File size: 126,126 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:00.350657Z"
    },
    "title": "Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations",
    "authors": [
        {
            "first": "Jan",
            "middle": [],
            "last": "Hofmann",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Stuttgart",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Enrica",
            "middle": [],
            "last": "Troiano",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Stuttgart",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Roman",
            "middle": [],
            "last": "Klinger",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Stuttgart",
                "location": {
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [],
        "body_text": [
            {
                "text": "Appraisal theories explain how the cognitive evaluation of an event leads to a particular emotion. In contrast to theories of basic emotions or affect (valence/arousal), this theory has not received a lot of attention in natural language processing. Yet, in psychology it has been proven powerful: Smith and Ellsworth (1985) showed that the appraisal dimensions attention, certainty, anticipated effort, pleasantness, responsibility/control and situational control discriminate between (at least) 15 emotion classes. We study different annotation strategies for these dimensions, based on the event-focused enISEAR corpus (Troiano et al., 2019) . We analyze two manual annotation settings: (1) showing the text to annotate while masking the experienced emotion label; (2) revealing the emotion associated with the text. Setting 2 enables the annotators to develop a more realistic intuition of the described event, while Setting 1 is a more standard annotation procedure, purely relying on text. We evaluate these strategies in two ways: by measuring inter-annotator agreement and by finetuning RoBERTa to predict appraisal variables. Our results show that knowledge of the emotion increases annotators' reliability. Further, we evaluate a purely automatic rule-based labeling strategy (inferring appraisal from annotated emotion classes). Training on automatically assigned labels leads to a competitive performance of our classifier, even when tested on manual annotations. This is an indicator that it might be possible to automatically create appraisal corpora for every domain for which emotion corpora already exist.",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 324,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 622,
                        "end": 644,
                        "text": "(Troiano et al., 2019)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 690,
                        "end": 693,
                        "text": "(1)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Automatically detecting emotions in written texts consists of mapping textual units, like documents, paragraphs, or sentences, to a predefined set of emotions. Common sets of classes used for this purpose rely on psychological theories such as those proposed by Ekman (1992) (anger, disgust, fear, joy, sadness, surprise) or Plutchik (2001) . These theories are based on the assumption that there is a restricted number of emotions that have prototypical realizations. However, not all sets of emotions are appropriate for every domain. For instance, Dittrich and Zepf (2019) argue that some of the basic emotions are too strong for measuring how people feel when driving a car and, based on that, Cevher et al. (2019) resort to joy, annoyance (instead of anger), insecurity (instead of fear), boredom, and relaxation to classify in-car utterances. Haider et al. (2020) model the emotional perception of poetry and opt for the categories beauty/joy, sadness, uneasiness, vitality, awe/sublime, suspense, humor, nostalgia, and annoyance, following the definition of aesthetic emotions (Schindler et al., 2017; Menninghaus et al., 2019) . Demszky et al. (2020) define a taxonomy of emotions, reaching a high coverage while maintaining inter-class relations.",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 274,
                        "text": "Ekman (1992)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 275,
                        "end": 321,
                        "text": "(anger, disgust, fear, joy, sadness, surprise)",
                        "ref_id": null
                    },
                    {
                        "start": 325,
                        "end": 340,
                        "text": "Plutchik (2001)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 698,
                        "end": 718,
                        "text": "Cevher et al. (2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 849,
                        "end": 869,
                        "text": "Haider et al. (2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 1084,
                        "end": 1108,
                        "text": "(Schindler et al., 2017;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 1109,
                        "end": 1134,
                        "text": "Menninghaus et al., 2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1137,
                        "end": 1158,
                        "text": "Demszky et al. (2020)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "An alternative to the use of categorical variables are the so-called \"dimensional\" approaches. The most popular of them models affective experiences along the variables of dominance, valence, and arousal (Russell and Mehrabian, 1977, VAD) . Feldman Barrett (2006 Barrett ( , 2017 theorizes that emotions are interpretations of continuous affective states experiencers find themselves in. Still, as Smith and Ellsworth (1985) note, not all emotions can be distinguished based on valence and arousal. One might argue that predicting three continuous variables instead of a richer set of categories is a simplification and can be limiting for downstream applications of emotion analysis models. Smith and Ellsworth (1985) particularly argue that the VAD model does not capture all relevant aspects of an emotion in the context of an event. In a fight or flight situation (Cannon, 1929) , for instance, the decision to take one of these two actions is mostly made based on the effort that the emotion experiencer anticipates, but this is not represented by VAD. Therefore, Smith and Ellsworth (1985) propose a dimensional approach with the appraisal variables of how pleasant an event is (pleasantness, likely to be associated with joy, but unlikely to appear with disgust), how much effort an event can be expected to cause (anticipated effort, likely to be high when anger or fear is experienced), how certain the experiencer is in a specific situation (certainty, low, e.g., in the context of hope or surprise), how much attention is devoted to the event (attention, likely to be low, e.g., in the case of boredom or disgust), how much responsibility the experiencer of the emotion has for what has happened (selfother responsibility/control, high for feeling guilt or pride), and how much the experiencer feels to be controlled by the situation (situational control, high in anger). As the cognitive appraisal is a fundamental subcomponent of emotions, we deem that appraisal dimensions are useful to perform emotion recognition, and that even the prediction of appraisals themselves can contribute to computational approaches to affective states. These appraisal dimensions have only recently found application in automatic emotion analysis in text: Hofmann et al. (2020) re-annotated a corpus of 1001 English emotional event descriptions (Troiano et al., 2019) for which the experienced emotion has been disclosed by the author of the description (Table 1 shows examples from their corpus). Their annotation is designed as a preliminary step for inferring discrete emotion categories. In contrast, we argue that the prediction of appraisal dimensions is in itself valuable. This intuition has an impact on our annotation strategy. While Hofmann et al. (2020) did not show any emotion label to the annotators, thus avoiding information leaks, we hypothesize that knowing such emotion helps understanding how the described events were originally appraised by their experiencers: at times, properly annotating appraisals as a third party might be unfeasible without having prior access to emotions.",
                "cite_spans": [
                    {
                        "start": 204,
                        "end": 238,
                        "text": "(Russell and Mehrabian, 1977, VAD)",
                        "ref_id": null
                    },
                    {
                        "start": 249,
                        "end": 262,
                        "text": "Barrett (2006",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 263,
                        "end": 279,
                        "text": "Barrett ( , 2017",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 398,
                        "end": 424,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 692,
                        "end": 718,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 868,
                        "end": 882,
                        "text": "(Cannon, 1929)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1069,
                        "end": 1095,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 2340,
                        "end": 2362,
                        "text": "(Troiano et al., 2019)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 2733,
                        "end": 2760,
                        "text": "While Hofmann et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2449,
                        "end": 2457,
