'nuclear exit' (10/315). These are all examples of concepts that evoke ambivalent feelings depending on the reader and on the broader context, hence the events they occur in were labeled as 'conflict'.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus analysis and experiments",
"sec_num": "4"
},
{
"text": "An analysis of the sentiment triggers (underlined in the examples) showed that they are mostly (>99% of the cases) included inside the event span, as shown in example 1. Interestingly, sentiment triggers outside of the event span (example 2) are often part of a subjective statement by the author or a quotation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Annotating Implicit Sentiment in News",
"sec_num": "4.1"
},
{
"text": "(1) [Brother of the presumed Giant of the Brabant Killers provides investigators with new tips]event.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Annotating Implicit Sentiment in News",
"sec_num": "4.1"
},
{
"text": "(2) [The billion-dollar takeover of 21st Century Fox]event creates a new major power.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Annotating Implicit Sentiment in News",
"sec_num": "4.1"
},
{
"text": "Having a news article corpus in place, in which annotators differentiated between neutral events and events that evoke a particular sentiment, we were able to investigate the feasibility of implicit sentiment detection. Filtering out the doubles lead to an experimental corpus of 7,425 events, which was split in a training partition of 6,683 events and a test set of 742 events. The label distributions in both sets remained the same as in Table 4 .",
"cite_spans": [],
"ref_spans": [
{
"start": 441,
"end": 448,
"text": "Table 4",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Automatically Predicting Implicit Sentiment in News",
"sec_num": "4.2"
},
{
"text": "We first explored the effectiveness of two lexiconbased approaches to automatically determine implicit sentiment in news events. For the first approach, we relied on four sentiment lexicons for Dutch, including the Pattern lexicon (De Smedt and Daelemans, 2012) composed of 3,223 qualitative adjectives, an in-house sentiment lexicon with size n= 434 composed of manual review annotations, the Duoman lexicon (Jijkoun and Hofmann, 2009) composed of 8,757 wordforms and the NRC Hashtag Lexicon (Mohammad and Turney, 2013) including 13,683 entries 5 . All lexicons were manually checked to filter irrelevant entries. The order in which these lexicons were consulted was determined by preliminary experiments (i.e. when a word had no match in the Pattern lexicon, the next step was to consult the in-house lexicon, next Duoman and finally NRC). For the second approach, we used Sentic-Net (Cambria and Hussain, 2015) , an automatically constructed semantic knowledge resource based on common sense knowledge from the Open Mind Common Sense initiative (Singh et al., 2002) and GECKA , combined with affective knowledge from WordNet-Affect (Strapparava and Valitutti, 2004) . SenticNet entries provide sentiment information for concepts of varying n-gram length, such as \"accomplish goal\", \"celebrate special occasion\", \"be on cloud nine\", etc. We considered it a potentially valuable resource for our task as it is not restricted to explicit sentiment terms, which are probably hard to find in newswire text. For our experiments, we made use of the Sen-ticNet 5 API (Cambria et al., 2018) , which returns sentiment values for the concepts it receives. Table 5 presents the results of the lexicon-based sentiment analysis approaches. Overall, the scores are low, with a top F 1 score of 0.47 obtained with the four combined lexicons that outperformed Sen-ticNet with 16%. Looking at the performance per class, we can conclude that the results are clearly better for the negative and neutral instances. Intuitively, we expected SenticNet to be better suited for the task, given the data genre and SenticNet's inclusion of implicit polar concepts. However, there are several hypotheses as to why it was outperformed by the other lexicons. Firstly, a qualitative analysis revealed that the coverage largely differs, with on average 3 or more matches per event for the regular lexicons, and only 1 for SenticNet. Secondly, all entries in the combined lexicons were manually verified, either by the authors of the lexica or by the authors of this paper, unlike Sentic-Net's entries, which are automatically collected from a small annotated seed set. Thirdly, as Sen-ticNet contains concepts rather than words, all text needed to be pre-processed using a concept parser (Rajagopal et al., 2013) 6 . As such a parser is currently unavailable for Dutch, we decided to translate all events to English using Google Translate 7 . Automatic translation, however, means that some of the semantics may be lost, which may have affected the results of this approach.",
"cite_spans": [
{
"start": 231,
"end": 261,
"text": "(De Smedt and Daelemans, 2012)",
"ref_id": "BIBREF18"
},
{
"start": 409,
"end": 436,
"text": "(Jijkoun and Hofmann, 2009)",
"ref_id": "BIBREF28"
},
{
"start": 493,
"end": 520,
"text": "(Mohammad and Turney, 2013)",
"ref_id": "BIBREF40"
},
{
"start": 886,
"end": 913,
"text": "(Cambria and Hussain, 2015)",
"ref_id": "BIBREF9"
},
{
"start": 1048,
"end": 1068,
"text": "(Singh et al., 2002)",
"ref_id": "BIBREF48"
},
{
"start": 1135,
"end": 1168,
"text": "(Strapparava and Valitutti, 2004)",
"ref_id": "BIBREF50"
},
{
"start": 1562,
"end": 1584,
"text": "(Cambria et al., 2018)",
"ref_id": "BIBREF10"
},
{
"start": 2759,
"end": 2785,
"text": "(Rajagopal et al., 2013) 6",
"ref_id": null
}
],
"ref_spans": [
{
"start": 1648,
"end": 1655,
"text": "Table 5",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Lexicon-based Approach to Event Sentiment Detection",
"sec_num": "4.2.1"
},
{
"text": "Using machine learning, we investigated a featurebased and end-to-end architecture. For the featurebased approach, we applied Support Vector Machines using the LibSVM library (Chang and Lin, 2011) . For the latter approach, we applied two state-of-the-art transformer-based architectures for Dutch, i.e. BERTje (Vries et al., 2019) and Rob-BERT (Delobelle et al., 2020) . While both models are based on the BERT architecture originally released for English (Devlin et al., 2019) , they were each pre-trained on different corpora. BERTje is pre-trained on a 12 GB Dutch corpus composed of different genres, including books, social media data, Wikipedia and -especially relevant for our task-newswire text. By contrast, RobBERT is based on the Dutch section of the OSCAR corpus (Ortiz Su\u00e1rez et al., 2019) , a 39 GB large subcorpus of the Common Crawl corpus 8 , the largest web crawl corpus available. Although the latter is pre-trained on much more data, we expect BERTje to be better suited for the current task. SVM parameter settings for the classifier and feature extraction were simultaneously optimized using a grid search in a nested cross-validation setup. For the classification algorithm, we varied the kernel type, cost and gamma parameters and tested equal versus balanced class weighting. Regarding feature engineering, we varied the n-gram length and type (i.e. words versus characters and uni-/bi-/trigrams) and tested with a maximum feature threshold (i.e. None; 5,000; 10,000; 20,000). In both transformer setups, 3 epochs were defined with preliminary experiments. However, actual training did not even require that many epochs, as from epoch 1 (BERTje) and 2 (RobBERT) onwards, validation loss surpassed training loss, which may suggest overfitting. For all classifiers, the parameter settings and feature combinations that yielded the best results in the cross-validation experiments were used to train the final model that was subsequently applied to the held-out test set 9 .",
