File size: 105,618 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:15.944100Z"
    },
    "title": "Nearest neighbour approaches for Emotion Detection in Tweets",
    "authors": [
        {
            "first": "Olha",
            "middle": [],
            "last": "Kaminska",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Computer Science and Statistics Ghent University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Chris",
            "middle": [],
            "last": "Cornelis",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Veronique",
            "middle": [],
            "last": "Hoste",
            "suffix": "",
            "affiliation": {
                "laboratory": "LT3 Language and Translation Technology Team Ghent University",
                "institution": "",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret for a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results' reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Emotion detection is an important task that can be applied to social media data to discover new knowledge. While the use of deep learning methods for this task has been prevalent, they are black-box models, making their decisions hard to interpret for a human operator. Therefore, in this paper, we propose an approach using weighted k Nearest Neighbours (kNN), a simple, easy to implement, and explainable machine learning model. These qualities can help to enhance results' reliability and guide error analysis. In particular, we apply the weighted kNN model to the shared emotion detection task in tweets from SemEval-2018. Tweets are represented using different text embedding methods and emotion lexicon vocabulary scores, and classification is done by an ensemble of weighted kNN models. Our best approaches obtain results competitive with state-of-the-art solutions and open up a promising alternative path to neural network methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In this paper, we consider SemEval-2018 Task 1 EI-oc: Affect in Tweets for English 1 (Mohammad et al., 2018) . This is a classification problem in which data instances are raw tweets, labeled with scores expressing how much each of four considered emotions (anger, sadness, joy, and fear) are present.",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 108,
                        "text": "(Mohammad et al., 2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our target is to implement the weighted k Nearest Neighbor (wkNN) algorithm to detect emotions in tweets. In doing so, we consider different ways of tweet embeddings and combine them with various emotional lexicons, which provide an emotional score for each word.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The motivation for using wkNN is to show the potential of a simple, interpretable machine learning approach compared to black-box techniques based on more complex models like neural networks (NNs). By contrast to the latter, wkNN's predictions for a test sample can be traced back easily to the training samples (the nearest neighbours) that triggered this decision.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We note that we still use NN-based methods for obtaining tweet embeddings. One could therefore argue that our method is not fully explainable; however, we feel that it is less important to understand how tweets are initially represented in an n-dimensional space, than to explain how they are used in making predictions for nearby instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The remainder of this paper is organized as follows: in Section 2 we discuss related work, mainly focusing on the winning approaches of SemEval-2018 Task 1. In Section 3, we describe the methodology behind our solution, including data cleaning, tweet representations through word embeddings, lexicon vocabularies, and their combinations; our proposed ensemble method for classification; and finally, evaluation measures. In Section 4, we report the observed performance on training and development data for the different setups of our proposal, while Section 5 lists the results of the best approach on the test data and compares them to the competition results. In Section 6, we examine some of the test samples with correct and wrong predictions to see how we can use our model's interpretability to explain the obtained results. Finally, in Section 7, we discuss our results and consider possible ways to improve them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "First, we briefly recall the most successful proposals 2 to the SemEval-2018 task. The winning approach (Duppada et al., 2018) uses tweet embedding vectors in ensembles of XGBoost and Random Forest classification models. The runners-up (Gee and Wang, 2018) perform transfer learning with Long Short Term Memory (LSTM) neural networks. The third-place contestants (Rozental and Fleischer, 2018) train an ensemble of a complex model consisting of Gated-Recurrent-Units (GRU) using a convolution neural network (CNN) as an attention mechanism.",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 126,
                        "text": "(Duppada et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 236,
                        "end": 256,
                        "text": "(Gee and Wang, 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 363,
                        "end": 393,
                        "text": "(Rozental and Fleischer, 2018)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "It is clear that the leaderboard is dominated by solutions that are neither simple nor interpretable. This comes as no surprise, given that the effectiveness of a solution is evaluated only using the Pearson Correlation Coefficient (see formula (3) in Section 3.5).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In general, machine learning models in the Natural Language Processing (NLP) field rarely explain their predicted labels. This inspires the need for explainable models, which concentrate on interpreting outputs and the connection of inputs with outputs. For example, Liu et al. (2019) present an explainable classification approach that solves NLP tasks with comparable accuracy to neural networks and also generates explanations for its solutions.",
                "cite_spans": [
                    {
                        "start": 267,
                        "end": 284,
                        "text": "Liu et al. (2019)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Recently, Danilevsky et al. (2020) presented an overview of explainable methods for NLP tasks. Apart from focusing on explanations of model predictions, they also discuss the most important techniques to generate and visualize explanations. The paper also discusses evaluation techniques to measure the quality of the obtained explanations, which could be useful in future work.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 34,
                        "text": "Danilevsky et al. (2020)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In this paper, we consider one of the simplest explainable models: the kNN method. In the context of NLP, kNN has recently been applied by (Fatema Rajani et al., 2020) as a backoff method for classifiers based on BERT and RoBERTa (see Section 3.2). In particular, when the latter NN methods are less confident about their predictions, the kNN solution is used instead. In this paper, we will only use such NN approaches at the data representation level and rely on weighted kNN only during classification.",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 167,
