File size: 129,954 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:07:17.156199Z"
},
"title": "ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": "",
"affiliation": {
"laboratory": "SEA Research group",
"institution": "Aston university / Birmingham",
"location": {
"country": "UK"
}
},
"email": "[email protected]"
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": "",
"affiliation": {
"laboratory": "Laboratoire des M\u00e9thodes de Conception des Syst\u00e8mes (LMCS)",
"institution": "Oued-Smar",
"location": {
"postCode": "BP 68M, 16309",
"settlement": "Alger",
"country": "Alg\u00e9rie"
}
},
"email": ""
},
{
"first": "Fodil",
"middle": [],
"last": "Benali",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Ala-Eddine",
"middle": [],
"last": "Hachani",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country uses at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country uses at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "All the survey works in the literature (Habash, 2010; Farghaly and Shaalan, 2009; Harrat et al., 2017) classify Arabic in three main varieties: 1) Classical Arabic (CA), 2) Modern Standard Arabic (MSA) and 3) Dialectal Arabic (Boudad et al., 2017) . Arabic Dialects are another form of Arabic used in daily life communication. Each dialect shares many features with MSA, but they globally differ in some aspects. Arabic and its dialects can be written either in Arabic Script or in Arabizi one. Arabizi is a form of writing Arabic text that relies on Latin letters, numerals and punctuation rather than Arabic letters (Guellil et al., 2019a,b) . For ex-ample, the Arabic sentence:",
"cite_spans": [
{
"start": 39,
"end": 53,
"text": "(Habash, 2010;",
"ref_id": "BIBREF30"
},
{
"start": 54,
"end": 81,
"text": "Farghaly and Shaalan, 2009;",
"ref_id": "BIBREF19"
},
{
"start": 82,
"end": 102,
"text": "Harrat et al., 2017)",
"ref_id": "BIBREF31"
},
{
"start": 226,
"end": 247,
"text": "(Boudad et al., 2017)",
"ref_id": "BIBREF12"
},
{
"start": 618,
"end": 643,
"text": "(Guellil et al., 2019a,b)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": ", meaning \"I am happy,\" is written in Arabizi as \"rani fer7ana\". Arabizi is generally used by Arab speakers in social media or chat and SMS applications. Almost all the work on Arabic sentiment analysis focus on constructing new resources (new lexicons(Abdul-Mageed and Diab, 2012; Mataoui et al., 2016; Mohammad et al., 2016a; Gilbert et al., 2018) , new training corpora (Aly and Atiya, 2013; ElSahar and El-Beltagy, 2015; Mourad and Darwish, 2013; Rahab et al., 2019; Alahmary et al., 2019; Al-Twairesh et al., 2017) , new language models (Baly et al., 2020) ) for each dialect. More recently, particular attention has been given to Arabizi as well (Baert et al., 2020) . However, constructing a unique resource for each dialect is time and effort consuming. Moreover, this resource will be exploitable only for the targeted dialect.",
"cite_spans": [
{
"start": 239,
"end": 281,
"text": "(new lexicons(Abdul-Mageed and Diab, 2012;",
"ref_id": null
},
{
"start": 282,
"end": 303,
"text": "Mataoui et al., 2016;",
"ref_id": "BIBREF35"
},
{
"start": 304,
"end": 327,
"text": "Mohammad et al., 2016a;",
"ref_id": "BIBREF38"
},
{
"start": 328,
"end": 349,
"text": "Gilbert et al., 2018)",
"ref_id": "BIBREF21"
},
{
"start": 373,
"end": 394,
"text": "(Aly and Atiya, 2013;",
"ref_id": "BIBREF8"
},
{
"start": 395,
"end": 424,
"text": "ElSahar and El-Beltagy, 2015;",
"ref_id": "BIBREF18"
},
{
"start": 425,
"end": 450,
"text": "Mourad and Darwish, 2013;",
"ref_id": "BIBREF40"
},
{
"start": 451,
"end": 470,
"text": "Rahab et al., 2019;",
"ref_id": "BIBREF44"
},
{
"start": 471,
"end": 493,
"text": "Alahmary et al., 2019;",
"ref_id": "BIBREF6"
},
{
"start": 494,
"end": 519,
"text": "Al-Twairesh et al., 2017)",
"ref_id": "BIBREF5"
},
{
"start": 542,
"end": 561,
"text": "(Baly et al., 2020)",
"ref_id": "BIBREF11"
},
{
"start": 652,
"end": 672,