"cite_spans": [
{
"start": 175,
"end": 196,
"text": "(Chang and Lin, 2011)",
"ref_id": "BIBREF13"
},
{
"start": 311,
"end": 331,
"text": "(Vries et al., 2019)",
"ref_id": "BIBREF56"
},
{
"start": 345,
"end": 369,
"text": "(Delobelle et al., 2020)",
"ref_id": "BIBREF19"
},
{
"start": 457,
"end": 478,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF21"
},
{
"start": 776,
"end": 803,
"text": "(Ortiz Su\u00e1rez et al., 2019)",
"ref_id": "BIBREF42"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Machine Learning Approach to Event Polarity Detection",
"sec_num": "4.2.2"
},
{
"text": "The results (Table 6 ) reveal that all three classifiers perform in a similar way, especially when considering the weight-averaged F 1 scores. Ranging between F 1 = 0.69 and 0.72, the scores clearly outperform the combined sentiment lexicons approach and the majority baseline (predicting the negative class only). The SVM classifier seems to handle the underrepresented classes 'positive' and 'conflict' better than RobBERT and BERTje.",
"cite_spans": [],
"ref_spans": [
{
"start": 12,
"end": 20,
"text": "(Table 6",
"ref_id": "TABREF10"
}
],
"eq_spans": [],
"section": "Machine Learning Approach to Event Polarity Detection",
"sec_num": "4.2.2"
},
{
"text": "We also conducted a qualitative analysis, the results of which are presented in Table 7 . Predictions for the first event suggest that the SVM predic- tion might be triggered by the positive words in the event, whereas they do not influence the predictions of the BERT models. The second example shows the difficulty of nested events, i.e. \"RNA gun lobby\" which is annotated as \"conflict\", but is nested inside the neutral event \"a speech Trump gave (...)\". Here as well, the SVM seems rather triggered by purely lexical items. The third example demonstrates the importance of context for accurate sentiment prediction at a more fine-grained level. The event's context is a proposition to make two Belgian ports work more closely together, which is welcomed by one party, but not by the port of Antwerp. The last two events (\"een inferno\" and \"een deal\" in Dutch) are examples of correct predictions by RobBERT while the predictions by BERTje are incorrect. An explanation could be that the web crawl data Rob-BERT is trained on is more likely to contain English terms, unlike the cleaner corpus at the basis of BERTje. Lastly, while some events are extensive in terms of context (example 1), others are more constrained, which complicates their prediction.",
"cite_spans": [],
"ref_spans": [
{
"start": 80,
"end": 87,
"text": "Table 7",
"ref_id": "TABREF11"
}
],
"eq_spans": [],
"section": "Machine Learning Approach to Event Polarity Detection",
"sec_num": "4.2.2"
},
{
"text": "With this paper, we investigated the detection of implicit sentiment evoked by Dutch newswire text. While related research approaches the task mainly at the document or sentence level using lexiconbased methods, we focused on fine-grained events below the sentence level and experimented with lexicon-based approaches and machine learning. For the latter, we compared the performance of SVMs, which have proven successful in sentiment analysis tasks, with two transformer-based models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "5"
},
{
"text": "Our results demonstrate that the machine learning approach performs accurately with a top F 1 score of 0.72 and shows a considerable improvement over the majority baseline. The experiments also demonstrate that machine learning clearly outperforms the lexicon-based approach, even when extensive (implicit) sentiment lexicons are used. Furthermore, we created and manually annotated a Dutch corpus of news events and were able to show high inter-rater agreement for event sentiment and sentiment span annotations. In future research, it will be interesting to explore whether additional context, including named entities and co-referring events, inside and across sentence boundaries, can improve implicit sentiment detection further.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "5"
},
{
"text": "Figures from the yearly imec.digimeter report (Vandendriessche and De Marez, 2019), publishing recent information about media and technology use in Flanders.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.ugent.be/mict/en/research/newsdna.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "The data were provided as JSON files by Mediahuis, a media company that publishes national and regional newspapers in Belgium, the Netherlands and Ireland.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://agreestat360.com.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "The original lexicon of 14,182 unigrams, which had been automatically translated to Dutch, was manually filtered by a Translation student.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/SenticNet/concept-parser.7 Translations done on 22/09/2020.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://commoncrawl.org/ 9 Best SVM parameters and features: linear kernel with cost C=10; balanced class weighting; 45,973 uni-and bigram word n-grams without threshold. Best settings for BERT: dropout: 0; sequence length: 128; learning rate (Adam): 5e-05; batch size 64; number of epochs: 3.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We thank Siel Debouver and Anna\u00efs Airapetian for their invaluable contribution to the corpus annotation and Bram Vanroy for his code contribution. This research was funded by the Special Research Fund of Ghent University and supported by #News-DNA.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Content based news recommendation system based on fuzzy logic",
"authors": [
{
"first": "Md",
"middle": [],
"last": "Adnan",
"suffix": ""
},
{
"first": "Mohammed",
"middle": [],
"last": "Chowdury",
"suffix": ""
},
{
"first": "Iftifar",
"middle": [],
"last": "Taz",
"suffix": ""
},
{
"first": "Tauqir",
"middle": [],
"last": "Ahmed",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Rahman",