                        "text": "(Fatema Rajani et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "In this section, we describe the different ingredients of our approach, more precisely, data preprocessing, embedding methods, emotional lexicon vocabularies, classification, and evaluation methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "We focus on the emotion intensity ordinal classification task (EI-oc) (Mohammad et al., 2018) . Given each of the four considered emotions (anger, fear, joy, sadness), the task is to classify a tweet in English into one of four ordinal classes of emotion intensity (0: no emotion can be inferred, 1: low amount of emotion can be inferred, 2: moderate amount of emotion can be inferred, 3: high amount of emotion can be inferred) which best represents the mental state of the tweeter.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 93,
                        "text": "(Mohammad et al., 2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Separate training, development, and test datasets were provided for each emotion. To train the classification model, we merge the training and development datasets to evaluate our results with the cross-validation method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Before starting the embedding process, we can clean tweets in several ways:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 General preprocessing. First, we delete account tags (starting with @ ), newline symbols ('\\n'), extra white spaces, all punctuation marks, and numbers. Next, we replace '&' with the word 'and' and replace emojis with textual descriptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "We save hashtags as a potential source of useful information (Mohammad and Kiritchenko, 2015) but delete # symbols.",
                "cite_spans": [
                    {
                        "start": 61,
                        "end": 93,
                        "text": "(Mohammad and Kiritchenko, 2015)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "We do not delete emojis because, following the observations from Wolny (2016), using emoji symbols could significantly improve precision in identifying various types of emotions. In the source data, emojis are present in two ways: combinations of punctuation marks and/or letters and small pictures decoded with Unicode. The first type of emojis is replaced with their descriptions taking from the list of emoticons on Wikipedia 3 . The second type of emojis are transformed using the Python package \"emoji\" 4 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Stop-word removal: for this process, the list of stop-words from the NLTK package 5 is used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "We do not apply preprocessing or stop-word removal a priori, but rather examine whether they improve the classification during the experimental stage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data cleaning",
                "sec_num": "3.1"
            },
            {
                "text": "To perform classification, each tweet is represented by a vector or set of vectors, using the following word embedding techniques:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Pre-trained Word2Vec from the Gensim package 6 . This model includes 300-dimension word vectors for a vocabulary with 3 million words and phrases trained on a Google News dataset. It is included here because of its popularity in NLP tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 DeepMoji 7 is a state-of-the-art sentiment embedding model, pre-trained on millions of tweets with emojis to recognize emotions and sarcasm. We used its implementation on Py-Torch by Huggingface 8 , which provides for each sentence an embedding of size 2304 dimensions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 The Universal Sentence Encoder (USE) (Cer et al., 2018) is a sentence-level embedding approach developed by the TensorFlow team 9 . It provides a 512-dimensional vector for a sentence or even a whole paragraph that can be used for different tasks such as text classification, sentence similarity, etc. USE was trained with a deep averaging network (DAN) encoder on several data sources.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 57,
                        "text": "(Cer et al., 2018)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "The model is available in two options: trained with a DAN and with a Transformer encoder.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "After basic experiments, we chose the second one for further experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Bidirectional Encoder Representations from Transformers (BERT) by Devlin et al. (2019).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "5 http://www.nltk.org/nltk_data/ 6 https://radimrehurek.com/gensim/ models/word2vec.html 7 https://deepmoji.mit.edu/ 8 https://github.com/huggingface/ torchMoji 9 https://www.tensorflow.org/hub/ tutorials/semantic_similarity_with_tf_ hub_universal_encoder The used script 10 was developed by The Google AI Language Team and extracted precomputed feature vectors from a PyTorch BERT model. The length of the output vector for a word is 768 features. Words that are not in the BERT vocabulary were split into tokens (for example, the word \"tokens\" will be resented as \"tok\", \"##en\", \"##s\"), and for each token, a vector was created.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Sentence-BERT (SBERT) is a modified and tuned BERT model presented in Reimers and Gurevych (2019) . It uses so-called siamese and triplet network structures, or a \"twin network\", that processes two sentences in the same way simultaneously. SBERT provides embeddings at a sentence level with the same size as the original BERT.",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 99,
                        "text": "Reimers and Gurevych (2019)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Twitter-roBERTa-based model for Emotion Recognition, one of the seven fine-tuned roBERTa models presented by Barbieri et al. (2020) . Each described model was trained for a specific task and provided an embedding at the token level similar to BERT. The model that we consider was trained for the emotion detection task (E-c) using a different collection of tweets from the same authors of Se-mEval 2018 Task 1 (Mohammad et al., 2018) , in which the emotions anger, joy, sadness, and optimism are used.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 133,
                        "text": "Barbieri et al. (2020)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 412,
                        "end": 435,
                        "text": "(Mohammad et al., 2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "Sentence-level embeddings are applied to each tweet as a whole, while for word (or token) level embeddings, we represent a tweet vector as the mean of its words' (tokens') vectors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweet embedding",
                "sec_num": "3.2"
            },
            {
                "text": "As an additional source of information to complement tweet embeddings, we also consider lexicon scores. Emotional lexicons are vocabularies that provide scores of different emotion intensity for a word. In our experiments, we use the following English lexicons:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Valence Arousal Dominance (NRC VAD) lexicon (20,007 words) (Mohammad, 2018a)each word has a score (float number between 0 and 1) for Valence, Arousal, and Dominance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Emotional Lexicon (EMOLEX) (14,182 words) lexicon (Mohammad and Turney, 2013) -each word has ten scores (0 or 1), one per emotion: anger, anticipation, disgust, fear, joy, negative, positive, sadness, surprise, and trust.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 79,