"text": "(Baert et al., 2020)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This paper proposes a general algorithm constructing a language model from a large corpus and a training corpus automatically to bridge the gap. It also proposes the transliteration of the Arabizi messages into Arabic. This approach was applied to Algerian dialect (a Maghrebi dialect), having a lack of resources. However, the constructed model was used for classifying the sentiment of messages written in MSA, Tunisian dialect or even Egyptian dialect. The results were very encouraging. However, the manual review of a small part of the training corpus constructed automatically leads to outperform all the research literature results for the testing corpora cited above.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The aim of the proposed model is to analyse the sentiment of Arabic message (written with both Arabic/Arabizi scripts). In this context, we need to focus on three categories of works: 1) Works on Arabizi transliteration. 2) Works on lexicon-based approach.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring the proposed work",
"sec_num": "2"
},
{
"text": "3) Works on corpus-based approach. In the following sections, we present the set of strengths/weaknesses of the research works inspiring our proposed approach.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring the proposed work",
"sec_num": "2"
},
{
"text": "The transliteration approach is firstly inspired by the work presented by van et al. (van der Wees et al., 2016) , where the authors used a table extracted from Wikipedia 1 for the passage from Arabizi to Arabic. We also present a passage table from Arabizi to Arabic. However, we also use a set of passage rules for handling the position of letters and some missed cases in the literature studied approaches. The proposed approach is also inspired by the works presented in (Al-Badrashiny et al., 2014; Darwish, 2013; May et al., 2014; van der Wees et al., 2016) . All these authors generate a set of possible candidates for the transliteration of an Arabizi word into Arabic. The major issue of these approaches is the omission of some candidates because the vowels are not properly handled. Finally, This work is also inspired by the proposed approach in (Darwish, 2014; van der Wees et al., 2016 ) using a language model to determine the best possible candidate for a word in Arabizi. On the other hand, these works assimilate the task of transliteration to a translation task. The major drawback of these approaches is that they depend on a parallel corpus. The used corpus is usually constructed manually.",
"cite_spans": [
{
"start": 85,
"end": 112,
"text": "(van der Wees et al., 2016)",
"ref_id": "BIBREF46"
},
{
"start": 475,
"end": 503,
"text": "(Al-Badrashiny et al., 2014;",
"ref_id": "BIBREF4"
},
{
"start": 504,
"end": 518,
"text": "Darwish, 2013;",
"ref_id": "BIBREF13"
},
{
"start": 519,
"end": 536,
"text": "May et al., 2014;",
"ref_id": "BIBREF36"
},
{
"start": 537,
"end": 563,
"text": "van der Wees et al., 2016)",
"ref_id": "BIBREF46"
},
{
"start": 858,
"end": 873,
"text": "(Darwish, 2014;",
"ref_id": "BIBREF14"
},
{
"start": 874,
"end": 899,
"text": "van der Wees et al., 2016",
"ref_id": "BIBREF46"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring our transliteration approach",
"sec_num": "2.1"
},
{
"text": "The proposed sentiment lexicon construction approach is firstly inspired by the group of approaches using the automatic translation of an existing English lexicon (Mohammad et al., 2016a; Salameh et al., 2015; Mohammad et al., 2016b; Abdul-Mageed and Diab, 2012; Abdulla et al., 2014) . The majority of these approaches are based on Google translate. However, Google translate deals with MSA only (i.e. Google translate is not adequate for translating dialects). Moreover, the Arabic/English dictionaries are covering MSA and some dialects such as Egyptian and Levantine. Limited resources are dedicated to Maghrebi dialects such as Tunisian, Moroccan or Algerian dialects. Hence, we opt to use Glosbe API 2 , which is an online API offering the translation from/to MSA and almost all dialects. This API is open-source (i.e. no fees are required for using it). The proposed approach is also inspired by the work using a semi-automatic construction (El-Beltagy, 2016) where the authors manually review the constructed lexicon.",
"cite_spans": [
{
"start": 163,
"end": 187,
"text": "(Mohammad et al., 2016a;",
"ref_id": "BIBREF38"
},
{
"start": 188,
"end": 209,
"text": "Salameh et al., 2015;",
"ref_id": "BIBREF45"
},
{
"start": 210,
"end": 233,
"text": "Mohammad et al., 2016b;",
"ref_id": "BIBREF39"
},
{
"start": 234,
"end": 262,
"text": "Abdul-Mageed and Diab, 2012;",
"ref_id": "BIBREF0"
},
{
"start": 263,
"end": 284,
"text": "Abdulla et al., 2014)",
"ref_id": "BIBREF1"
},
{
"start": 948,
"end": 966,
"text": "(El-Beltagy, 2016)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring our lexicon-based approach",
"sec_num": "2.2"
},
{