"suffix": ""
}
],
"year": 2014,
"venue": "International Conference on Informatics, Electronics and Vision (ICIEV 2014)",
"volume": "",
"issue": "",
"pages": "1--6",
"other_ids": {
"DOI": [
"10.1109/ICIEV.2014.6850800"
]
},
"num": null,
"urls": [],
"raw_text": "Md Adnan, Mohammed Chowdury, Iftifar Taz, Tauqir Ahmed, and Mohammad Rahman. 2014. Content based news recommendation system based on fuzzy logic. In International Conference on Informatics, Electronics and Vision (ICIEV 2014), pages 1-6.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Good news or bad news? conducting sentiment analysis on dutch text to distinguish between positive and negative relations",
"authors": [
{
"first": "Wouter",
"middle": [],
"last": "Atteveldt",
"suffix": ""
},
{
"first": "Jan",
"middle": [],
"last": "Kleinnijenhuis",
"suffix": ""
},
{
"first": "Nel",
"middle": [],
"last": "Ruigrok",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Schlobach",
"suffix": ""
}
],
"year": 2008,
"venue": "Journal of Information Technology & Politics",
"volume": "5",
"issue": "",
"pages": "73--94",
"other_ids": {
"DOI": [
"10.1080/19331680802154145"
]
},
"num": null,
"urls": [],
"raw_text": "Wouter Atteveldt, Jan Kleinnijenhuis, Nel Ruigrok, and Stefan Schlobach. 2008. Good news or bad news? conducting sentiment analysis on dutch text to distinguish between positive and negative rela- tions. Journal of Information Technology & Politics, 5:73-94.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining",
"authors": [
{
"first": "Stefano",
"middle": [],
"last": "Baccianella",
"suffix": ""
},
{
"first": "Andrea",
"middle": [],
"last": "Esuli",
"suffix": ""
},
{
"first": "Fabrizio",
"middle": [],
"last": "Sebastiani",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas- tiani. 2010. Sentiwordnet 3.0: An enhanced lexi- cal resource for sentiment analysis and opinion min- ing. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. ELRA.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Sentiment analysis in the news",
"authors": [
{
"first": "Alexandra",
"middle": [],
"last": "Balahur",
"suffix": ""
},
{
"first": "Raf",
"middle": [],
"last": "Steinberger",
"suffix": ""
},
{
"first": "Mijail",
"middle": [],
"last": "Kabadjov",
"suffix": ""
},
{
"first": "Vanni",
"middle": [],
"last": "Zavarella",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "Van Der Goot",
"suffix": ""
},
{
"first": "Matina",
"middle": [],
"last": "Halkia",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Pouliquen",
"suffix": ""
},
{
"first": "Jenya",
"middle": [],
"last": "Belyaeva",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexandra Balahur, Raf Steinberger, Mijail Kabadjov, Vanni Zavarella, Erik van der Goot, Matina Halkia, Bruno Pouliquen, and Jenya Belyaeva. 2010. Sen- timent analysis in the news. In Proceedings of the Seventh International Conference on Language Re- sources and Evaluation (LREC'10), Valletta, Malta. ELRA.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "On predicting elections with hybrid topic based sentiment analysis of tweets",
"authors": [
{
"first": "Barkha",
"middle": [],
"last": "Bansal",
"suffix": ""
},
{
"first": "Sangeet",
"middle": [],
"last": "Srivastava",
"suffix": ""
}
],
"year": 2018,
"venue": "The 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life",
"volume": "135",
"issue": "",
"pages": "346--353",
"other_ids": {
"DOI": [
"10.1016/j.procs.2018.08.183"
]
},
"num": null,
"urls": [],
"raw_text": "Barkha Bansal and Sangeet Srivastava. 2018. On pre- dicting elections with hybrid topic based sentiment analysis of tweets. Procedia Computer Science, 135:346 -353. The 3rd International Conference on Computer Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology in Digital Era for a Better Life.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Fake news detection using sentiment analysis",
"authors": [
{
"first": "Bhavika",
"middle": [],
"last": "Bhutani",
"suffix": ""
},
{
"first": "Neha",
"middle": [],
"last": "Rastogi",
"suffix": ""
},
{
"first": "Priyanshu",
"middle": [],
"last": "Sehgal",
"suffix": ""
},
{
"first": "Archana",
"middle": [],
"last": "Purwar",
"suffix": ""
}
],
"year": 2019,
"venue": "Twelfth International Conference on Contemporary Computing (IC3)",
"volume": "",
"issue": "",
"pages": "1--5",
"other_ids": {
"DOI": [
"10.1109/IC3.2019.8844880"
]
},
"num": null,
"urls": [],
"raw_text": "Bhavika Bhutani, Neha Rastogi, Priyanshu Sehgal, and Archana Purwar. 2019. Fake news detection using sentiment analysis. In 2019 Twelfth Inter- national Conference on Contemporary Computing (IC3), pages 1-5.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Recognizing subjectivity: A case study of manual tagging",
"authors": [
{
"first": "Rebecca",
"middle": [
"F"
],
"last": "Bruce",
"suffix": ""
},
{
"first": "Janyce",
"middle": [
"M"
],
"last": "Wiebe",
"suffix": ""
}
],
"year": 1999,
"venue": "Natural Language Engineering",
"volume": "5",
"issue": "",
"pages": "187--205",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rebecca F. Bruce and Janyce M. Wiebe. 1999. Recog- nizing subjectivity: A case study of manual tagging. Natural Language Engineering, 5:187-205.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Recognition of emotions in czech newspaper headlines. Radioengineering",
"authors": [
{
"first": "Radim",
"middle": [],
"last": "Burget",
"suffix": ""
},
{
"first": "Jan",
"middle": [],
"last": "Karasek",
"suffix": ""
},
{
"first": "Zden\u011bk",
"middle": [],
"last": "Sm\u00e9kal",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "20",
"issue": "",
"pages": "39--47",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Radim Burget, Jan Karasek, and Zden\u011bk Sm\u00e9kal. 2011. Recognition of emotions in czech newspaper head- lines. Radioengineering, 20:39-47.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Frames beyond words",
"authors": [
{
"first": "Bjorn",
"middle": [],
"last": "Burscher",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Vliegenthart",
"suffix": ""
},
{
"first": "C",
"middle": [
"D"
],
"last": "Vreese",
"suffix": ""
}
],
"year": 2016,
"venue": "Social Science Computer Review",
"volume": "34",
"issue": "",
"pages": "530--545",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bjorn Burscher, R. Vliegenthart, and C. D. Vreese. 2016. Frames beyond words. Social Science Com- puter Review, 34:530-545.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis",
"authors": [
{
"first": "Erik",
"middle": [],
"last": "Cambria",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Hussain",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik Cambria and Amir Hussain. 2015. Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis, 1st edition. Springer Publishing Company, Incorporated.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Discovering conceptual primitives for sentiment analysis by means of context embeddings",
"authors": [
{
"first": "Erik",