                        "text": "(Mohammad and Turney, 2013)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Affect Intensity (AI) lexicon (nearly 6,000 terms) (Mohammad, 2018b) -each word has four scores (float number from 0 to 1), one per emotion: anger, fear, sadness, and joy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Affective norms for English words (ANEW) lexicon (1034 words) (Bradley and Lang, 1999) -each word has six scores (float number between 0 and 10): Mean and SD for Valence, Arousal and Dominance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Warriner's lexicon (13,915 lemmas) (Warriner et al., 2013) -each word has 63 scores (float number between 0 and 1000 ), reflecting different statistical characteristics of Valence, Arousal, and Dominance.",
                "cite_spans": [
                    {
                        "start": 37,
                        "end": 60,
                        "text": "(Warriner et al., 2013)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "We consider the following two methods of combining word embeddings with lexicon vocabulary scores:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 For each word during the embedding process, lexicon scores are appended to the end of the tweet vector. The size of the obtained vector is the word embedding size plus the number of lexicon scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 We construct a separate feature for each lexicon. These models are then combined with the embedding vectors in an ensemble classifier, as described in Section 3.4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "We perform experiments for all emotion datasets with one or several lexicons. The results are presented in Section 4.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotional lexicon vocabularies",
                "sec_num": "3.3"
            },
            {
                "text": "In this subsection, the weighted k Nearest Neighbors (wkNN) classification method (Dudani, 1976) and its similarity relation are described. The wkNN is a refinement of the regular kNN, where distances to the neighbors are taken into account as weights. This approach aims to assign more significant weight to the closest instances and a smaller weight to the ones that are further away. The wkNN has two main parameters: the used metric or similarity relation and the number k of considered neighbours.",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 96,
                        "text": "(Dudani, 1976)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "To choose an appropriate similarity relation, we follow Huang (2008) , who compared metrics for the document clustering task. The cosine metric was shown to be one of the best:",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 68,
                        "text": "Huang (2008)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "cos(A, B) = A \u2022 B ||A|| \u00d7 ||B|| ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "where A and B denote elements from the same vector space, A \u2022 B is their scalar product, || * ||vector norm. Values provided by this measure are between -1 (perfectly dissimilar vectors) and 1 (perfectly similar vectors). In order to obtain a [0,1]-similarity relation instead of a metric, we use the following formula:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "cos similarity(A, B) = 1 + cos(A, B) 2 .",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "Formula (2) is used as the primary similarity relation throughout this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "Regarding the parameter k, there is no one-fitsall rule to determine it. As a general \"rule of thumb\", we can put k =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "\u221a N 2 ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "where N is the number of samples in the dataset. However, to examine the impact of k, we will use various numbers of neighbors for each emotion dataset for the best-performing methods in our experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "We use wKNN both as a standalone method as well as inside of a classification ensemble. For the latter, a separate model is trained for each information source (vectors containing tweet embeddings, lexicon scores, or their combination).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "For each test sample, each model's outputs are combined using the standard average as a voting function, i.e., each model gets the same weight in this vote. The architecture of our approach is illustrated in Fig. 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 208,
                        "end": 214,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "Note that in this way, the predictions will be float values between 0 and 3, rather than integer labels (0, 1, 2 or 3); however, at the training stage, this does not represent a problem. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification methods",
                "sec_num": "3.4"
            },
            {
                "text": "To evaluate the performance of the implemented methods, 5-fold cross-validation is used, using as evaluation measure the Pearson Correlation Coefficient (PCC), as was also done for the competition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "Given the vectors of predicted values y and correct values x, the PCC measure provides a value between \u22121 (a total negative linear correlation) and 1 (a total positive linear correlation), where 0 represents no linear correlation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "Hence, the best model should provide the highest value of PCC:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P CC = i (x i \u2212x)(y i \u2212\u0233) i (x i \u2212x) 2 i (y i \u2212\u0233) 2 .",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "Here x i and y i refer to the i th component of vectors x and y, whilex and\u0233 represent their mean.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "The correlation scores across all four emotions were averaged by the competition organizers to determine the bottom-line metric by which the submissions were ranked.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation method",
                "sec_num": "3.5"
            },
            {
                "text": "Our experiments on the train and development are designed as follows: first, we compare the individual tweet embedding methods (Section 4.1) and examine which setup gives the best results. Then, in Section 4.2, we also involve the emotional lexicons, either independently, by appending them to tweet embedding vectors and in ensembles.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "In this subsection, we describe the process of detecting the best data cleaning method and the best k parameter value for each emotion dataset and each embedding. The results are shown in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 188,
                        "end": 195,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "In the first step, for each emotion and each embedding, we calculate the PCC for different versions of the dataset: original raw tweets, preprocessed tweets, and preprocessed tweets with stopwords removed. To verify which approach works better, we perform statistical analysis using the twosided t-test in Python's package stats .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "In the second step, we repeat the experiments for the best preprocessing setups with different amounts of neighbours (5, 7, 9, ..., 23) to detect the most appropriate k value. These values and the resulting PCC for the optimal setup are shown in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 246,