"text": "For handling morphological aspects of Arabic dialects, some works relying on stemming tools, dedicated to MSA. For example, the work of Mataoui et al. (Mataoui et al., 2016) used the Khoja stemmer (Khoja and Garside, 1999) for stemming the DALG, which is designed for MSA. In our work, we treat agglutination by employing an algorithm that supports the originality of the studied dialect (DALG), principally related to its prefixes, suffixes, and negative pronouns. The work of Al-Twairesh et al. (Al-Twairesh et al., 2017) also inspires the proposed approach. This work is relying on sentiments words for automatically annotating large corpus in Saudi dialects. However, in contrast to this work, our approach is not only concentrating on sentiment words, but it is also based on a sentiment algorithm for handling opposition, Arabic morphology and negation.",
"cite_spans": [
{
"start": 136,
"end": 173,
"text": "Mataoui et al. (Mataoui et al., 2016)",
"ref_id": "BIBREF35"
},
{
"start": 197,
"end": 222,
"text": "(Khoja and Garside, 1999)",
"ref_id": "BIBREF34"
},
{
"start": 497,
"end": 523,
"text": "(Al-Twairesh et al., 2017)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring our lexicon-based approach",
"sec_num": "2.2"
},
{
"text": "The works that firstly inspire our proposed (Pak and Paroubek, 2010; Hogenboom et al., 2013; Yadav and Pandya, 2017) are not dedicated to Arabic but other languages (English and Dutch) The main idea of these works is to use emoticons for automatically tag a large corpus. Hence, the proposed contribution also exploits the presence of emoticons to determine the sentiment of messages. However, it can be seen that all emoticons are not appropriate for determining sentiment. Hence, our proposed approach also considers emoticons for annotation but not all emoticons, only the emoticons with the strongest sentiment (either positive or negative). Our approach of constructing corpus is also inspired by the work of Gamal et al. (Gamal et al., 2019) that they relied on a sentiment lexicon to automatically annotate a sentiment corpus. However, their algorithm relies only on the positive and negative words count. For these authors, if the number of positives words is higher than or equal twice the number of negatives words than the message is considered as positive, and the same philosophy is applied for the negative messages. In contrast to these authors, we developed more sophisticated algorithms handling Arabic agglutination, opposition and negation. We also consider a set of heuristics, including the number of words.",
"cite_spans": [
{
"start": 44,
"end": 68,
"text": "(Pak and Paroubek, 2010;",
"ref_id": "BIBREF42"
},
{
"start": 69,
"end": 92,
"text": "Hogenboom et al., 2013;",
"ref_id": "BIBREF32"
},
{
"start": 93,
"end": 116,
"text": "Yadav and Pandya, 2017)",
"ref_id": "BIBREF47"
},
{
"start": 727,
"end": 747,
"text": "(Gamal et al., 2019)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring our corpus-based approach",
"sec_num": "2.3"
},
{
"text": "Our contribution is also inspired by the work of Medhaffar et al. (Medhaffar et al., 2017) , which is the unique work, to the best of our knowledge, focusing on Arabic and Arabizi at the same time. However, in contrast to this work, we used a more voluminous corpus (which was constructed automatically), and we propose a transliteration step. Finally, our contribution is also inspired by the approach proposed by Duwairi et al. (Duwairi et al., 2016) . Hence, we firstly define and apply a transliteration step. However, in contrast to this work, our contribution is dealing with ambiguities treatment (especially vowels ambiguities), and our corpus sentiment is constructed automatically, so it is more voluminous than the corpora which the authors constructed manually.",
"cite_spans": [
{
"start": 66,
"end": 90,
"text": "(Medhaffar et al., 2017)",
"ref_id": "BIBREF37"
},
{
"start": 415,
"end": 452,
"text": "Duwairi et al. (Duwairi et al., 2016)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The research works inspiring our corpus-based approach",
"sec_num": "2.3"
},
{