                        "text": "(Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We test this by comparing three annotation procedures: (1) we give the annotator access only to the text but not to its emotion label; (2) we give the annotator access to the text and the emotion, and evaluate if this additional information has an impact on annotation reliability and performance of a pretrained transformer-based classifier fine-tuned on these data; and (3) we automatically infer the appraisal dimensions from existing emotion annotations, investigating the hypothesis that manual annotation might not be necessary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our main contributions are that we show that (a) appraisal annotation is more reliable when annotators have access to the emotion label of the original experiencer, hence, the event description itself does not carry sufficient information for annotation. That also means that annotating appraisals for corpora in which the original emotion is not available might be particularly challenging. (b) Automatic, rule-based annotation of appraisals that leverages emotion labels is a viable alternative to human annotation, and therefore, appraisal corpora can automatically be created for domains for which emotion corpora are already available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our classifier further constitutes a novel state of the art for appraisal prediction on the data by Hofmann et al. (2020) . The data is available at https:// www.ims.uni-stuttgart.de/data/appraisalemotion.",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 121,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There is a wealth of literature in psychology surrounding emotions, specifically regarding the way they are elicited, their universal validity, their number and stereotypical expressions, and their function (Scherer, 2000; Gendron and Feldman Barrett, 2009) . The two prominent traditions which have dominated the field of emotion classification in natural language processing are discrete and dimen-sional models (Kim and Klinger, 2019) .",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 222,
                        "text": "(Scherer, 2000;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 223,
                        "end": 257,
                        "text": "Gendron and Feldman Barrett, 2009)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 414,
                        "end": 437,
                        "text": "(Kim and Klinger, 2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources for Emotion Analysis",
                "sec_num": "2.1"
            },
            {
                "text": "Next to the creation of lexicons for emotion analysis (Pennebaker et al., 2001; Strapparava and Valitutti, 2004; Mohammad et al., 2013; Mohammad, 2018, i.a.) , the annotation of text corpora received substantial attention (Bostan and Klinger, 2018) . They vary across emotion categories and domains, with discrete classes being dominating -some exceptions focused on valence and arousal annotations are Buechel and Hahn (2017) , Preo\u0163iuc-Pietro et al. (2016) , and Yu et al. (2016) . For instance, the ISEAR study by Scherer and Wallbott (1994) led to self-reports of emotionally connotated events. Its creators aimed at understanding what aspects of emotions are universal and which are relative to culture. It was built by asking students to recall an emotion-inducing event and to describe it.",
                "cite_spans": [
                    {
                        "start": 54,
                        "end": 79,
                        "text": "(Pennebaker et al., 2001;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 80,
                        "end": 112,
                        "text": "Strapparava and Valitutti, 2004;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 113,
                        "end": 135,
                        "text": "Mohammad et al., 2013;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 136,
                        "end": 157,
                        "text": "Mohammad, 2018, i.a.)",
                        "ref_id": null
                    },
                    {
                        "start": 222,
                        "end": 248,
                        "text": "(Bostan and Klinger, 2018)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 403,
                        "end": 426,
                        "text": "Buechel and Hahn (2017)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 429,
                        "end": 458,
                        "text": "Preo\u0163iuc-Pietro et al. (2016)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 465,
                        "end": 481,
                        "text": "Yu et al. (2016)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 517,
                        "end": 544,
                        "text": "Scherer and Wallbott (1994)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources for Emotion Analysis",
                "sec_num": "2.1"
            },
            {
                "text": "Other efforts focused more on creating corpora specifically for emotion analysis in NLP. Troiano et al. (2019) built enISEAR and deISEAR, whose 1001 event-descriptions were collected via crowdsourcing, with a questionnaire inspired by ISEAR, both in English and in German. TEC (Mohammad, 2012), another popular resource, is bigger in size (\u224821k instances), contains tweets and was automatically annotated with hashtags. The Blogs corpus by Aman and Szpakowicz (2007) has sentence-level annotations for 5205 texts, annotated by multiple raters. While ISEAR, enISEAR and deISEAR are focused on describing specific emotion-inducing events, the Blogs corpus and TEC are more general. This is also the set of corpora that we use in our study (a more comprehensive resource overview was made available by Hakak et al. 2017and Bostan and Klinger (2018) ).",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 110,
                        "text": "Troiano et al. (2019)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 440,
                        "end": 466,
                        "text": "Aman and Szpakowicz (2007)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 820,
                        "end": 845,
                        "text": "Bostan and Klinger (2018)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Resources for Emotion Analysis",
                "sec_num": "2.1"
            },
            {
                "text": "A richer perspective on emotions and their experience than affect models or fundamental emotion sets is provided by appraisal models (Scherer, 2009b) , which did not receive a lot of attention from the NLP community so far. Appraisals are immediate evaluations of situations which guide the emotion felt by the experiencer (Scherer, 2009a) . More precisely, an emotion is a synchronized change in five organismic subsystems (i.e., cognitive, peripheral efference, motivational, motor expression and subjective feeling) in response to the evaluation of a stimulus event important to an individual. Emotion states can be distinguished on the basis of their accompanying appraisals. For instance, fear emerges when an event is appraised as unforeseen and disagreeable, a frightening event is one appraised as an unforeseen, unpleasant, and contrary to one's goal (Mortillaro et al., 2012) . The cognitive part of the emotion is the one guiding the evaluation of the stimulus along different dimensions. According to Scherer et al. (2001) , they are relevance (i.e., the pleasantness of the event, and its relevance for one's goals), implication (i.e., its potential consequences), coping potential (i.e., one's ability to adjust to or control the situation) and normative significance (i.e. its congruity to one's values and beliefs). On a similar vein, Smith and Ellsworth (1985) argue that six cognitive appraisal dimensions can differentiate emotional experiences, as there is a relationship between the way situations are appraised along such dimensions and the experienced emotion. They are pleasantness, anticipated effort, certainty, attention, responsibility/control and situational control. We use their model to explore appraisals in text.",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 149,
                        "text": "(Scherer, 2009b)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 323,
                        "end": 339,
                        "text": "(Scherer, 2009a)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 860,
                        "end": 885,
                        "text": "(Mortillaro et al., 2012)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1013,
                        "end": 1034,
                        "text": "Scherer et al. (2001)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1351,
                        "end": 1377,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Appraisal Theories",
                "sec_num": "2.2"
            },
            {
                "text": "3 Experimental Setting",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Appraisal Theories",
                "sec_num": "2.2"
            },
            {
                "text": "We adhere to the annotation guidelines and the appraisal dimensions of Hofmann et al. (2020), splitting the original situational control from Smith and Ellsworth (1985) into control and circumstance. Our judges take binary decisions with respect to seven appraisal dimensions. We ask them the following questions:",
                "cite_spans": [
                    {
                        "start": 142,
                        "end": 168,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Guidelines",
                "sec_num": "3.1"
            },
            {
                "text": "\"Most probably, at the time when the event happened, the writer. . . . . . wanted to devote further attention to the event (Attention) ; . . . was certain about what was happening (Certainty) ; . . . had to expend mental or physical effort to deal with the situation (Effort) ; . . . found that the event was pleasant (Pleasantness) ; . . . was responsible for the situation (Responsibility) ; . . . found that he/she was in control of the situation (Control) ; . . . found that the event could not have been changed or influenced by anyone (Circumstance).\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation Guidelines",
                "sec_num": "3.1"
            },
            {