"middle": [],
"last": "Cambria",
"suffix": ""
},
{
"first": "Soujanya",
"middle": [],
"last": "Poria",
"suffix": ""
},
{
"first": "Devamanyu",
"middle": [],
"last": "Hazarika",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [],
"last": "Kwok",
"suffix": ""
}
],
"year": 2018,
"venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "5",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik Cambria, Soujanya Poria, Devamanyu Hazarika, and Kenneth Kwok. 2018. Senticnet 5: Discov- ering conceptual primitives for sentiment analysis by means of context embeddings. In Thirty-Second AAAI Conference on Artificial Intelligence.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Gecka: Game engine for commonsense knowledge acquisition",
"authors": [
{
"first": "Erik",
"middle": [],
"last": "Cambria",
"suffix": ""
},
{
"first": "Dheeraj",
"middle": [],
"last": "Rajagopal",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [],
"last": "Kwok",
"suffix": ""
},
{
"first": "Jose",
"middle": [],
"last": "Sepulveda",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Erik Cambria, Dheeraj Rajagopal, Kenneth Kwok, and Jose Sepulveda. 2015. Gecka: Game engine for commonsense knowledge acquisition. In Proceed- ings of the Twenty-Eighth International Florida Ar- tificial Intelligence Research Society Conference.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A web-based tool for the integrated annotation of semantic and syntactic structures",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Eckart De Castilho",
"suffix": ""
},
{
"first": "\u00c9va",
"middle": [],
"last": "M\u00fajdricza-Maydt",
"suffix": ""
},
{
"first": "Silvana",
"middle": [],
"last": "Seid Muhie Yimam",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Hartmann",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH)",
"volume": "",
"issue": "",
"pages": "76--84",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard Eckart de Castilho,\u00c9va M\u00fajdricza-Maydt, Seid Muhie Yimam, Silvana Hartmann, Iryna Gurevych, Anette Frank, and Chris Biemann. 2016. A web-based tool for the integrated annotation of se- mantic and syntactic structures. In Proceedings of the Workshop on Language Technology Resources and Tools for Digital Humanities (LT4DH), pages 76-84, Osaka, Japan. The COLING 2016 Organiz- ing Committee.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Libsvm: A library for support vector machines",
"authors": [
{
"first": "Chih-Chung",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Chih-Jen",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2011,
"venue": "ACM Transactions on Intelligent Systems and Technology Journal",
"volume": "2",
"issue": "3",
"pages": "",
"other_ids": {
"DOI": [
"10.1145/1961189.1961199"
]
},
"num": null,
"urls": [],
"raw_text": "Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm: A library for support vector machines. ACM Trans- actions on Intelligent Systems and Technology Jour- nal, 2(3).",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "What is an opinion about? exploring political standpoints using opinion scoring model",
"authors": [
{
"first": "Bi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Leilei",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Kifer",
"suffix": ""
},
{
"first": "Dongwon",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI'10",
"volume": "",
"issue": "",
"pages": "1007--1012",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bi Chen, Leilei Zhu, Daniel Kifer, and Dongwon Lee. 2010. What is an opinion about? exploring politi- cal standpoints using opinion scoring model. In Pro- ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI'10, page 1007-1012. AAAI Press.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Implicit polarity and implicit aspect recognition in opinion mining",
"authors": [
{
"first": "Hsin-Hsi",
"middle": [],
"last": "Huan-Yuan Chen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "20--25",
"other_ids": {
"DOI": [
"10.18653/v1/P16-2004"
]
},
"num": null,
"urls": [],
"raw_text": "Huan-Yuan Chen and Hsin-Hsi Chen. 2016. Implicit polarity and implicit aspect recognition in opinion mining. pages 20-25.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Predicting political tendency of posts on facebook",
"authors": [
{
"first": "-I",
"middle": [],
"last": "Shu",
"suffix": ""
},
{
"first": "Kuo-Wei",
"middle": [],
"last": "Chiu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hsu",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 7th International Conference on Software and Computer Applications, ICSCA 2018",
"volume": "",
"issue": "",
"pages": "110--114",
"other_ids": {
"DOI": [
"10.1145/3185089.3185094"
]
},
"num": null,
"urls": [],
"raw_text": "Shu-I Chiu and Kuo-Wei Hsu. 2018. Predicting po- litical tendency of posts on facebook. In Proceed- ings of the 2018 7th International Conference on Software and Computer Applications, ICSCA 2018, page 110-114, New York, NY, USA. Association for Computing Machinery.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "EventDNA: a dataset for Dutch news event extraction as a basis for news diversification",
"authors": [
{
"first": "Camiel",
"middle": [],
"last": "Colruyt",
"suffix": ""
},
{
"first": "Orph\u00e9e",
"middle": [],
"last": "De Clercq",
"suffix": ""
},
{
"first": "V\u00e9ronique",
"middle": [],
"last": "Hoste",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Camiel Colruyt, Orph\u00e9e De Clercq, and V\u00e9ronique Hoste. 2020. EventDNA: a dataset for Dutch news event extraction as a basis for news diversification. Manuscript under review.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "vreselijk mooi!\" (terribly beautiful): A subjectivity lexicon for Dutch adjectives",
"authors": [
{
"first": "Tom",
"middle": [],
"last": "De",
"suffix": ""
},
{
"first": "Smedt",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Walter",
"middle": [],
"last": "Daelemans",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
"volume": "",
"issue": "",
"pages": "3568--3572",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tom De Smedt and Walter Daelemans. 2012. \"vre- selijk mooi!\" (terribly beautiful): A subjectivity lexicon for Dutch adjectives. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12), pages 3568- 3572, Istanbul, Turkey. ELRA.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Robbert: a dutch roberta-based language model",
"authors": [
{
"first": "Pieter",
"middle": [],
"last": "Delobelle",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Winters",
"suffix": ""
},
{
"first": "Bettina",
"middle": [],
"last": "Berendt",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pieter Delobelle, Thomas Winters, and Bettina Berendt. 2020. Robbert: a dutch roberta-based language model.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "The web and its journalisms: Considering the consequences of different types of newsmedia online",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Deuze",