"text": "The general algorithm proposed and developed in the context of this work is presented in Algorithm 1.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "It can be seen from Algorithm 1 that the proposed steps are executed in the following order :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "1. The first step is to manually construct some resources including the list of the identifiers of some famous Algerian pages, the list of positive/negative emoticons and expressions, the list of prefixes/suffixes and finally the list of negation/ opposition terms. This step is illustrated by the function MANUALRESCON-STRUCTION().",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "2. The second step is to automatically extract comments from Facebook pages (using the collected identifiers). This step is illustrated by the function COMMENTSEXTRACTION(Facebook key ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "3. The third step is to automatically construct the Algerian sentiment lexicon by relying on an existing English sentiment lexicon. This step is illustrated by the function AUTOMATICARLEXCONSTRUCT(Eng lex ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "4. The fourth step is to review the constructed lexicon manually. This step is illustrated by the function MANUALLEXREVIEW(Alg lexV1 ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The proposed algorithm",
"sec_num": "3.1"
},
{
"text": "annotate each message from the corpus (extracted from Facebook). This step is illustrated by the function",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The fifth step is to automatically",
"sec_num": "5."
},
{
"text": "ANNOTATE(Alg lexV2 , m, L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op , pos, neg).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The fifth step is to automatically",
"sec_num": "5."
},
{
"text": "6. The sixth step is to transliterate each message in the used Arabizi corpus. This step is illustrated by the function ARABIZ-ITRANSLITERATE(CORPUS). For translteration we rely on the same algorithm proposed and used by Guellil et al. (Guellil et al., 2018c (Guellil et al., , 2020a (Guellil et al., , 2018a 7. The last step is to classify the sentiment (written with Arabic script) in both corpora (the initially Arabic one and the transliterated one). This step is illustrated by the function SENTIMENTCLASS(corpus, Senti A lg).",
"cite_spans": [
{
"start": 236,
"end": 258,
"text": "(Guellil et al., 2018c",
"ref_id": "BIBREF25"
},
{
"start": 259,
"end": 283,
"text": "(Guellil et al., , 2020a",
"ref_id": "BIBREF24"
},
{
"start": 284,
"end": 308,
"text": "(Guellil et al., , 2018a",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "The fifth step is to automatically",
"sec_num": "5."
},
{
"text": "For classification, we use two kinds of algorithms, shallow and deep. For both classifications, we extract features with word embedding techniques. With shallow classification, ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The used models for classification",
"sec_num": "3.2"
},
{
"text": "Alg lexV1 : Algerian Lexicon V1, Alg lexV2 : Algerian lexicon V2, Ar corp1 ,Ar corp2 : Large Arabic corpora, Senti Alg : Automatic annotated Algerian (Arabic) corpus L f : List identifiant of Facebook pages, L emp : List of positive emoticons, L emn : List of negative emoticons, L exp : List of positive expressions, L exn : List of negative expressions, L pr : List of prefixes, L s f : List of suffixes, L neg : List of negation terms, L op : List of opposition terms 3 1: Senti Alg \u2190 \u2205 2: L f , L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op \u2190MANUALRESCONSTRUCTION() 3: Ar corp1 ,Ar corp2 \u2190COMMENTSEXTRACTION(Facebook key ) 4: Alg lexV1 \u2190AUTOMATICARLEXCONSTRUCT(Eng lex ) 5: Alg lexV2 \u2190MANUALLEXREVIEW(Alg lexV1 ) 6: for each m \u2208 Ar corp2 do 7: polarity\u2190 ANNOTATE(Alg lexV2 , m, L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op ) 8:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The used models for classification",
"sec_num": "3.2"
},
{
"text": "add m, polarity in Senti Alg 9: end for 10: for each corpus \u2208 ArTest corp do 11: SENTIMENTCLASS(corpus, Senti Alg ) 12: end for 13: for each corpus \u2208 ArabiziTest corp do 14:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The used models for classification",
"sec_num": "3.2"
},
{
"text": "Corpus tr \u2190 ARABIZITRANSLITERATE(corpus, Ar corp1 ) 15: ADD(ArabiziTrTest corp , Corpus tr ) 16: SENTIMENTCLASSIFICATION(Corpus tr , Senti Alg )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "The used models for classification",
"sec_num": "3.2"
},
{