                "text": "To annotate the appraisal dimensions, judges need to make assumptions about the experienced situation. We believe this is possible, at times, purely from the textual description that needs to be judged. Other times, knowing which emotion a person developed might be necessary to understand how the overall experience was originally appraised.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "To analyze this assumption and measure the importance of emotion labels to reliably assign appraisal dimensions, we build our experiment on top of the English enISEAR corpus by Troiano et al. (2019) . Its authors asked workers on a crowdsourcing platform to complete sentences like \"I felt [emotion name], when/that/because. . . \", where [emotion name] is replaced by a concrete emotion. In a later annotation round, other annotators had to infer the emotion of the text, and for this reason the creators of the corpus replaced emotion words with \". . . \". The resulting 1001 instances of enISEAR are labeled by the experiencers of the emotion themselves and have masked emotion words in the text.",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 198,
                        "text": "Troiano et al. (2019)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "We use these data to perform two annotation experiments on 210 instances, randomly sampled from enISEAR and stratified by emotion. Two annotators judge all of these instances in two different settings. Setting 1, EMOHIDE, replicates the study by Hofmann et al. (2020) : the emotion label is not available to the annotator. In Setting 2, EMOVIS, the emotion is presented along with the text. The two rounds of annotations (first EMOHIDE, later EMOVIS which makes the emotion available) were distantiated by six months, to avoid a bias by recalling the previous round. We evaluate the reliability of the annotation via inter-annotator agreement with Cohen's \u03ba (1960) , under the hypothesis that having knowledge of the emotion leads to more reliable human annotations.",
                "cite_spans": [
                    {
                        "start": 246,
                        "end": 267,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 648,
                        "end": 664,
                        "text": "Cohen's \u03ba (1960)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "Computational Modelling. One of the annotators annotated the full 1001 instances twice, that is, for the EMOHIDE and the EMOVIS approaches as a basis to evaluate how well the realization of the appraisal concepts in the corpus can be modelled automatically. As we expect the annotations EMO-VIS to be more reliable, we also expect the model to perform better. 1 We use RoBERTa (Liu et al., 2019) with the abstraction layer for tensorflow as provided by ktrain (Maiya, 2020), and choose the number of epochs to be 5, based on the appraisal prediction and emotion classification tasks in the data by Hofmann et al. (2020) (which we annotate in this paper). Only minor differences in performance can be seen between epochs 4-7. We keep this number of epochs fixed across all experiments and all other param- Anger  1  1  1  0  0  0  Disgust  0  1  1  0  0  0  Fear  1  0  1  0  0  1  Guilt  0  1  1  0  1  0  Joy  1  1  0  1  1  0  Sadness  0  1  0  0  0  1  Shame  0  0  1  0  1  0  Surprise  1  0  0  1  0  1   Table 2 : Discretized associations between appraisal dimensions and emotion categories, following Smith and Ellsworth (1985) , as we use them for automatic annotation in Exp. 2.",
                "cite_spans": [
                    {
                        "start": 360,
                        "end": 361,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 377,
                        "end": 395,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1108,
                        "end": 1134,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 805,
                        "end": 1017,
                        "text": "Anger  1  1  1  0  0  0  Disgust  0  1  1  0  0  0  Fear  1  0  1  0  0  1  Guilt  0  1  1  0  1  0  Joy  1  1  0  1  1  0  Sadness  0  1  0  0  0  1  Shame  0  0  1  0  1  0  Surprise  1  0  0  1  0  1   Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "eters at their default. The batch size is 5. More concretely, we opt for a 3\u00d710-fold cross-validation setting, use the RoBERTa-base model in all experiments except for those on the German deISEAR (in the next Experiment 2), where we use XLM-R (Conneau et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 243,
                        "end": 265,
                        "text": "(Conneau et al., 2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "3.2"
            },
            {
                "text": "As Smith and Ellsworth (1985) showed, appraisal dimensions are sufficient to discriminate emotion categories: this is knowledge which we can make use of, and we can leverage their findings to automatically assign discrete appraisal labels to enISEAR (see Table 2 ) in a rule-based manner. For comparability to the manual annotation setup, we opt for discrete labels which we infer from the continuous principle component analysis values from the original paper. The question to be answered is if this rule-based annotation actually represents the same concepts as the manual annotation. To answer this, we compare the automatic annotation (AUTOAPPR) with both annotations that have been performed manually (EMOHIDE, EMOVIS). Further, we train a model to predict these automatic annotations and evaluate on the manually annotated labels.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 29,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 255,
                        "end": 262,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "3.3"
            },
            {
                "text": "Since the automatic method relies on emotion labels, we expect its annotations to be more similar to EMOVIS, where the annotators also have access to this information. For the same reason, we also assume that the model trained on automatically annotated labels performs better on EMOVIS than on EMOHIDE. Finding that models trained on labels assigned in such rule-based manner show comparable performance to manual annotations (when tested on manual annotations) would suggest that the latter might not be necessary to obtain appraisal prediction models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "3.3"
            },
            {
                "text": "In this automatic setup, we merge responsibility and control. While they are divided in the manually annotated corpora, this separation is not available in the results by Smith and Ellsworth (1985) . This affects the comparability of the averages of performance measures between Exp. 1 and 2.",
                "cite_spans": [
                    {
                        "start": 171,
                        "end": 197,
                        "text": "Smith and Ellsworth (1985)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "3.3"
            },
            {
                "text": "Further, under the assumption that automatic annotation shows competitive results on the manually annotated corpus enISEAR, we extend this analysis to other resources for corpus generalization. In addition to enISEAR, we use the original ISEAR dataset (Scherer and Wallbott, 1994) , the German event corpus deISEAR (Troiano et al., 2019) and, as resources without focus on events, the Twitter Emotion Corpus (TEC) (Mohammad, 2012) and the Blogs corpus (Aman and Szpakowicz, 2007) . Since these corpora are not manually annotated for appraisals, we only evaluate on automatic appraisal annotations.",
                "cite_spans": [
                    {
                        "start": 252,
                        "end": 280,
                        "text": "(Scherer and Wallbott, 1994)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 315,
                        "end": 337,
                        "text": "(Troiano et al., 2019)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 414,
                        "end": 430,
                        "text": "(Mohammad, 2012)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 452,
                        "end": 479,
                        "text": "(Aman and Szpakowicz, 2007)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "3.3"
            },
            {
                "text": "Inter-Annotator Agreement. In Experiment 1, we compare the reliability of the annotation with and without access to the emotion label. We show the inter-annotator agreement results in Table 3 . As we hypothesized, the agreement on EMOVIS is clearly higher than on EMOHIDE, with .68 in comparison to .55 \u03ba. The highest agreement increase is observed for attention (+.25) and certainty (+.28), followed by responsibility (+.16). The only decrease in agreement, for control, is comparably small (\u2212.05).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 184,
                        "end": 191,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "4.1"
            },
            {
                "text": "Figure 1 (and Table 9 in the Appendix) shows the distribution of emotions for the different appraisal dimensions: for most dimensions, the annotation becomes more clearly connected to emotions with its availability, with certainty and anticipated effort being exceptions: here, the number of instances of a set of emotion classes partially increases. This confirms that knowledge of the emotion \"denoises\" the annotation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 14,
                        "end": 21,
                        "text": "Table 9",
                        "ref_id": "TABREF15"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "4.1"
            },
            {
                "text": "Modelling. Table 3 also reports the prediction performance on appraisal classes using RoBERTa. We observe that the performances on EMOVIS are higher than on EMOHIDE (+.03pp on micro F 1 , .01 on macro F 1 ). This is in line with our assumptions, but the improvement is actually lower than we expected, given the more substantial difference in inter-annotator agreement. However, for certainty (+.09) and anticipated effort (+.18), the change is substantial. Attentional Activity, which shows a high increase in agreement, has a small decrease in modelling performance (\u2212.04). Control, which does not improve in agreement, has a considerable loss in prediction performance (\u2212.15). From this experiment, we conclude that the annotation is more reliable with access to the emotion: this reflects on the modelling results, and it does so to different extents for different emotions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 11,