                        "end": 253,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "We can observe that stop-word cleaning only improved results for the Word2Vec embedding and that for the roBERTa-based model, it makes sense to use the raw tweets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "Also, among the different embeddings, roBERTa obtains the highest results on three out of four datasets, while for Fear, the best result is obtained by DeepMoji (with roBERTa a close second). This can be explained by the fact that these two embeddings are explicitly trained on emotion data. The three remaining embeddings lag considerably, with the notable exception of USE for Fear. We conjecture that this may have to do with the imbalanced nature of the fear dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "To measure the balance of the different datasets, we calculated the Imbalance Ratio (IR) of the combined train and development data, where IR is equal to the ratio of the sizes of the largest and smallest classes in the dataset. A value close to 1 represents balanced data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "With IR values of 1.677 and 1.47, respectively, the anger and joy datasets can be considered fairly balanced. While the imbalance is somewhat higher for the sadness dataset (IR = 2.2), the fear dataset is the most imbalanced dataset among with a IR value of 8.04.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detecting the best setup for embeddings",
                "sec_num": "4.1"
            },
            {
                "text": "In this subsection, we discuss our experiments joining the previously identified best setups of the embedding methods with all emotional lexicons, using the different combination strategies outlined in Section 3.3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining embeddings and lexicons",
                "sec_num": "4.2"
            },
            {
                "text": "We first evaluate models based purely on lexicons. The goal here is to check the intrinsic classification strength of each lexicon and of the lexicon-based approach as a whole.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon-only based models",
                "sec_num": "4.2.1"
            },
            {
                "text": "A lexicon works as a dictionary: if a word is present in the lexicon, it receives a particular score, in the other case, it is assigned a score of zero. For lexicons with several scores per word, we take all of them. To obtain the lexicon score for a full tweet, as usual, we compute the mean of its words' scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon-only based models",
                "sec_num": "4.2.1"
            },
            {
                "text": "For each of the five lexicons, the output is saved as a separate vector. The sixth vector is constructed by combining all lexicons' scores and has a total length of 86 values (the sum of the number of scores for all five lexicons). For each of these vectors, a weighted kNN classification model is applied.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon-only based models",
                "sec_num": "4.2.1"
            },
            {
                "text": "Initially, we use the same number of neighbours for all datasets, computed using the rule of thumb k = \u221a N /2, where N is the size of the dataset. The dataset sizes are mostly near to 2000 instances, so k = 23 is used. Results are presented in Table 2 . We can observe that the AI lexicon is the best performing lexicon, showing the highest results for two out of the four datasets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 244,
                        "end": 251,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Lexicon-only based models",
                "sec_num": "4.2.1"
            },
            {
                "text": "Then, for each emotion dataset and its best performing lexicon, the best k value is detected. These results are presented in Table 3 . As we can see, for different datasets, different values of k perform better.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 125,
                        "end": 132,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Lexicon-only based models",
                "sec_num": "4.2.1"
            },
            {
                "text": "In this approach, embedding and lexicon scores are normalized to values between 0 and 1 to account for differences in ranges. To obtain the vector of a tweet, we take the average of all vectors of its words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models appending lexicon scores to word embeddings",
                "sec_num": "4.2.2"
            },
            {
                "text": "The results of these combination experiments are provided in Table 4 . To check the appending strategy's added value, Table 4 also presents the previously obtained PCC score using none of the lexicons for each embedding method.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 61,
                        "end": 68,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 118,
                        "end": 125,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Models appending lexicon scores to word embeddings",
                "sec_num": "4.2.2"
            },
            {
                "text": "As can be seen, for half of the experiments, the use of lexicons does not improve the PCC value. The roBERTa-based model is the only model that seems to benefit from the added lexicon information for each emotion dataset, although the improvement is marginal.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models appending lexicon scores to word embeddings",
                "sec_num": "4.2.2"
            },
            {
                "text": "For three out of four datasets, for the roBERTabased model, the EMOLEX lexicon was the best. For other embedding models, mostly approach with no lexicon benefited, and when some lexicons improved results, they were different for different datasets, with no noticeable pattern. If we compare the best lexicons from Table 4 with the best ones  from Table 3 , we can see that they are different for each dataset.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 314,
                        "end": 354,
                        "text": "Table 4 with the best ones  from Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Models appending lexicon scores to word embeddings",
                "sec_num": "4.2.2"
            },
            {
                "text": "The first ensemble that we tried combines the five classifiers based on embedding models from Section 4.1, i.e., the roBERTa-based, DeepMoji, USE, SBERT, and Word2Vec embeddings. We train the weighted kNN models for each vector separately with the best k value and tweet preprocessing pipeline. Results are listed in the first line of Table  5 and indicate that these five embeddings already provide a good baseline, improving the best results from Table 1 by 8% on average. Especially for Fear, the improvement is notable (18% up).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 335,
                        "end": 343,
                        "text": "Table  5",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 449,
                        "end": 456,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Ensembles",
                "sec_num": "4.2.3"
            },
            {
                "text": "Next, we consider the inclusion of lexicons into the ensembles. In a first setup, for each dataset, we take the best performing lexicon from Table 3 and add this is as a separate classifier to the baseline ensemble. For comparison, we also consider a setup where all five lexicons and their combination are added as six more classifiers, to check how each of them influences the output scores. The obtained results, shown in the second and third lines of Table  5 , illustrate that, in general, the lexicons are unable to improve the baseline and that adding all lexicons takes the scores down considerably.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 148,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 455,