"text": "17: end for we use Word2vec algorithm. While we use fastText for deep classification. For Word2vec, we used a context of 10 words to produce representations for both CBOW and SG of length 300. For classification we use five Algorithms such as: GaussianNB (GNB), LogisticRegression (LR), RandomForset (RF), SGDClassifier (SGD, with loss='log' and penalty='l1') and LinearSVC (LSVC with C='1e1'). For deep learning classification, we first used the model presented by Attia et al. (Attia et al., 2018) with five layers using 300 filters and a width equal to 7. To enrich this model, our approach also uses the CBOW and SG of FastText for calculating the weights of embedding matrix. Also, our approach used other deep learning algorithms, such as LSTM and Bi-LSTM. Table 1 gives more details about the configuration and architecture of the layers of our models on the training corpus. For all the models, we use an epoch equal to 100 with an early stopping parameter. This parameter is used for stopping the iteration in the absence of improvements (for handling overfitting). This parameter al-lows stopping the models after 20 epochs (on average). Adam optimiser is used in all the deep learning experiments.",
"cite_spans": [
{
"start": 479,
"end": 499,
"text": "(Attia et al., 2018)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [
{
"start": 763,
"end": 770,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "The used models for classification",
"sec_num": "3.2"
},
{
"text": "For the experiments part, the following dataset were used: 1) A large corpus (Ar corpus2), extracted in November 2017, and containing 15,407,910 messages with 7,926,504 written in Arabic letters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.1"
},
{
"text": "2) ALG Senti (Guellil et al., 2018b (Guellil et al., , 2020a is an annotated sentiment corpus which was automatically constructed based on AL-GLex V2 (Guellil et al., 2020b ) and on the sentiment algorithm that we proposed and implemented. The annotation process also considers other features such as the sentiment score of the message and the number of positives/negatives words recognised in the lexicon. The final corpus contains 127,004 positive messages and 127,004 negative ones.",
"cite_spans": [
{
"start": 13,
"end": 35,
"text": "(Guellil et al., 2018b",
"ref_id": "BIBREF23"
},
{
"start": 36,
"end": 60,
"text": "(Guellil et al., , 2020a",
"ref_id": "BIBREF24"
},
{
"start": 150,
"end": 172,
"text": "(Guellil et al., 2020b",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.1"
},
{
"text": "3) TSAC 4 (Medhaffar et al., 2017 ) is a Tunisian sentiment corpus. This corpus is the unique corpus in the research literature, to the best of our knowledge, containing both Arabic and Arabizi. For testing our approach on other corpus presented in the research literature, we propose to transliterate the Arabizi part of TSAC into Arabic, using our transliteration approach. 4) SANA Alg 5 (Rahab et al., 2019) is an Algerian annotated sentiment corpus. This corpus includes 513 messages that were manually annotated. 5) ASTD/QCRI/ARTwitter 6 (Altowayan and Tao, 2016) is an Arabic corpus including 1,589 tweets from astd (Nabil et al., 2015) , 1, 951 tweets from ArTwitter (Abdulla et al., 2013) and 754 from QCRI (Mourad and Darwish, 2013) ",
"cite_spans": [
{
"start": 10,
"end": 33,
"text": "(Medhaffar et al., 2017",
"ref_id": "BIBREF37"
},
{
"start": 390,
"end": 410,
"text": "(Rahab et al., 2019)",
"ref_id": "BIBREF44"
},
{
"start": 622,
"end": 642,
"text": "(Nabil et al., 2015)",
"ref_id": "BIBREF41"
},
{
"start": 674,
"end": 696,
"text": "(Abdulla et al., 2013)",
"ref_id": null
},
{
"start": 715,
"end": 741,
"text": "(Mourad and Darwish, 2013)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.1"
},
{
"text": "The aim of this work is to classify an Arabic message into positive/negative automatically. More particularly to use a language model and the resources constructed for one dialect for classifying the sentiments of an another dialect (and MSA). Hence, for validating our approach , we applied it on four corpora annotated manually by natives speakers. Two of these corpora are in Algerian dialect (Senti Alg (Guellil et al., 2018b,a) and Sana Alg (Rahab et al., 2019) ), one of them is in MSA (ASTD QCRI ArTwitter)(Altowayan and Tao, 2016) and the last one in Tunisian dialect (TSAC) (Medhaffar et al., 2017) . Two of these corpora include both Arabic and Arabizi (Senti Alg and TSAC) and the others are dedicated to Arabic script. Our purpose behind the different experiments is not only to validate our approach but to also highlight its adaptability to MSA and other dialects written with both scripts Arabic and Arabizi. For doing so, we apply the following steps:",
"cite_spans": [
{
"start": 407,
"end": 432,
"text": "(Guellil et al., 2018b,a)",
"ref_id": null
},
{
"start": 446,
"end": 466,