                        "end": 18,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Manual Annotation",
                "sec_num": "4.1"
            },
            {
                "text": "Inter-Annotator Agreement. We now evaluate the rule-based annotation procedure, in which appraisal classes are purely assigned by the automatic procedure, shown in Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 164,
                        "end": 171,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "The agreement between the rule-based annotation AUTOAPPR and both manual annotations is shown in Table 4 . As expected, we observe a higher agreement with EMOVIS. Again, the differences are not equally distributed across emotions and they resemble the changes in the other experiments, but agreement is lower between AUTOAPPR and the manual annotations than between the latters, suggesting that the automatic process does not lead to the same conceptual annotation 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 97,
                        "end": 104,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "Modelling. To answer the question how well one model trained on rule-based annotations performs on manual annotations, we test the model three times: on EMOVIS, EMOHIDE, and AUTOAPPR. The right side of Table 4 reports the results. Note that responsibility and control have been merged, as explained in the experimental setting. We see that the highest macro average F 1 is nonsurprisingly achieved when testing on AUTOAPPR (.90F 1 ). When testing the same model on EMO-VIS, the performance drops by 12pp (.78F 1 ), but is still substantially higher than for the corpus in which the emotions were not available to the anno-tators (.72F 1 ). Note that the performance of .78F 1 (EMOVIS) and .74F 1 (EMOHIDE) are not too different from the model trained on manually annotated data, with .80F 1 and .79F 1 . We therefore conclude that automatically labeling a corpus with appraisal dimensions leads to a meaningful model. Corpus Generalization. Finally, we apply the automatic labeling procedure to other emotion corpora. Results are in Table 5 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 202,
                        "end": 209,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 1033,
                        "end": 1040,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "Given the different nature of the domains and languages (German vs. English -deISEAR/enISEAR; tweets vs. blog texts -TEC vs. Blogs), these numbers cannot be directly compared, but we can observe that they are comparably high, similar to the other experiments. We carefully infer (without having compared the prediction on these corpora to manual annotations) that this is an indicator that automatic annotation of appraisal dimensions also works across different corpora and languages. Appraisal  P  R  F1  P  R  F1  P  R  F1  P  R  F1   Attentional Activity  79  68  73  83  82  83  90  91  91  94  94  94  Certainty  79  90  84  89  92  90  87  89  88  97  97  97  Anticipated Effort  88  93  91  94  95  94  74  68  71  91  93  92  Pleasantness  80  69  77  91  90  91  85  86  86  97  97  97  Responsibility/Control  80  69  74  88  85  86  79  79  79  94  96  95  Situational Control  73  69  71  83  81  82  79  79  79  88  86  87   Macro \u2205  81  76  78  88  87  88  82  82  82  94  94  94  Micro \u2205  82  81  81  89  89  89  84  84  84  94  95  94   Table 5 : Experiment 2, Generalization to other corpora. All results are averages across 3\u00d710 cross validations. Note that the last three columns from Table 4 correspond to the same setting as it is in here.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 486,
                        "end": 1061,
                        "text": "Appraisal  P  R  F1  P  R  F1  P  R  F1  P  R  F1   Attentional Activity  79  68  73  83  82  83  90  91  91  94  94  94  Certainty  79  90  84  89  92  90  87  89  88  97  97  97  Anticipated Effort  88  93  91  94  95  94  74  68  71  91  93  92  Pleasantness  80  69  77  91  90  91  85  86  86  97  97  97  Responsibility/Control  80  69  74  88  85  86  79  79  79  94  96  95  Situational Control  73  69  71  83  81  82  79  79  79  88  86  87   Macro \u2205  81  76  78  88  87  88  82  82  82  94  94  94  Micro \u2205  82  81  81  89  89  89  84  84  84  94  95  94   Table 5",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1205,
                        "end": 1212,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Automatic Annotation",
                "sec_num": "4.2"
            },
            {
                "text": "The data that we use was made available to support appraisal-based research in emotion analysis. It consists of the same instances we annotated in Hofmann et al. (2020) . However, in this previous work, each instance was judged by three annotators, who did not have access to the emotion labels of the texts, and the experiments have been performed on labels obtained with the majority vote of the annotators. Instead, for the current experiments, the labels by only one annotator on all instances have been used. Therefore, the experiments of the two papers are not strictly comparable. In addition, Hofmann et al. (2020) adopted a CNN-based classifier. Brief, there are two sources for non-comparability in our experiments: different label sets and different models. We aimed at leveraging a more state-of-the-art transformer-based model, but at the same time, we needed different label sets to better understand the appraisal annotation processes. For transparency reasons, we show the performance of our RoBERTA model on the original labels against the results by Hofmann et al. (2020) . Table 6 compares the two studies with respect to appraisals and Table 7 with respect to emotion predictions. The emotion recognition models consist of a text-based model (T\u2192E), a pipeline that first predicts the appraisal and then classifies the emotion without access to text with a two-layer dense neural network (T\u2192A, A\u2192E). To measure the complementarity of these two settings, a third model is an oracle ensemble (T \u2192A \u2192E + T \u2192E) which accepts a prediction as true positive if one of the two models provides the correct prediction.",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 168,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1068,
                        "end": 1089,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1092,
                        "end": 1099,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    },
                    {
                        "start": 1156,
                        "end": 1163,
                        "text": "Table 7",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Model Performance Notes and Comparison to Original Data Annotation",
                "sec_num": "4.3"
            },
            {
                "text": "On this original data set by Hofmann et al. (2020) , our model constitutes a new state of the art. The micro-averaged appraisal prediction with RoBERTa is 10pp higher than the original CNNbased model; the emotion classification has similar improvements, and the overall relation between the model configurations remains comparable.",
                "cite_spans": [
                    {
                        "start": 29,
                        "end": 50,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Performance Notes and Comparison to Original Data Annotation",
                "sec_num": "4.3"
            },
            {
                "text": "To better understand how revealing emotions affects the annotations in Experiment 1, we provide some concrete examples. Table 8 reports instances from enISEAR. We show for which appraisal variables the agreement changes, by marking the appraisal with + or \u2212. For instance, \u2212attention means that the annotators came to disagree on that appraisal dimension when the emotion was uncovered, while +pleasantness indicates that they came to agree thanks to the knowledge of the emotion label. Note that + does not mean that the dimension was marked as 1 by both annotators. The examples are sorted by the sum of changes in agreement. In Example (1) an event is described in a way which leaves open if there is responsibility, pleasantness, anticipated effort, and even if the experiencer is entirely certain about what is happening. (Hofmann et al., 2020 ) and our RoBERTa model on the Text-to-Emotion baseline (T\u2192E), the pipeline experiment (T\u2192A,A\u2192E) and the oracle ensemble experiment (T \u2192A \u2192E + T \u2192E). These experiments follow the model configurations by Hofmann et al. (2020) . : Examples of differences between annotations with masked and visible emotion labels. + and \u2212 indicate the agreement and the disagreement on a specific dimension which is reached after making the emotion visible. The score is the sum of agreement changes, either improvements (+1 for each dimension) or degradation (\u22121). a: attention, ce: certainty, e: anticipated effort, p: pleasantness, r: responsibility, ci: circumstance.",
                "cite_spans": [
                    {
                        "start": 827,
                        "end": 848,
                        "text": "(Hofmann et al., 2020",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1052,
                        "end": 1073,
                        "text": "Hofmann et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 120,
                        "end": 127,
                        "text": "Table 8",
                        "ref_id": "TABREF13"
                    }