                        "end": 463,
                        "text": "Table  5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Ensembles",
                "sec_num": "4.2.3"
            },
            {
                "text": "Given that the roBERTa-based method performs the best among all embeddings (Table 1) , and that it is the only one that benefits from the lexicon appending strategy (Table 4) , we also consider two additional setups. One that extends the baseline with the lexicon-appended roBERTa classifier and another one that adds the best lexicon to the previous ensemble.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 75,
                        "end": 84,
                        "text": "(Table 1)",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 165,
                        "end": 174,
                        "text": "(Table 4)",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Ensembles",
                "sec_num": "4.2.3"
            },
            {
                "text": "The last two approaches results are presented in the second half of Table 5 . We can see that these adjustments improve the scores noticeably. For three out of four emotion datasets, the last setup performs best, while for Sadness, the results are almost equal. Therefore, we consider this last ensemble as the best solution.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 68,
                        "end": 75,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Ensembles",
                "sec_num": "4.2.3"
            },
            {
                "text": "To determine the generalization strength of the obtained best approach from Section 4, we evaluated it on the test data by submitting predicted labels in the required format to the competition page 11 . PCC scores were calculated for each emotion dataset, and obtained results were averaged. Because of the mean voting function in our model's ensemble, our predicted labels are in float format. Therefore, to match the requested format on the competition page, before submitting results, we rounded them to the nearest integer label. The obtained PCC scores are shown in Table 6 , together with the results obtained on the training and development data for comparison. As expected, the average PCC for the test data drops several points compared to the training and development data, but, in general, our proposal appears to generalize well to new data.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 571,
                        "end": 578,
                        "text": "Table 6",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results on the test data",
                "sec_num": "5"
            },
            {
                "text": "We also mention that the first three contestants of the SemEval 2018 competition obtained a PCC equal to 0.695, 0.653 and 0.646, respectively 12 , and that our proposal would therefore be just behind them in fourth position.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results on the test data",
                "sec_num": "5"
            },
            {
                "text": "To illustrate our approach's explainability, in this section we explore some correctly and wrongly predicted test samples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "As an example of a correct prediction, we can take a look at an anger test tweet: \"I know you mean well, but I'm offended. Prick.\" with real anger class \"2\". Our best model predicted label 2.4, which was rounded to 2, so our result is correct. To analyze how this label is obtained, we look at the predictions by all models separately. They are shown in Table 7 (sample (a)) with the number of neighbors of each class from the training data selected by each model. We can see that the roBERTa-based model was the most accurate, while most others were also close enough.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 354,
                        "end": 361,
                        "text": "Table 7",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "Next, we also examined the neighbours chosen by the models and their classes, especially those which are selected by different models. To find some patterns, we took the intersection of the neighbours closest to the test instance, chosen by the ensemble's models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "We should mention that those models are based on different embeddings, which may locate tweets in n-dimensional space differently. However, one tweet with class \"2\" from the train data was chosen by 4 models out of 7 and five more tweets (four of them with class \"2\" and one with class \"1\") by 3 models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "A closer examination of those tweets revealed that all of them contain the word \"offended\". From this, we could conclude that this word has a high emotional intensity that influences the sentence's tone. Model in ensemble k Classes 0 1 2 3 0 1 2 3 Sample (a) Sample (b) roBERTa 19 0 4 11 4 5 3 11 0 DeepMoji 11 0 0 5 6 2 2 5 2 USE 19 2 5 7 5 5 2 7 5 SBERT 21 6 5 6 4 8 8 3 2 Word2Vec 5 1 1 0 3 0 0 3 2 AI lexicon 11 2 1 3 5 2 5 4 0 roBERTa with AI 11 0 2 8 1 0 4 7 0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "The next sample we examined is another anger test tweet, with gold label \"0\": \"We've been broken up a while, both moved on, she's got a kid, I don't hold any animosity towards her anymore...\" Our solution predicted a score 1.5, which was rounded to 2, leading to a false prediction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "Similar to the previous sample, we took a look at the classes predicted by the different models in the ensemble (Table 7 , sample (b)). Here, we can observe that only the SBERT-based model predicted the result correctly, so roBERTa does not always provide the best answer.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 112,
                        "end": 120,
                        "text": "(Table 7",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "We also explored the most frequent neighbours, which were chosen by 3 models (one tweet with class \"1\") and by 2 models (nine tweets with different classes). We did not find any noticeable patterns; the misclassification is probably caused by words with high emotional intensity, like \"animosity\", which is used in combination with a negation in this specific context.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and error analysis",
                "sec_num": "6"
            },
            {
                "text": "In this paper, we evaluate an explainable machine learning method application for the emotion detection task. As the main conclusion, we can say that using simple optimizations and the weighted kNN method can perform nearly on par with more complex state-of-the-art neural network-based approaches. In the future, we plan to incorporate more elaborate nearest neighbour methodologies, which also take into account the inherently fuzzy nature of emotion data. Some initial experiments with ordered weighted average based fuzzy rough sets (Cornelis et al., 2010) show promising results.",
                "cite_spans": [
                    {
                        "start": 537,
                        "end": 560,
                        "text": "(Cornelis et al., 2010)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and future work",
                "sec_num": "7"