"text": "(Rahab et al., 2019)",
"ref_id": "BIBREF44"
},
{
"start": 583,
"end": 607,
"text": "(Medhaffar et al., 2017)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "4.2"
},
{
"text": "1. For Senti Alg, we focus on both sides, Arabic and Arabizi. For Arabizi part, we investigate the results using both automatic and manual transliteration.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "4.2"
},
{
"text": "2. As Sana Alg and ASTD QCRI ARTwitter use only Arabic script, no need for the transliteration process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "4.2"
},
{
"text": "3. As TSAC Test represents a combination between Arabic and Arabizi messages, for each experiment on TSAC, we use both, the initial test (Initial test) corpus and the test corpus obtained after applying the proposed translietration system (Transliterated test).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "4.2"
},
{
"text": "The different experiments and the obtained results are presented in the following sections. ). However, the results obtained using Word2vec model combined with shallow classifiers outperform those obtained using fast-Text model combined with deep learning classifiers. The results obtained by using the corpus transliterated manually (Senti_Alg_ test_trmanu) are better than those obtained on the corpus transliterated automatically ((Senti_Alg_test_trauto). However, the improvement between both transliterations is non-consequential (0.9, less than 1 point For F1-score). This small improvement rate highlights the quality of the proposed transliteration system. More details are presented (in the Appendices, section 7) in the Table 3 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 730,
"end": 737,
"text": "Table 3",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "4.2"
},
{
"text": "For the experiments, we use both versions of the Tunisian corpus. We denote the version in its current state (before transliteration) as TSAC test. We denote the version after proceeding to the transliteration as TSAC Test Tr.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results on Tunisian dialect",
"sec_num": "4.2.2"
},
{
"text": "To compare the sentiment analysis results obtained before and after transliteration step, we divide However, the results obtained using Word2vec model combined with shallow classifiers outperform those obtained using FastText model combined with deep learning classifiers. More details are presented (in the Appendices, Section 7) in the Table 6) 5 Synthesis and corpus validation",
"cite_spans": [],
"ref_spans": [
{
"start": 338,
"end": 346,
"text": "Table 6)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results on Tunisian dialect",
"sec_num": "4.2.2"
},
{
"text": "The best results obtained from the different experiments and that we discussed in Section 4.2 are summarised in Table 2. For Algerian dialect, the corpora that we used (i.e. Senti_Alg_test_Arabic, Senti_ Alg_test_trauto and Senti_Alg_test_trmanu) were presented and used in many research papers (Guellil et al., 2017 (Guellil et al., , 2018b Imane et al., 2019) . We based on the issues of each presented research work to improve the results presented in this paper (where the best F1= 87.77% for the Arabic side and F=76.13% for the Arabizi side, after transliteration). The best results obtained on SANA Alg are up to 81.00% (for F1-score). This result outperforms the results presented in the research literature, where the F1-score presented by Rahab et al. .(Rahab et al., 2019 ) was up to 75%. Hence, our approach and corpus lead to an improvement of 6% on this corpus.",
"cite_spans": [
{
"start": 295,
"end": 316,
"text": "(Guellil et al., 2017",
"ref_id": "BIBREF27"
},
{
"start": 317,
"end": 341,
"text": "(Guellil et al., , 2018b",
"ref_id": "BIBREF23"
},
{
"start": 342,
"end": 361,
"text": "Imane et al., 2019)",
"ref_id": "BIBREF33"
},
{
"start": 749,
"end": 782,
"text": "Rahab et al. .(Rahab et al., 2019",
"ref_id": "BIBREF44"
}
],
"ref_spans": [
{
"start": 112,
"end": 120,
"text": "Table 2.",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Synthesis",
"sec_num": "5.1"
},
{