                ],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "With the knowledge that the emotion is fear, it becomes clear that the situation does involve anticipated effort, is not pleasant, and that circumstance is not likely. The annotators also agree here that there is responsibility involved, which is likely an interpretation based on world-knowledge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "In the situation of getting a new job (Example (2)), knowing the emotion adds agreement regarding certainty, which is in line with added agreement that the person was responsible. Example (3) is an instance in which the situation was already entirely clear without knowing the emotion -the experiencer participated in gossip. That is a certain, non-pleasurable situation (when recognizing this) which is under their own control. Knowledge that guilt has been experienced does not add anything.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "Example (4) shows that complex situations cause more disagreement in annotations which are not necessarily resolved by knowing the emotion. The described event is about a negative emotion felt because the experiencer did not recognize the bad mood of the daughter. Annotators come to disagree about attention, certainty and responsibility. Example (5) describes another situation in which a negative event is discussed. Knowledge of the emotion puts a clear focus away from the sad part of the description (father dying) and puts it on something that causes anger. However, this shift does not resolve appraisal disagreements but indeed adds on top of them, with attention and anticipated effort.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "Finally, Example (6) is another long description with annotators' focus on different aspects, one on the darkness (hence, no responsibility), the other on the cycling (responsibility). Here, knowledge of the emotion does not change the interpretability of the event. However, it informs on which part of the described situation the original author focused on.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "These examples show that EMOVIS helps solve ambiguities when events can be associated to multiple emotions, other times it helps people give more weight to specific portions of texts. In the first case agreement tends to be reached more easily.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5"
            },
            {
                "text": "We analyzed how to build corpora of text annotated with appraisal variables and we evaluated how well such concepts can be modelled. By doing so, we brought together emotion analysis and a strand of emotion research in psychology which has received little attention from the computational linguistics community. We propose that in addition to wellestablished approaches to emotion analysis, like affect-oriented dimensional approaches or classification into predefined emotion inventories, psychological models of appraisals will be considered in future emotion-based studies, particularly those relying on event-oriented resources.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "The use of appraisals is interesting from a theoretical perspective: motivated by psychology, we leveraged the cognitive mechanisms underlying emotions, thus accounting for many complex patterns in which humans appraise an event and emotionally react to it. In this light, it is interesting in itself that our annotators were able to empathically reconstruct the event appraisals experienced by others, even without knowing their emotion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "From a practical perspective, appraisal annotations are less prone to being poorly chosen for particular domains, in comparison to regular emotion classes, as the actual feeling develops based on the cognitive evaluation of an event. We also have shown that event descriptions alone might not be sufficient to properly annotate the hypothetical appraisal of the experiencer (which is, however, also an issue with traditional emotion analysis annotations and models -we cannot look into the feeler, we deal with private states). This shows and is presumably the reason that additional context (e.g., the emotion label) is required.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "Some implications for future research and developments follow: ideally, appraisal (and emotion) annotations should stem directly from the experiencer. This is not doable in many NLP settings. For instance, when analyzing literature, it is impossible to ask fictional characters for their current event appraisal. However, we presume that settings on social media might be realistic, for instance by probing appropriate distant labeling methods, e.g., a careful choice of hashtags. If this is unfeasible, because text authors do not disclose their appraisals, the available emotion labels still represent a valuable source of information: as we have shown, they can guide the interpretation of the described events, and hence, the way in which these are post-assigned appraisal dimensions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "Finally, we provided evidence that even if a model is trained on automatically obtained appraisal labels, it is still capable of substantial performance. Therefore, we conclude that more corpora with appraisal dimensions from different languages and domains should be created from scratch. In the meantime, one can build on top of the rich set of available emotion corpora and automatically create appraisal-annotated resources out of them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "Annotations of enISEAR Table 9 shows the corpus statistics for the manually annotated corpora. In particular, it depicts how the availability of the emotion to the annotators influences the distribution of appraisal labels. The same numbers are also shown in a comparative manner in Figure 1 . For most appraisal dimensions, the annotations are more specific, narrower, across the counts for emotions and mostly manifest in a lower number of those. An exception is certainty, which shows higher counts for all emotions, and anticipated effort, which receives higher counts for shame, sadness, fear, and guilt, but not for anger. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 23,
                        "end": 30,
                        "text": "Table 9",
                        "ref_id": "TABREF15"
                    },
                    {
                        "start": 283,
                        "end": 291,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "A Corpus Statistics for Manual",
                "sec_num": null
            },
            {
                "text": "We acknowledge that model performance on an annotated corpus can only to some degree be used to assess data quality. However, in combination with our inter-annotator agreement assessments, it serves as an indicator of the amount of noise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "These labels could be compared to humans' only on EMO-VIS, which turned out more reliable. We also consider EMO-HIDE because it represents standard emotion annotation procedures, where judges assess texts without further information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by Deutsche Forschungsgemeinschaft (projects SEAT, KL 2869/1-1 and CEAT, KL 2869/1-2) and has partially been conducted within the Leibniz WissenschaftsCampus T\u00fcbingen \"Cognitive Interfaces\". We thank Kai Sassenberg and Laura Oberl\u00e4nder for inspiration and fruitful discussions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Identifying expressions of emotion in text",
                "authors": [
                    {
                        "first": "Saima",
                        "middle": [],
                        "last": "Aman",
                        "suffix": ""
                    },
                    {
                        "first": "Stan",
                        "middle": [],
                        "last": "Szpakowicz",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Text, Speech and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "196--205",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-540-74628-7_27"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saima Aman and Stan Szpakowicz. 2007. Identify- ing expressions of emotion in text. In Text, Speech and Dialogue, pages 196-205, Berlin, Heidelberg. Springer Berlin Heidelberg.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An analysis of annotated corpora for emotion classification in text",
                "authors": [
                    {
                        "first": "Laura-Ana-Maria",
                        "middle": [],
                        "last": "Bostan",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2104--2119",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Laura-Ana-Maria Bostan and Roman Klinger. 2018. An analysis of annotated corpora for emotion clas- sification in text. In Proceedings of the 27th Inter- national Conference on Computational Linguistics, pages 2104-2119, Santa Fe, New Mexico, USA. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "EmoBank: Studying the impact of annotation perspective and representation format on dimensional emotion analysis",
                "authors": [
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter",
                "volume": "2",
                "issue": "",
                "pages": "578--585",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sven Buechel and Udo Hahn. 2017. EmoBank: Study- ing the impact of annotation perspective and repre- sentation format on dimensional emotion analysis. In Proceedings of the 15th Conference of the Euro- pean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 578-585, Valencia, Spain. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Bodily changes in pain, hunger, fear, and rage",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Walter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cannon",
                        "suffix": ""
                    }
                ],
                "year": 1929,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Walter B. Cannon. 1929. Bodily changes in pain, hunger, fear, and rage. Appleton-Century, New York, US.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Towards multimodal emotion recognition in german speech events in cars using transfer learning",
                "authors": [
                    {
                        "first": "Deniz",
                        "middle": [],
                        "last": "Cevher",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Zepf",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019): Long Papers",
                "volume": "",