            },
            {
                "text": "Another observation that can be made from our results is that the most informative input to solving the emotion detection task is provided by the tweet embeddings, and that lexicons generally do not improve the results a lot. Meanwhile, adding the combined vector of roBERTa embedding and the best lexicon scores increased PCC scores noticeably. As a possible further improvement, we may refine the voting function by assigning different weights to the different members of the ensemble, which can be based, for example, on the confidence scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and future work",
                "sec_num": "7"
            },
            {
                "text": "Furthermore, as another strategy to improve results, additional text preprocessing steps could be performed, for example, using exclamation marks or word lemmatization. Also, we can give more weight to the hashtag and emoji descriptions during the tweet embedding process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and future work",
                "sec_num": "7"
            },
            {
                "text": "Another important characteristic that influences the results is data imbalance. As observed, we obtained the lowest PCC scores on the Fear dataset, most likely because it is the most imbalanced one. For further experiments with Fear, we consider the usage of imbalanced machine learning classification methods. In particular, Vluymans (2019) discusses several approaches based on fuzzy rough set theory.",
                "cite_spans": [
                    {
                        "start": 326,
                        "end": 341,
                        "text": "Vluymans (2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and future work",
                "sec_num": "7"
            },
            {
                "text": "Finally, Danilevsky et al. (2020) provide several hints to investigate and improve solution explainability. For example, we can examine feature importance, measure the quality of explainability, etc.",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 33,
                        "text": "Danilevsky et al. (2020)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and future work",
                "sec_num": "7"
            },
            {
                "text": "Competition results: https://competitions. codalab.org/competitions/17751#results",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://en.wikipedia.org/wiki/List_ of_emoticons 4 https://pypi.org/project/emoji/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/dnanhkhoa/ pytorch-pretrained-BERT/blob/master/ examples/extract_features.py",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://competitions.codalab. org/competitions/17751#learn_the_ details-evaluation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://competitions.codalab.org/ competitions/17751#results",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the Odysseus programme of the Research Foundation-Flanders (FWO).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgment",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "TweetEval: Unified benchmark and comparative evaluation for tweet classification",
                "authors": [
                    {
                        "first": "Francesco",
                        "middle": [],
                        "last": "Barbieri",
                        "suffix": ""
                    },
                    {
                        "first": "Jose",
                        "middle": [],
                        "last": "Camacho-Collados",
                        "suffix": ""
                    },
                    {
                        "first": "Luis",
                        "middle": [],
                        "last": "Espinosa Anke",
                        "suffix": ""
                    },
                    {
                        "first": "Leonardo",
                        "middle": [],
                        "last": "Neves",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Findings of the Association for Computational Linguistics: EMNLP 2020",
                "volume": "",
                "issue": "",
                "pages": "1644--1650",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.findings-emnlp.148"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Francesco Barbieri, Jose Camacho-Collados, Luis Es- pinosa Anke, and Leonardo Neves. 2020. TweetE- val: Unified benchmark and comparative evaluation for tweet classification. In Findings of the Associ- ation for Computational Linguistics: EMNLP 2020, pages 1644-1650, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Affective norms for english words (anew): Instruction manual and affective ratings",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Margaret",
                        "suffix": ""
                    },
                    {
                        "first": "Peter J",
                        "middle": [],
                        "last": "Bradley",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lang",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Margaret M Bradley and Peter J Lang. 1999. Affective norms for english words (anew): Instruction manual and affective ratings. Technical report, Technical re- port C-1, the center for research in psychophysiol- ogy.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Universal sentence encoder for English",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    },
                    {
                        "first": "Ray",
                        "middle": [],
                        "last": "Strope",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kurzweil",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "169--174",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-2029"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. 2018. Universal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing: System Demonstrations, pages 169-174, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Ordered weighted average based fuzzy rough sets",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Cornelis",
                        "suffix": ""
                    },
                    {
                        "first": "Nele",
                        "middle": [],
                        "last": "Verbiest",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Jensen",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 5th International Conference on Rough Sets and Knowledge Technology (RSKT 2010)",
                "volume": "",
                "issue": "",
                "pages": "78--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Cornelis, Nele Verbiest, and Richard Jensen. 2010. Ordered weighted average based fuzzy rough sets. In Proceedings of the 5th International Con- ference on Rough Sets and Knowledge Technology (RSKT 2010), pages 78-85.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A survey of the state of explainable AI for natural language processing",
                "authors": [
                    {
                        "first": "Marina",
                        "middle": [],
                        "last": "Danilevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ranit",
                        "middle": [],
                        "last": "Kun Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Yannis",
                        "middle": [],
                        "last": "Aharonov",
                        "suffix": ""
                    },
                    {
                        "first": "Ban",
                        "middle": [],
                        "last": "Katsis",
                        "suffix": ""