"suffix": ""
}
],
"year": 2003,
"venue": "New Media & Society",
"volume": "5",
"issue": "2",
"pages": "203--230",
"other_ids": {
"DOI": [
"10.1177/1461444803005002004"
]
},
"num": null,
"urls": [],
"raw_text": "Mark Deuze. 2003. The web and its journalisms: Con- sidering the consequences of different types of news- media online. New Media & Society, 5(2):203-230.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. ACL.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "An implicit opinion analysis model based on feature-based implicit opinion patterns",
"authors": [
{
"first": "Zhao",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Qiang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xiaoan",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Anning",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Claude",
"middle": [],
"last": "Baron",
"suffix": ""
}
],
"year": 2020,
"venue": "Artificial Intelligence Review",
"volume": "53",
"issue": "",
"pages": "4547--4574",
"other_ids": {
"DOI": [
"10.1007/s10462-019-09801-9"
]
},
"num": null,
"urls": [],
"raw_text": "Zhao Fang, Qiang Zhang, Xiaoan Tang, Anning Wang, and Claude Baron. 2020. An implicit opin- ion analysis model based on feature-based implicit opinion patterns. Artificial Intelligence Review, 53:4547-4574.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Measuring nominal scale agreement among many raters",
"authors": [
{
"first": "Joseph",
"middle": [
"L"
],
"last": "Fleiss",
"suffix": ""
}
],
"year": 1971,
"venue": "Psychological bulletin",
"volume": "76",
"issue": "5",
"pages": "378--382",
"other_ids": {
"DOI": [
"10.1037/h0031619"
]
},
"num": null,
"urls": [],
"raw_text": "Joseph L. Fleiss. 1971. Measuring nominal scale agree- ment among many raters. Psychological bulletin, 76(5):378-382.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Large-scale sentiment analysis for news and blogs",
"authors": [
{
"first": "Namrata",
"middle": [],
"last": "Godbole",
"suffix": ""
},
{
"first": "Manjunath",
"middle": [],
"last": "Srinivasaiah",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Skiena",
"suffix": ""
}
],
"year": 2007,
"venue": "ICWSM 2007 -International Conference on Weblogs and Social Media",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Namrata Godbole, Manjunath Srinivasaiah, and Steven Skiena. 2007. Large-scale sentiment analysis for news and blogs. In ICWSM 2007 -International Conference on Weblogs and Social Media.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "The Definitive Guide to Measuring the Extent of Agreement Among Raters",
"authors": [
{
"first": "L",
"middle": [],
"last": "Kilem",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gwet",
"suffix": ""
}
],
"year": 2014,
"venue": "Advanced Analytics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kilem L. Gwet. 2014. Handbook of Inter-Rater Relia- bility (Fourth Edition), The Definitive Guide to Mea- suring the Extent of Agreement Among Raters. Ad- vanced Analytics, LLC, Gaithersburg, USA.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Frequency and specificity of referents to violence in news reports of anti-gay attacks",
"authors": [
{
"first": "Nancy",
"middle": [
"M"
],
"last": "Henley",
"suffix": ""
},
{
"first": "Michelle",
"middle": [
"D"
],
"last": "Miller",
"suffix": ""
},
{
"first": "Jo",
"middle": [
"Anne"
],
"last": "Beazley",
"suffix": ""
},
{
"first": "Diane",
"middle": [
"N"
],
"last": "Nguyen",
"suffix": ""
},
{
"first": "Dana",
"middle": [],
"last": "Kaminsky",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Sanders",
"suffix": ""
}
],
"year": 2002,
"venue": "Discourse & Society",
"volume": "13",
"issue": "1",
"pages": "75--104",
"other_ids": {
"DOI": [
"10.1177/0957926502013001004"
]
},
"num": null,
"urls": [],
"raw_text": "Nancy M. Henley, Michelle D. Miller, Jo Anne Beaz- ley, Diane N. Nguyen, Dana Kaminsky, and Robert Sanders. 2002. Frequency and specificity of refer- ents to violence in news reports of anti-gay attacks. Discourse & Society, 13(1):75-104.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Comparing attitudes to climate change in the media using sentiment analysis based on Latent Dirichlet Allocation",
"authors": [
{
"first": "Ye",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Xingyi",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Jackie",
"middle": [],
"last": "Harrison",
"suffix": ""
},
{
"first": "Shaun",
"middle": [],
"last": "Quegan",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Maynard",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism",
"volume": "",
"issue": "",
"pages": "25--30",
"other_ids": {
"DOI": [
"10.18653/v1/W17-4205"
]
},
"num": null,
"urls": [],
"raw_text": "Ye Jiang, Xingyi Song, Jackie Harrison, Shaun Quegan, and Diana Maynard. 2017. Comparing attitudes to climate change in the media using sentiment anal- ysis based on Latent Dirichlet Allocation. In Pro- ceedings of the 2017 EMNLP Workshop: Natural Language Processing meets Journalism, pages 25- 30, Copenhagen, Denmark. ACL.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Generating a non-english subjectivity lexicon: Relations that matter",
"authors": [
{
"first": "Valentin",
"middle": [],
"last": "Jijkoun",
"suffix": ""
},
{
"first": "Katja",
"middle": [],
"last": "Hofmann",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL'09",
"volume": "",
"issue": "",
"pages": "398--405",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Valentin Jijkoun and Katja Hofmann. 2009. Generat- ing a non-english subjectivity lexicon: Relations that matter. In Proceedings of the 12th Conference of the European Chapter of the Association for Computa- tional Linguistics, EACL'09, page 398-405, USA. ACL.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Predicting stock market behavior using data mining technique and news sentiment analysis",
"authors": [
{
"first": "Ayman",
"middle": [],
"last": "Khedr",
"suffix": ""
},
{
"first": "S",
"middle": [
"E"
],
"last": "Salama",
"suffix": ""
},
{
"first": "Nagwa",
"middle": [],
"last": "Yaseen",
"suffix": ""
}
],
"year": 2017,
"venue": "International Journal of Intelligent Systems and Applications",
"volume": "9",
"issue": "",
"pages": "22--30",
"other_ids": {
"DOI": [
"10.5815/ijisa.2017.07.03"
]
},
"num": null,
"urls": [],
"raw_text": "Ayman Khedr, S.E. Salama, and Nagwa Yaseen. 2017. Predicting stock market behavior using data min- ing technique and news sentiment analysis. Inter- national Journal of Intelligent Systems and Applica- tions, 9:22-30.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Computing krippendorff's alpha-reliability",
"authors": [
{
"first": "Klaus",
"middle": [],
"last": "Krippendorff",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Klaus Krippendorff. 2011. Computing krippendorff's alpha-reliability. Online: https://repository.upenn.edu/asc papers/43/.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Sentiment analysis for fake news detection by means of neural networks",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Kula",