                "issue": "",
                "pages": "79--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deniz Cevher, Sebastian Zepf, and Roman Klinger. 2019. Towards multimodal emotion recognition in german speech events in cars using transfer learn- ing. In Proceedings of the 15th Conference on Nat- ural Language Processing (KONVENS 2019): Long Papers, pages 79-90, Erlangen, Germany. German Society for Computational Linguistics & Language Technology.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A coefficient of agreement for nominal scales",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "Educational and Psychological Measurement",
                "volume": "20",
                "issue": "1",
                "pages": "37--46",
                "other_ids": {
                    "DOI": [
                        "10.1177/001316446002000104"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Cohen. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1):37-46.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Unsupervised cross-lingual representation learning at scale",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Kartikay",
                        "middle": [],
                        "last": "Khandelwal",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Vishrav",
                        "middle": [],
                        "last": "Chaudhary",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Wenzek",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco",
                        "middle": [],
                        "last": "Guzm\u00e1n",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "8440--8451",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.747"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzm\u00e1n, Edouard Grave, Myle Ott, Luke Zettle- moyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 8440- 8451, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "GoEmotions: A dataset of fine-grained emotions",
                "authors": [
                    {
                        "first": "Dorottya",
                        "middle": [],
                        "last": "Demszky",
                        "suffix": ""
                    },
                    {
                        "first": "Dana",
                        "middle": [],
                        "last": "Movshovitz-Attias",
                        "suffix": ""
                    },
                    {
                        "first": "Jeongwoo",
                        "middle": [],
                        "last": "Ko",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Cowen",
                        "suffix": ""
                    },
                    {
                        "first": "Gaurav",
                        "middle": [],
                        "last": "Nemade",
                        "suffix": ""
                    },
                    {
                        "first": "Sujith",
                        "middle": [],
                        "last": "Ravi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4040--4054",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dorottya Demszky, Dana Movshovitz-Attias, Jeong- woo Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi. 2020. GoEmotions: A dataset of fine-grained emotions. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 4040-4054, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Exploring the validity of methods to track emotions behind the wheel",
                "authors": [
                    {
                        "first": "Monique",
                        "middle": [],
                        "last": "Dittrich",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Zepf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Persuasive Technology: Development of Persuasive and Behavior Change Support Systems",
                "volume": "",
                "issue": "",
                "pages": "115--127",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-030-17287-9_10"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Monique Dittrich and Sebastian Zepf. 2019. Exploring the validity of methods to track emotions behind the wheel. In Persuasive Technology: Development of Persuasive and Behavior Change Support Systems, pages 115-127, Cham. Springer International Pub- lishing.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "An argument for basic emotions",
                "authors": [
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Ekman",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Cognition & emotion",
                "volume": "6",
                "issue": "3-4",
                "pages": "169--200",
                "other_ids": {
                    "DOI": [
                        "10.1080/02699939208411068"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Paul Ekman. 1992. An argument for basic emotions. Cognition & emotion, 6(3-4):169-200.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Solving the emotion paradox: categorization and the experience of emotion",
                "authors": [
                    {
                        "first": "Lisa Feldman",
                        "middle": [],
                        "last": "Barrett",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Personality and Social Psychology Review",
                "volume": "10",
                "issue": "1",
                "pages": "20--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lisa Feldman Barrett. 2006. Solving the emotion paradox: categorization and the experience of emo- tion. Personality and Social Psychology Review, 10(1):20-46.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "How Emotions Are Made",
                "authors": [
                    {
                        "first": "Lisa Feldman",
                        "middle": [],
                        "last": "Barrett",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lisa Feldman Barrett. 2017. How Emotions Are Made. Houghton Mifflin Harcourt, New York, USA.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Reconstructing the past: A century of ideas about emotion in psychology",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Gendron",
                        "suffix": ""
                    },
                    {
                        "first": "Lisa",
                        "middle": [
                            "Feldman"
                        ],
                        "last": "Barrett",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Emotion review",
                "volume": "1",
                "issue": "4",
                "pages": "316--339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Gendron and Lisa Feldman Barrett. 2009. Re- constructing the past: A century of ideas about emo- tion in psychology. Emotion review, 1(4):316-339.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "PO-EMO: Conceptualization, annotation, and modeling of aesthetic emotions in German and English poetry",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Haider",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    },
                    {
                        "first": "Evgeny",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    },
                    {
                        "first": "Winfried",
                        "middle": [],
                        "last": "Menninghaus",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of The 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "1652--1663",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Haider, Steffen Eger, Evgeny Kim, Roman Klinger, and Winfried Menninghaus. 2020. PO- EMO: Conceptualization, annotation, and modeling of aesthetic emotions in German and English poetry. In Proceedings of The 12th Language Resources and Evaluation Conference, pages 1652-1663, Mar- seille, France. European Language Resources Asso- ciation.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Emotion analysis: A survey",
                "authors": [
                    {
                        "first": "Nida",
                        "middle": [],
                        "last": "Manzoor Hakak",
                        "suffix": ""
                    },
                    {
                        "first": "Mohsin",
                        "middle": [],
                        "last": "Mohd",
                        "suffix": ""
                    },
                    {
                        "first": "Mahira",
                        "middle": [],
                        "last": "Kirmani",
                        "suffix": ""
                    },
                    {
                        "first": "Mudasir",
                        "middle": [],
                        "last": "Mohd",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 International Conference on Computer, Communications and Electronics (Comptelix)",
                "volume": "",
                "issue": "",
                "pages": "397--402",
                "other_ids": {
                    "DOI": [
                        "10.1109/COMPTELIX.2017.8004002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nida Manzoor Hakak, Mohsin Mohd, Mahira Kirmani, and Mudasir Mohd. 2017. Emotion analysis: A survey. In 2017 International Conference on Com- puter, Communications and Electronics (Comptelix), pages 397-402.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Appraisal theories for emotion classification in text",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    },
                    {
                        "first": "Enrica",
                        "middle": [],
                        "last": "Troiano",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Sassenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jan Hofmann, Enrica Troiano, Kai Sassenberg, and Ro- man Klinger. 2020. Appraisal theories for emotion classification in text.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A survey on sentiment and emotion analysis for computational literary studies",
                "authors": [
                    {