                    },
                    {
                        "first": "Prithviraj",
                        "middle": [],
                        "last": "Kawas",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "447--459",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marina Danilevsky, Kun Qian, Ranit Aharonov, Yan- nis Katsis, Ban Kawas, and Prithviraj Sen. 2020. A survey of the state of explainable AI for natural lan- guage processing. In Proceedings of the 1st Con- ference of the Asia-Pacific Chapter of the Associa- tion for Computational Linguistics and the 10th In- ternational Joint Conference on Natural Language Processing, pages 447-459, Suzhou, China. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "The distance-weighted k-nearest-neighbor rule",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sahibsingh",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dudani",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "IEEE Transactions on Systems, Man, and Cybernetics",
                "volume": "",
                "issue": "",
                "pages": "325--327",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sahibsingh A Dudani. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Sys- tems, Man, and Cybernetics, (4):325-327.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "SeerNet at SemEval-2018 task 1: Domain adaptation for affect in tweets",
                "authors": [
                    {
                        "first": "Venkatesh",
                        "middle": [],
                        "last": "Duppada",
                        "suffix": ""
                    },
                    {
                        "first": "Royal",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "Sushant",
                        "middle": [],
                        "last": "Hiray",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "18--23",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Venkatesh Duppada, Royal Jain, and Sushant Hiray. 2018. SeerNet at SemEval-2018 task 1: Domain adaptation for affect in tweets. In Proceedings of The 12th International Workshop on Semantic Eval- uation, pages 18-23, New Orleans, Louisiana. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Richard Socher, and Caiming Xiong. 2020. Explaining and improving model behavior with k nearest neighbor representations. arXiv eprints",
                "authors": [
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Nazneen Fatema Rajani",
                        "suffix": ""
                    },
                    {
                        "first": "Wengpeng",
                        "middle": [],
                        "last": "Krause",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Niu",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nazneen Fatema Rajani, Ben Krause, Wengpeng Yin, Tong Niu, Richard Socher, and Caiming Xiong. 2020. Explaining and improving model behavior with k nearest neighbor representations. arXiv e- prints, pages arXiv-2010.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "psyML at SemEval-2018 task 1: Transfer learning for sentiment and emotion analysis",
                "authors": [
                    {
                        "first": "Grace",
                        "middle": [],
                        "last": "Gee",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "369--376",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1056"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Grace Gee and Eugene Wang. 2018. psyML at SemEval-2018 task 1: Transfer learning for senti- ment and emotion analysis. In Proceedings of The 12th International Workshop on Semantic Evalua- tion, pages 369-376, New Orleans, Louisiana. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Similarity measures for text document clustering",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the sixth new zealand computer science research student conference (NZCSRSC2008)",
                "volume": "4",
                "issue": "",
                "pages": "9--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anna Huang. 2008. Similarity measures for text doc- ument clustering. In Proceedings of the sixth new zealand computer science research student confer- ence (NZCSRSC2008), Christchurch, New Zealand, volume 4, pages 9-56.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Towards explainable NLP: A generative explanation framework for text classification",
                "authors": [
                    {
                        "first": "Hui",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Qingyu",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5570--5581",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1560"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hui Liu, Qingyu Yin, and William Yang Wang. 2019. Towards explainable NLP: A generative explanation framework for text classification. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 5570-5581, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Obtaining reliable human ratings of valence, arousal, and dominance for",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "20",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad. 2018a. Obtaining reliable human rat- ings of valence, arousal, and dominance for 20,000",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "English words",
                "authors": [],
                "year": null,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "174--184",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "English words. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 174- 184, Melbourne, Australia. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "SemEval-2018 task 1: Affect in tweets",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Felipe",
                        "middle": [],
                        "last": "Bravo-Marquez",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Salameh",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "1--17",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko. 2018. SemEval- 2018 task 1: Affect in tweets. In Proceedings of The 12th International Workshop on Semantic Eval- uation, pages 1-17, New Orleans, Louisiana. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Word affect intensities",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th Edition of the Language Resources and Evaluation Conference (LREC-2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2018b. Word affect intensities. In Proceedings of the 11th Edition of the Language Re- sources and Evaluation Conference (LREC-2018), Miyazaki, Japan.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Using hashtags to capture fine emotion categories from tweets",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Computational Intelligence",
                "volume": "31",
                "issue": "2",
                "pages": "301--326",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M Mohammad and Svetlana Kiritchenko. 2015. Using hashtags to capture fine emotion cate- gories from tweets. Computational Intelligence, 31(2):301-326.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Crowdsourcing a word-emotion association lexicon",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "29",
                "issue": "",
                "pages": "436--465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad and Peter D. Turney. 2013. Crowdsourcing a word-emotion association lexicon. 29(3):436-465.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Sentence-BERT: Sentence embeddings using Siamese BERTnetworks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3982--3992",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1410"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- BERT: Sentence embeddings using Siamese BERT- networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natu- ral Language Processing (EMNLP-IJCNLP), pages 3982-3992, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification",