"suffix": ""
},
{
"first": "Micha\u0142",
"middle": [],
"last": "Chora\u015b",
"suffix": ""
},
{
"first": "Rafa\u0142",
"middle": [],
"last": "Kozik",
"suffix": ""
},
{
"first": "Pawe\u0142",
"middle": [],
"last": "Ksieniewicz",
"suffix": ""
},
{
"first": "Micha\u0142",
"middle": [],
"last": "Wo\u017aniak",
"suffix": ""
}
],
"year": 2020,
"venue": "Computational Science (ICCS 2020)",
"volume": "",
"issue": "",
"pages": "653--666",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sebastian Kula, Micha\u0142 Chora\u015b, Rafa\u0142 Kozik, Pawe\u0142 Ksieniewicz, and Micha\u0142 Wo\u017aniak. 2020. Sentiment analysis for fake news detection by means of neural networks. In Computational Science (ICCS 2020), pages 653-666, Cham, Switzerland. Springer Inter- national Publishing.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "The measurement of observer agreement for categorical data",
"authors": [
{
"first": "J",
"middle": [],
"last": "Richard",
"suffix": ""
},
{
"first": "Gary",
"middle": [
"G"
],
"last": "Landis",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Koch",
"suffix": ""
}
],
"year": 1977,
"venue": "Biometrics",
"volume": "33",
"issue": "1",
"pages": "159--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Richard J. Landis and Gary G. Koch. 1977. The mea- surement of observer agreement for categorical data. Biometrics, 33(1):159-174.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "A study on agreement in pico span annotations",
"authors": [
{
"first": "Grace",
"middle": [
"E"
],
"last": "Lee",
"suffix": ""
},
{
"first": "Aixin",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'19",
"volume": "",
"issue": "",
"pages": "1149--1152",
"other_ids": {
"DOI": [
"10.1145/3331184.3331352"
]
},
"num": null,
"urls": [],
"raw_text": "Grace E. Lee and Aixin Sun. 2019. A study on agree- ment in pico span annotations. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'19, page 1149-1152, New York, NY, USA. ACM.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Reflections on sentiment/opinion analysis",
"authors": [
{
"first": "Jiwei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Eduard",
"middle": [],
"last": "Hovy",
"suffix": ""
}
],
"year": 2017,
"venue": "A Practical Guide to Sentiment Analysis",
"volume": "",
"issue": "",
"pages": "41--61",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiwei Li and Eduard Hovy. 2017. Reflections on sen- timent/opinion analysis. In Erik Cambria, Das Di- pankar, Sivaji Bandyopadhyay, and Antonio Feraco, editors, A Practical Guide to Sentiment Analysis, chapter 3, pages 41-61. Springer International Pub- lishing AG, Cham, Switzerland.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Emotion classification of online news articles from the reader's perspective",
"authors": [
{
"first": "K",
"middle": [
"H"
],
"last": "-Y Lin",
"suffix": ""
},
{
"first": "Changhua",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Hsin-Hsi",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2008,
"venue": "ACM International Conference on Web Intelligence and Intelligent Agent Technology",
"volume": "1",
"issue": "",
"pages": "220--226",
"other_ids": {
"DOI": [
"10.1109/WIIAT.2008.197"
]
},
"num": null,
"urls": [],
"raw_text": "K.H.-Y Lin, Changhua Yang, and Hsin-Hsi Chen. 2008. Emotion classification of online news articles from the reader's perspective. In 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, volume 1, pages 220- 226.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Sentiment analysis: mining opinions, sentiments, and emotions",
"authors": [
{
"first": "Bing",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bing Liu. 2015. Sentiment analysis: mining opinions, sentiments, and emotions, 1st edition. New York: Cambridge University Press.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Personalized news recommendation based on click behavior",
"authors": [
{
"first": "Jiahui",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Dolan",
"suffix": ""
},
{
"first": "Elin",
"middle": [
"R\u00f8nby"
],
"last": "Pedersen",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 15th International Conference on Intelligent User Interfaces, IUI '10",
"volume": "",
"issue": "",
"pages": "31--40",
"other_ids": {
"DOI": [
"10.1145/1719970.1719976"
]
},
"num": null,
"urls": [],
"raw_text": "Jiahui Liu, Peter Dolan, and Elin R\u00f8nby Pedersen. 2010. Personalized news recommendation based on click behavior. In Proceedings of the 15th Interna- tional Conference on Intelligent User Interfaces, IUI '10, page 31-40, New York, NY, USA. ACM.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Between tradition and change: A review of recent research on online news production",
"authors": [
{
"first": "Eugenia",
"middle": [],
"last": "Mitchelstein",
"suffix": ""
},
{
"first": "Pablo",
"middle": [],
"last": "Boczkowski",
"suffix": ""
}
],
"year": 2009,
"venue": "Journalism",
"volume": "10",
"issue": "5",
"pages": "562--586",
"other_ids": {
"DOI": [
"10.1177/1464884909106533"
]
},
"num": null,
"urls": [],
"raw_text": "Eugenia Mitchelstein and Pablo Boczkowski. 2009. Between tradition and change: A review of recent research on online news production. Journalism, 10(5):562-586.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Challenges in sentiment analysis",
"authors": [
{
"first": "Saif",
"middle": [],
"last": "Mohammad",
"suffix": ""
}
],
"year": 2017,
"venue": "A Practical Guide to Sentiment Analysis",
"volume": "",
"issue": "",
"pages": "61--85",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif Mohammad. 2017. Challenges in sentiment analy- sis. In Erik Cambria, Das Dipankar, Sivaji Bandy- opadhyay, and Antonio Feraco, editors, A Practi- cal Guide to Sentiment Analysis, chapter 4, pages 61-85. Springer International Publishing AG, Cham, Switzerland.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Crowdsourcing a word-emotion association lexicon",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "Peter",
"middle": [
"D"
],
"last": "Mohammad",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Turney",
"suffix": ""
}
],
"year": 2013,
"venue": "Computational Intelligence",
"volume": "29",
"issue": "3",
"pages": "436--465",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M. Mohammad and Peter D. Turney. 2013. Crowd- sourcing a word-emotion association lexicon. Com- putational Intelligence, 29(3):436-465.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "A multi-view sentiment corpus",
"authors": [
{
"first": "Debora",
"middle": [],
"last": "Nozza",
"suffix": ""
},
{
"first": "Elisabetta",
"middle": [],
"last": "Fersini",
"suffix": ""
},
{
"first": "Enza",
"middle": [],