                        "first": "Evgeny",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.17175/2019_008"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Evgeny Kim and Roman Klinger. 2019. A survey on sentiment and emotion analysis for computational literary studies. Zeitschrift fuer Digitale Geisteswis- senschaften, 4.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "RoBERTa: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized bert pretraining ap- proach. ArXiv, abs/1907.11692.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "2020. ktrain: A low-code library for augmented machine learning",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Arun",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Maiya",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arun S. Maiya. 2020. ktrain: A low-code library for augmented machine learning.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "What are aesthetic emotions?",
                "authors": [
                    {
                        "first": "Winfried",
                        "middle": [],
                        "last": "Menninghaus",
                        "suffix": ""
                    },
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "Eugen",
                        "middle": [],
                        "last": "Wassiliwizky",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Schindler",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Hanich",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Jacobsen",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Koelsch",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Psychological review",
                "volume": "126",
                "issue": "2",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "https://psycnet.apa.org/doi/10.1037/rev0000135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Winfried Menninghaus, Valentin Wagner, Eugen Was- siliwizky, Ines Schindler, Julian Hanich, Thomas Ja- cobsen, and Stefan Koelsch. 2019. What are aes- thetic emotions? Psychological review, 126(2):171.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "#emotional tweets",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "*SEM 2012: The First Joint Conference on Lexical and Computational Semantics",
                "volume": "1",
                "issue": "",
                "pages": "246--255",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad. 2012. #emotional tweets. In *SEM 2012: The First Joint Conference on Lexical and Computational Semantics -Volume 1: Proceedings of the main conference and the shared task, and Vol- ume 2: Proceedings of the Sixth International Work- shop on Semantic Evaluation (SemEval 2012), pages 246-255, Montr\u00e9al, Canada. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Obtaining reliable human ratings of valence, arousal, and dominance for",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "20",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad. 2018. Obtaining reliable human rat- ings of valence, arousal, and dominance for 20,000",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "English words",
                "authors": [],
                "year": null,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "174--184",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "English words. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 174- 184, Melbourne, Australia. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "NRC-canada: Building the state-ofthe-art in sentiment analysis of tweets",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Seventh International Workshop on Semantic Evaluation",
                "volume": "2",
                "issue": "",
                "pages": "321--327",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad, Svetlana Kiritchenko, and Xiaodan Zhu. 2013. NRC-canada: Building the state-of- the-art in sentiment analysis of tweets. In Second Joint Conference on Lexical and Computational Se- mantics (*SEM), Volume 2: Proceedings of the Sev- enth International Workshop on Semantic Evalua- tion (SemEval 2013), pages 321-327, Atlanta, Geor- gia, USA. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Advocating a componential appraisal model to guide emotion recognition",
                "authors": [
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Mortillaro",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Meuleman",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [
                            "R"
                        ],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "International Journal of Synthetic Emotions (IJSE)",
                "volume": "3",
                "issue": "1",
                "pages": "18--32",
                "other_ids": {
                    "DOI": [
                        "10.4018/jse.2012010102"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marcello Mortillaro, Ben Meuleman, and Klaus R. Scherer. 2012. Advocating a componential appraisal model to guide emotion recognition. International Journal of Synthetic Emotions (IJSE), 3(1):18-32.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Linguistic inquiry and word count: LIWC",
                "authors": [
                    {
                        "first": "James",
                        "middle": [
                            "W"
                        ],
                        "last": "Pennebaker",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [
                            "E"
                        ],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [
                            "J"
                        ],
                        "last": "Booth",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Mahway: Lawrence Erlbaum Associates",
                "volume": "71",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James W. Pennebaker, Martha E. Francis, and Roger J. Booth. 2001. Linguistic inquiry and word count: LIWC 2001. Mahway: Lawrence Erlbaum Asso- ciates, 71:2001.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "The nature of emotions",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Plutchik",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "American Scientist",
                "volume": "89",
                "issue": "4",
                "pages": "344--350",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Plutchik. 2001. The nature of emotions. Ameri- can Scientist, 89(4):344-350.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Modelling valence and arousal in Facebook posts",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Preo\u0163iuc-Pietro",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "Andrew"
                        ],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "Eichstaedt",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Kern",
                        "suffix": ""
                    },
                    {
                        "first": "Lyle",
                        "middle": [],
                        "last": "Ungar",
                        "suffix": ""
                    },
                    {
                        "first": "Elisabeth",
                        "middle": [],
                        "last": "Shulman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
                "volume": "",
                "issue": "",
                "pages": "9--15",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W16-0404"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Preo\u0163iuc-Pietro, H. Andrew Schwartz, Gregory Park, Johannes Eichstaedt, Margaret Kern, Lyle Un- gar, and Elisabeth Shulman. 2016. Modelling va- lence and arousal in Facebook posts. In Proceedings of the 7th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analy- sis, pages 9-15, San Diego, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Evidence for a three-factor theory of emotions",
                "authors": [
                    {
                        "first": "James",
                        "middle": [
                            "A"
                        ],
                        "last": "Russell",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Mehrabian",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Journal of research in Personality",
                "volume": "11",
                "issue": "3",
                "pages": "273--294",
                "other_ids": {
                    "DOI": [
                        "10.1016/0092-6566(77)90037-X"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "James A. Russell and Albert Mehrabian. 1977. Evi- dence for a three-factor theory of emotions. Journal of research in Personality, 11(3):273-294.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Psychological models of emotion",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Klaus",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "The neuropsychology of emotion., Series in affective science",
                "volume": "",
                "issue": "",
                "pages": "137--162",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Klaus R. Scherer. 2000. Psychological models of emo- tion. In The neuropsychology of emotion., Series in affective science., pages 137-162. Oxford Univer- sity Press, New York, NY, US.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "The dynamic architecture of emotion: Evidence for the component process model",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Klaus",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Cognition and emotion",
                "volume": "23",
                "issue": "7",
                "pages": "1307--1351",
                "other_ids": {
                    "DOI": [
                        "10.1080/02699930902928969"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Klaus R Scherer. 2009a. The dynamic architecture of emotion: Evidence for the component process model. Cognition and emotion, 23(7):1307-1351.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Emotions are emergent processes: they require a dynamic computational architecture",
                "authors": [
                    {
                        "first": "Klaus",
                        "middle": [
                            "R"
                        ],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Philosophical transactions of the Royal Society of London. Series B, Biological sciences",
                "volume": "364",
                "issue": "",
                "pages": "3459--3474",