                "authors": [
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Rozental",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Fleischer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "218--225",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1033"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alon Rozental and Daniel Fleischer. 2018. Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classifica- tion. In Proceedings of The 12th International Work- shop on Semantic Evaluation, pages 218-225, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods",
                "authors": [
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Vluymans",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sarah Vluymans. 2019. Dealing with imbalanced and weakly labelled data in machine learning using fuzzy and rough set methods. Springer.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Norms of valence, arousal, and dominance for 13,915 english lemmas. Behavior research methods",
                "authors": [
                    {
                        "first": "Amy",
                        "middle": [
                            "Beth"
                        ],
                        "last": "Warriner",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Kuperman",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Brysbaert",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "45",
                "issue": "",
                "pages": "1191--1207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amy Beth Warriner, Victor Kuperman, and Marc Brys- baert. 2013. Norms of valence, arousal, and dom- inance for 13,915 english lemmas. Behavior re- search methods, 45(4):1191-1207.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Emotion analysis of twitter data that use emoticons and emoji ideograms",
                "authors": [
                    {
                        "first": "Wies\u0142aw",
                        "middle": [],
                        "last": "Wolny",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wies\u0142aw Wolny. 2016. Emotion analysis of twitter data that use emoticons and emoji ideograms.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "The scheme of the ensemble architecture.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "text": "The best setup for each emotion for different embeddings.",
                "num": null,
                "content": "<table><tr><td>Setup</td><td>Anger</td><td>Joy</td><td colspan=\"2\">Sadness Fear</td></tr><tr><td colspan=\"3\">roBERTa-based</td><td/><td/></tr><tr><td>Tweets preprocessing</td><td>No</td><td>No</td><td>No</td><td>Yes</td></tr><tr><td>Stop-words cleaning</td><td>No</td><td>No</td><td>No</td><td>No</td></tr><tr><td>Number of neighbors</td><td>19</td><td>13</td><td>9</td><td>11</td></tr><tr><td>PCC</td><td colspan=\"4\">0.6651 0.6919 0.7055 0.5694</td></tr><tr><td/><td>DeepMoji</td><td/><td/><td/></tr><tr><td>Tweets preprocessing</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>Stop-words cleaning</td><td>Yes</td><td>No</td><td>No</td><td>No</td></tr><tr><td>Number of neighbors</td><td>11</td><td>21</td><td>13</td><td>13</td></tr><tr><td>PCC</td><td colspan=\"4\">0.6190 0.6426 0.6490 0.5737</td></tr><tr><td/><td>USE</td><td/><td/><td/></tr><tr><td>Tweets preprocessing</td><td>Yes</td><td>Yes</td><td>Yes</td><td>No</td></tr><tr><td>Stop-words cleaning</td><td>No</td><td>No</td><td>No</td><td>No</td></tr><tr><td>Number of neighbors</td><td>19</td><td>21</td><td>19</td><td>11</td></tr><tr><td>PCC</td><td colspan=\"4\">0.5174 0.5580 0.6067 0.5589</td></tr><tr><td/><td>SBERT</td><td/><td/><td/></tr><tr><td>Tweets preprocessing</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>Stop-words cleaning</td><td>No</td><td>No</td><td>No</td><td>No</td></tr><tr><td>Number of neighbors</td><td>21</td><td>9</td><td>21</td><td>13</td></tr><tr><td>PCC</td><td colspan=\"4\">0.4946 0.5413 0.5505 0.4608</td></tr><tr><td/><td>Word2Vec</td><td/><td/><td/></tr><tr><td>Tweets preprocessing</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>Stop-words cleaning</td><td>Yes</td><td>Yes</td><td>Yes</td><td>Yes</td></tr><tr><td>The number of neighbors</td><td>5</td><td>23</td><td>21</td><td>13</td></tr><tr><td>PCC</td><td colspan=\"4\">0.4824 0.4791 0.5136 0.4303</td></tr></table>"
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "text": "Results for the lexicon-based approach.",
                "num": null,
                "content": "<table><tr><td>Lexicon</td><td>Anger</td><td>Joy</td><td>Sadness Fear</td></tr><tr><td>VAD</td><td colspan=\"3\">0.1983 0.2823 0.2043 0.0928</td></tr><tr><td colspan=\"4\">EMOLEX 0.3014 0.2893 0.3404 0.1943</td></tr><tr><td>AI</td><td colspan=\"3\">0.3284 0.2673 0.3723 0.1549</td></tr><tr><td>ANEW</td><td colspan=\"3\">0.1972 0.3050 0.3254 0.2278</td></tr><tr><td>Warriner</td><td colspan=\"3\">0.1901 0.2705 0.2970 0.1505</td></tr><tr><td colspan=\"4\">Combined 0.2133 0.3051 0.3151 0.1626</td></tr></table>"
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "text": "The best setup for each emotion for different lexicon-based feature vectors.",
                "num": null,
                "content": "<table><tr><td colspan=\"4\">Dataset Lexicon k value PCC</td></tr><tr><td>Anger</td><td>AI</td><td>11</td><td>0.3359</td></tr><tr><td>Joy</td><td>Combined</td><td>19</td><td>0.3320</td></tr><tr><td>Sadness</td><td>AI</td><td>23</td><td>0.3723</td></tr><tr><td>Fear</td><td>ANEW</td><td>17</td><td>0.2412</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "Results for the first combination approach.",
                "num": null,
                "content": "<table/>"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "text": "Results for the ensemble approach with different feature vectors, for all datasets.",
                "num": null,
                "content": "<table><tr><td>The vectors</td><td colspan=\"2\">Vector size Anger</td><td>Joy</td><td>Sadness Fear</td></tr><tr><td>The baseline (top-five embeddings vectors)</td><td>5</td><td colspan=\"3\">0.6929 0.7420 0.7329 0.6783</td></tr><tr><td>With the best lexicon</td><td>6</td><td colspan=\"3\">0.6902 0.7336 0.7400 0.6773</td></tr><tr><td>With all five lexicons</td><td/><td/><td/></tr><tr><td>and their combination</td><td>11</td><td colspan=\"3\">0.6431 0.6796 0.6962 0.6585</td></tr><tr><td>With roBERTa combined</td><td/><td/><td/></tr><tr><td>with the best lexicon</td><td>6</td><td colspan=\"3\">0.7120 0.7496 0.7579 0.6719</td></tr><tr><td>With the best lexicon and</td><td/><td/><td/></tr><tr><td>roBERTa combined with</td><td/><td/><td/></tr><tr><td>the best lexicon</td><td>7</td><td colspan=\"3\">0.7190 0.7526 0.7566 0.6804</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "text": "Pearson Coefficient of the best approach on the cross-validation and test data for the four emotion datasets.",
                "num": null,
                "content": "<table><tr><td>Dataset</td><td>Training and</td><td>Test data</td></tr><tr><td/><td>development data</td><td/></tr><tr><td>Anger</td><td>0.719</td><td>0.638</td></tr><tr><td>Joy</td><td>0.752</td><td>0.631</td></tr><tr><td>Sadness</td><td>0.756</td><td>0.670</td></tr><tr><td>Fear</td><td>0.680</td><td>0.601</td></tr><tr><td>Averaged scores</td><td>0.726</td><td>0.635</td></tr></table>"
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "text": "Predictions of models from the ensemble for some test tweets.",
                "num": null,
                "content": "<table/>"
            }
        }
    }
}