"last": "Messina",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "273--280",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Debora Nozza, Elisabetta Fersini, and Enza Messina. 2017. A multi-view sentiment corpus. In Proceed- ings of the 15th Conference of the European Chap- ter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 273-280, Valencia, Spain. Association for Computational Linguistics.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Asynchronous pipelines for processing huge corpora on medium to low resource infrastructures",
"authors": [
{
"first": "Pedro Javier Ortiz",
"middle": [],
"last": "Su\u00e1rez",
"suffix": ""
},
{
"first": "Beno\u00eet",
"middle": [],
"last": "Sagot",
"suffix": ""
},
{
"first": "Laurent",
"middle": [],
"last": "Romary",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7)",
"volume": "",
"issue": "",
"pages": "9--16",
"other_ids": {
"DOI": [
"10.14618/ids-pub-9021"
]
},
"num": null,
"urls": [],
"raw_text": "Pedro Javier Ortiz Su\u00e1rez, Beno\u00eet Sagot, and Laurent Romary. 2019. Asynchronous pipelines for process- ing huge corpora on medium to low resource in- frastructures. In Proceedings of the Workshop on Challenges in the Management of Large Corpora (CMLC-7), pages 9-16, Mannheim. Leibniz-Institut f\u00fcr Deutsche Sprache.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "The Filter Bubble: What The Internet Is Hiding From You. Penguin Books Limited",
"authors": [
{
"first": "Eli",
"middle": [],
"last": "Parser",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eli Parser. 2013. The Filter Bubble: What The Internet Is Hiding From You. Penguin Books Limited, Lon- don, England.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Doing Well and Doing Good: How Soft News Are Shrinking the News Audience and Weakening Democracy",
"authors": [
{
"first": "E",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Patterson",
"suffix": ""
}
],
"year": 2000,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas E. Patterson. 2000. Doing Well and Doing Good: How Soft News Are Shrinking the News Au- dience and Weakening Democracy. Harvard Univer- sity Press, Cambridge, MA.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "A graph-based approach to commonsense concept extraction and semantic similarity detection",
"authors": [
{
"first": "Dheeraj",
"middle": [],
"last": "Rajagopal",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "Cambria",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Olsher",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [],
"last": "Kwok",
"suffix": ""
}
],
"year": 2013,
"venue": "WWW 2013 Companion -Proceedings of the 22nd International Conference on World Wide Web",
"volume": "",
"issue": "",
"pages": "565--570",
"other_ids": {
"DOI": [
"10.1145/2487788.2487995"
]
},
"num": null,
"urls": [],
"raw_text": "Dheeraj Rajagopal, Erik Cambria, Daniel Olsher, and Kenneth Kwok. 2013. A graph-based approach to commonsense concept extraction and semantic sim- ilarity detection. In WWW 2013 Companion -Pro- ceedings of the 22nd International Conference on World Wide Web, pages 565-570.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "SemEval-2015 task 9: CLIPEval implicit polarity of events",
"authors": [
{
"first": "Irene",
"middle": [],
"last": "Russo",
"suffix": ""
},
{
"first": "Tommaso",
"middle": [],
"last": "Caselli",
"suffix": ""
},
{
"first": "Carlo",
"middle": [],
"last": "Strapparava",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 9th International Workshop on Semantic Evaluation",
"volume": "",
"issue": "",
"pages": "443--450",
"other_ids": {
"DOI": [
"10.18653/v1/S15-2077"
]
},
"num": null,
"urls": [],
"raw_text": "Irene Russo, Tommaso Caselli, and Carlo Strapparava. 2015. SemEval-2015 task 9: CLIPEval implicit po- larity of events. In Proceedings of the 9th Interna- tional Workshop on Semantic Evaluation (SemEval 2015), pages 443-450, Denver, Colorado. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "News around the world: Content, practitioners, and the public",
"authors": [
{
"first": "Pamela",
"middle": [],
"last": "Shoemaker",
"suffix": ""
},
{
"first": "Akiba",
"middle": [],
"last": "Cohen",
"suffix": ""
}
],
"year": 2005,
"venue": "Content, Practitioners, and the Public",
"volume": "",
"issue": "",
"pages": "1--409",
"other_ids": {
"DOI": [
"10.4324/9780203959091"
]
},
"num": null,
"urls": [],
"raw_text": "Pamela Shoemaker and Akiba Cohen. 2005. News around the world: Content, practitioners, and the public. News Around the World: Content, Practi- tioners, and the Public, pages 1-409.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Open mind common sense: Knowledge acquisition from the general public",
"authors": [
{
"first": "Push",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Erik",
"middle": [
"T"
],
"last": "Mueller",
"suffix": ""
},
{
"first": "Grace",
"middle": [],
"last": "Lim",
"suffix": ""
},
{
"first": "Travell",
"middle": [],
"last": "Perkins",
"suffix": ""
},
{
"first": "Wan",
"middle": [
"Li"
],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE",
"volume": "",
"issue": "",
"pages": "1223--1237",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins, and Wan Li Zhu. 2002. Open mind common sense: Knowledge acquisition from the general public. In On the Move to Mean- ingful Internet Systems 2002: CoopIS, DOA, and ODBASE, pages 1223-1237, Berlin, Heidelberg. Springer Berlin Heidelberg.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "SemEval-2007 task 14: Affective text",
"authors": [
{
"first": "Carlo",
"middle": [],
"last": "Strapparava",
"suffix": ""
},
{
"first": "Rada",
"middle": [],
"last": "Mihalcea",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007)",
"volume": "",
"issue": "",
"pages": "70--74",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carlo Strapparava and Rada Mihalcea. 2007. SemEval- 2007 task 14: Affective text. In Proceedings of the Fourth International Workshop on Semantic Evalua- tions (SemEval-2007), pages 70-74, Prague, Czech Republic. ACL.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Wordnet affect: an affective extension of wordnet",
"authors": [
{
"first": "Carlo",
"middle": [],
"last": "Strapparava",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Valitutti",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carlo Strapparava and Alessandro Valitutti. 2004. Wordnet affect: an affective extension of word- net. In Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04), Lisbon, Portugal. ELRA.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Sentence and expression level annotation of opinions in user-generated discourse",
"authors": [
{
"first": "Cigdem",
"middle": [],
"last": "Toprak",
"suffix": ""
},
{
"first": "Niklas",
"middle": [],
"last": "Jakob",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "575--584",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cigdem Toprak, Niklas Jakob, and Iryna Gurevych. 2010. Sentence and expression level annotation of opinions in user-generated discourse. In Proceed- ings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 575-584, Up- psala, Sweden. ACL.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Making news by doing work: Routinizing the unexpected",