                "other_ids": {
                    "DOI": [
                        "10.1098/rstb.2009.0141"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Klaus R. Scherer. 2009b. Emotions are emergent pro- cesses: they require a dynamic computational ar- chitecture. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1535):3459-3474. Publisher: The Royal Soci- ety.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Appraisal processes in emotion: Theory, methods, research",
                "authors": [
                    {
                        "first": "Klaus",
                        "middle": [
                            "R"
                        ],
                        "last": "Scherer",
                        "suffix": ""
                    },
                    {
                        "first": "Angela",
                        "middle": [],
                        "last": "Schorr",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Johnstone",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Klaus R. Scherer, Angela Schorr, and Tom Johnstone. 2001. Appraisal processes in emotion: Theory, methods, research. Oxford University Press.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Evidence for universality and cultural variation of differential emotion response patterning",
                "authors": [
                    {
                        "first": "Klaus",
                        "middle": [
                            "R"
                        ],
                        "last": "Scherer",
                        "suffix": ""
                    },
                    {
                        "first": "Harald",
                        "middle": [
                            "G"
                        ],
                        "last": "Wallbott",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Journal of personality and social psychology",
                "volume": "66",
                "issue": "2",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "https://psycnet.apa.org/doi/10.1037/0022-3514.66.2.310"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Klaus R. Scherer and Harald G. Wallbott. 1994. Evi- dence for universality and cultural variation of differ- ential emotion response patterning. Journal of per- sonality and social psychology, 66(2):310.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Measuring aesthetic emotions: A review of the literature and a new assessment tool",
                "authors": [
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Schindler",
                        "suffix": ""
                    },
                    {
                        "first": "Georg",
                        "middle": [],
                        "last": "Hosoya",
                        "suffix": ""
                    },
                    {
                        "first": "Winfried",
                        "middle": [],
                        "last": "Menninghaus",
                        "suffix": ""
                    },
                    {
                        "first": "Ursula",
                        "middle": [],
                        "last": "Beermann",
                        "suffix": ""
                    },
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Eid",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [
                            "R"
                        ],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "PloS one",
                "volume": "12",
                "issue": "6",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1371/journal.pone.0178899"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ines Schindler, Georg Hosoya, Winfried Menninghaus, Ursula Beermann, Valentin Wagner, Michael Eid, and Klaus R. Scherer. 2017. Measuring aesthetic emotions: A review of the literature and a new as- sessment tool. PloS one, 12(6):e0178899.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Patterns of cognitive appraisal in emotion",
                "authors": [
                    {
                        "first": "Craig",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Phoebe",
                        "middle": [
                            "C"
                        ],
                        "last": "Ellsworth",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Journal of Personality and Social Psychology",
                "volume": "48",
                "issue": "4",
                "pages": "813--838",
                "other_ids": {
                    "DOI": [
                        "10.1037/0022-3514.48.4.813"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Craig A. Smith and Phoebe C. Ellsworth. 1985. Pat- terns of cognitive appraisal in emotion. Journal of Personality and Social Psychology, 48(4):813-838.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "WordNet affect: an affective extension of Word-Net",
                "authors": [
                    {
                        "first": "Carlo",
                        "middle": [],
                        "last": "Strapparava",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Valitutti",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carlo Strapparava and Alessandro Valitutti. 2004. WordNet affect: an affective extension of Word- Net. In Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC'04), Lisbon, Portugal. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Crowdsourcing and validating event-focused emotion corpora for German and English",
                "authors": [
                    {
                        "first": "Enrica",
                        "middle": [],
                        "last": "Troiano",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Pad\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4005--4011",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1391"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Enrica Troiano, Sebastian Pad\u00f3, and Roman Klinger. 2019. Crowdsourcing and validating event-focused emotion corpora for German and English. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 4005- 4011, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Building Chinese affective resources in valence-arousal dimensions",
                "authors": [
                    {
                        "first": "Liang-Chih",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Lung-Hao",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shuai",
                        "middle": [],
                        "last": "Hao",
                        "suffix": ""
                    },
                    {
                        "first": "Jin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yunchao",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "Robert"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "Xuejie",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "540--545",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1066"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Liang-Chih Yu, Lung-Hao Lee, Shuai Hao, Jin Wang, Yunchao He, Jun Hu, K. Robert Lai, and Xuejie Zhang. 2016. Building Chinese affective resources in valence-arousal dimensions. In Proceedings of the 2016 Conference of the North American Chap- ter of the Association for Computational Linguis- tics: Human Language Technologies, pages 540- 545, San Diego, California. Association for Compu- tational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Frequency distribution of appraisals across emotions for EMOVIS (Visual) and EMOHIDE (Hidden).",
                "num": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "text": "felt . . . when my kitten was sick and I had to clean it up.",
                "html": null,
                "content": "<table><tr><td colspan=\"3\">Emotion Appraisals Text</td></tr><tr><td>Joy</td><td>Attention,</td><td>I felt . . . when I knew that I was</td></tr><tr><td/><td>Certainty,</td><td>going back to Florida a year ear-</td></tr><tr><td/><td>Pleasant,</td><td>lier than I thought I would.</td></tr><tr><td/><td>Sit. Ctrl.</td><td/></tr><tr><td>Disgust</td><td>Attention,</td><td/></tr><tr><td/><td>Certainty,</td><td/></tr><tr><td/><td>Effort,</td><td/></tr><tr><td/><td>Sit. Ctrl.</td><td/></tr><tr><td>Fear</td><td>Attention,</td><td>I felt . . . when I was having a</td></tr><tr><td/><td>Effort,</td><td>hard attach.</td></tr><tr><td/><td>Sit. Ctrl.</td><td/></tr><tr><td>Guilt</td><td>Attention,</td><td>I felt . . . when I went on holiday</td></tr><tr><td/><td>Certainty,</td><td>and left our cat behind.</td></tr><tr><td/><td>Effort,</td><td/></tr><tr><td/><td>Respons.,</td><td/></tr><tr><td/><td>Control</td><td/></tr><tr><td>Sadness</td><td>Attention,</td><td>I felt . . . when I found out one</td></tr><tr><td/><td>Certainty,</td><td>of my favourite shops had shut</td></tr><tr><td/><td>Sit. Ctrl.</td><td>down.</td></tr></table>",
                "num": null,
                "type_str": "table"
            },
            "TABREF1": {
                "text": "",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF4": {
                "text": "Experiment 1: Cohen's \u03ba between annotators on EMOVIS and EMOHIDE and modelling experiments. The model is separately trained and tested on EMOVIS and EMOHIDE.",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF6": {
                "text": "Experiment 2 Main Results: Cohen's \u03ba between annotators of EMOHIDE/EMOVIS and AUTOAPPR, on the subset of 210 instances from enISEAR. The classifier is trained on the full set of 1001 instances annotated automatically (AUTOAPPR) and evaluated on all other annotations (cross-validation splits remain the same).",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF9": {
                "text": "RoBERTA model performance on predicting appraisals on the original data by Hofmann et al.",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF11": {
                "text": "Comparison of the CNN",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF13": {
                "text": "",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            },
            "TABREF15": {
                "text": "Manual Annotation: Instance counts across emotions and appraisal annotations.",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            }
        }
    }
}