"authors": [
{
"first": "Gaye",
"middle": [],
"last": "Tuchman",
"suffix": ""
}
],
"year": 1973,
"venue": "American journal of Sociology",
"volume": "79",
"issue": "1",
"pages": "110--131",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gaye Tuchman. 1973. Making news by doing work: Routinizing the unexpected. American journal of Sociology, 79(1):110-131.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Guidelines for annotating implicit sentiment evoked by fine-grained news events (version 1.0)",
"authors": [
{
"first": "Cynthia",
"middle": [],
"last": "Van Hee",
"suffix": ""
},
{
"first": "Orph\u00e9e",
"middle": [],
"last": "De Clercq",
"suffix": ""
},
{
"first": "V\u00e9ronique",
"middle": [],
"last": "Hoste",
"suffix": ""
}
],
"year": 2021,
"venue": "LT3, Faculty of Arts, Humanities and Law",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cynthia Van Hee, Orph\u00e9e De Clercq, and V\u00e9ronique Hoste. 2021. Guidelines for annotating implicit sen- timent evoked by fine-grained news events (version 1.0). Technical report, LT3, Faculty of Arts, Human- ities and Law, Ghent University (Ghent, Belgium).",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "We usually don't like going to the dentist : using common sense to detect irony on twitter",
"authors": [
{
"first": "Cynthia",
"middle": [],
"last": "Van Hee",
"suffix": ""
},
{
"first": "Els",
"middle": [],
"last": "Lefever",
"suffix": ""
},
{
"first": "Veronique",
"middle": [],
"last": "Hoste",
"suffix": ""
}
],
"year": 2018,
"venue": "Computational Linguistics",
"volume": "44",
"issue": "4",
"pages": "793--832",
"other_ids": {
"DOI": [
"10.1162/coli_a_00337"
]
},
"num": null,
"urls": [],
"raw_text": "Cynthia Van Hee, Els Lefever, and Veronique Hoste. 2018. We usually don't like going to the dentist : us- ing common sense to detect irony on twitter. Com- putational Linguistics, 44(4):793-832.",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Measuring digital media trends in flanders",
"authors": [
{
"first": "Karel",
"middle": [],
"last": "Vandendriessche",
"suffix": ""
},
{
"first": "Lieven",
"middle": [],
"last": "De Marez",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "2019",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Karel Vandendriessche and Lieven De Marez. 2019. imec.digimeter 2019: Measur- ing digital media trends in flanders. On- line: https://www.imec.be/nl/expertises/imec- digimeter/digimeter-2019.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "BERTje: A Dutch BERT Model",
"authors": [
{
"first": "Andreas",
"middle": [],
"last": "Wietse De Vries",
"suffix": ""
},
{
"first": "Arianna",
"middle": [],
"last": "Van Cranenburgh",
"suffix": ""
},
{
"first": "Tommaso",
"middle": [],
"last": "Bisazza",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Caselli",
"suffix": ""
},
{
"first": "Malvina",
"middle": [],
"last": "Gertjan Van Noord",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Nissim",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1912.09582"
]
},
"num": null,
"urls": [],
"raw_text": "Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord, and Malvina Nissim. 2019. BERTje: A Dutch BERT Model. arXiv:1912.09582 [cs].",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "Annotating subjective content in meetings",
"authors": [
{
"first": "Theresa",
"middle": [],
"last": "Wilson",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08)",
"volume": "",
"issue": "",
"pages": "2738--2745",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Theresa Wilson. 2008. Annotating subjective content in meetings. In Proceedings of the Sixth Interna- tional Conference on Language Resources and Eval- uation (LREC'08), pages 2738-2745, Marrakech, Morocco. ELRA.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"type_str": "table",
"html": null,
"text": "Event distribution by rater and sentiment.",
"content": "<table/>",
"num": null
},
"TABREF3": {
"type_str": "table",
"html": null,
"text": "",
"content": "<table/>",
"num": null
},
"TABREF5": {
"type_str": "table",
"html": null,
"text": "Inter-rater scores for sentiment trigger annotation amongst three annotator pairs.",
"content": "<table/>",
"num": null
},
"TABREF6": {
"type_str": "table",
"html": null,
"text": "",
"content": "<table><tr><td colspan=\"5\">reveals the sentiment distribution in the</td></tr><tr><td colspan=\"5\">full corpus, which contains 7,652 news events in</td></tr><tr><td colspan=\"5\">total. We observe that, comparable to the results of</td></tr><tr><td colspan=\"5\">the inter-rater experiment (see Section 3.3), most</td></tr><tr><td colspan=\"5\">events have a negative sentiment or are considered</td></tr><tr><td colspan=\"5\">neutral. Only 1 in 10 news events evokes a positive</td></tr><tr><td colspan=\"5\">sentiment, and 4% were considered ambiguous.</td></tr><tr><td/><td/><td colspan=\"2\">Event sentiment</td></tr><tr><td/><td>Pos</td><td>Neg</td><td>Neu</td><td>Conf</td></tr><tr><td># events</td><td colspan=\"3\">849 3,699 2,789</td><td>315</td></tr><tr><td colspan=\"2\">Percentage 11%</td><td>48%</td><td>36%</td><td>4%</td></tr></table>",
"num": null
},
"TABREF7": {
"type_str": "table",
"html": null,
"text": "Event sentiment distribution in the full corpus.",
"content": "<table/>",
"num": null
},
"TABREF9": {
"type_str": "table",
"html": null,
"text": "Scores obtained by the lexicon-based approaches on the held-out test set (n= 742).",
"content": "<table><tr><td/><td/><td colspan=\"2\">Performance held-out test set</td><td/><td colspan=\"2\">Performance per class</td><td/></tr><tr><td>Classifier</td><td colspan=\"7\">Accuracy Macro-avg F1 Weight.-avg F1 F1Pos F1Neg F1Neu F1Conf</td></tr><tr><td>SVM</td><td>0.69</td><td>0.61</td><td>0.69</td><td>0.49</td><td>0.76</td><td>0.65</td><td>0.53</td></tr><tr><td>RobBERT</td><td>0.72</td><td>0.60</td><td>0.72</td><td>0.48</td><td>0.80</td><td>0.70</td><td>0.43</td></tr><tr><td>BERTje</td><td>0.74</td><td>0.54</td><td>0.72</td><td>0.48</td><td>0.81</td><td>0.71</td><td>0.15</td></tr><tr><td>Majority baseline</td><td>0.50</td><td>0.17</td><td>0.33</td><td>0.00</td><td>0.66</td><td>0.00</td><td>0.00</td></tr></table>",
"num": null
},
"TABREF10": {
"type_str": "table",
"html": null,
"text": "Scores obtained by the machine learning approach on the held-out test set (n= 742). In the night of July 14th, the day of national celebration, and after the country's World Cup win, 845 vehicles went up in flames.",
"content": "<table><tr><td>Gold</td><td>Event</td></tr></table>",
"num": null
},
"TABREF11": {
"type_str": "table",
"html": null,
"text": "Qualitative analysis examples: gold label, event text and predictions by SVM, BERTje and RobBERT.",
"content": "<table/>",
"num": null
}
}
}
} |