"text": "For Tunisian dialect, it can be seen that the results obtained by using the corpus transliterated (TSAC_Test_Tr) are relatively better than those obtained on the initial corpus (TSAC_ Test) (without transliteration). Medhaffar et al. (Medhaffar et al., 2017) obtained an F1score up to 78% for TSAC Test corpus. Our best results by using our approach on the corpus (Senti Alg) is up to 75.24% (F1-score). The results are then comparable to the results obtained by the authors (even with a corpus constructed automatically and dedicated to Algerian dialect). However, our transliteration system drastically improves the results. The results are up to 91.59% after transliterating both the training and the testing corpus (by using TSAC train for the training). Hence an improvement of 14% was observed on this corpus. Another interesting observation is that, except for the training corpus, all the approach and corpora used for TSAC corpus are the same that we used for our other experiments. The vast corpus used for training Word2vec and fastText dedicated to Al-gerian dialect. The language model used for extracting the best candidate transliteration was also dedicated to Algerian dialect. Finally, concerning MSA, we opt for using the corpus ASTD/QCRI/ArTwitter (Altowayan and Tao, 2016). The best results obtained by Altowayen et al. (Altowayan and Tao, 2016) are up to 79.62% (for F1-score). It can be seen from Table 6 that the best results that we obtained are up to 80.58% (for F1-score). Moreover, This corpus is dedicated to MSA with a focus on Egyptian dialect (for ASTD). Hence, our approach and corpus, which are dedicated to Algerian dialect, outperforms the results presented for corpora dedicated to MSA and Egyptian dialect.",
"cite_spans": [
{
"start": 217,
"end": 258,
"text": "Medhaffar et al. (Medhaffar et al., 2017)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [
{
"start": 1419,
"end": 1427,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Synthesis",
"sec_num": "5.1"
},
{
"text": "To validate the constructed corpus automatically, we focus on a sample containing 3,048 messages (1,488 positives and 1,560 negatives). Afterwards, we manually review this sample. The messages that are correctly annotated were kept, and the messages which were wrongly annotated were corrected. Our first observation is that, among the 3,048 messages that are manually reviewed, 85.17% (2,596 messages) were correctly annotated. To the best of our knowledge, this corpus is the first manually checked annotated sentiment corpus that handles DALG as well as MSA. For showing the efficiency of the manually reviewed corpus, we present Table 3 . Almost all the results were improved with the corpus, which was reviewed manually. The best F1 on Senti Alg test Arabic is now up to 90.16 (it was up to 87.77 with Senti Alg auto). The best F1 on Senti Alg test trauto is now up to 80.95 (it was up to 75.23 with Senti Alg auto). The best F1 on Senti Alg test trmanu is now up to 83.10 (it was up to 76.13 with Senti Alg auto). The best F1 on ASTD/QCRI/ARTwitter is now up to 81.75 (it was up to 80.58 with Senti Alg auto). The decrease for SANA Alg is insignificant, where the best F1 was up to 81.00, and now it is up to 80.97.",
"cite_spans": [],
"ref_spans": [
{
"start": 633,
"end": 640,
"text": "Table 3",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Manual corpus validation",
"sec_num": "5.2"
},
{
"text": "Concerning the experiments on Tunisian corpus (TSAC), It can be seen from ) . These results outperform the results presented in the research literature ((Medhaffar et al., 2017) ), where the bestpresented F1 was up to 78.00. Hence, the manual reviewing of a corpus which was initially constructed automatically outperforms all the results presented in the research literature.",
"cite_spans": [
{
"start": 152,
"end": 177,
"text": "((Medhaffar et al., 2017)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [
{
"start": 74,
"end": 75,
"text": ")",
"ref_id": null
}
],
"eq_spans": [],
"section": "Manual corpus validation",
"sec_num": "5.2"
},
{
"text": "The major contribution in this paper is the new perspectives that it opens:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 Automatic training corpus construction.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 Using one language model trained for one dialect to MSA and either to other dialects.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 Moreover, using the training corpus of one dialect to others (which is a case of transfer learning).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "\u2022 Stop handling Arabizi as it is. Translitertaion is crucial for improving the results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "Moreover, only simple word embedding models were used (word2vec and fastText). It was for showing the efficacy of the approach even with the fastest models. However, in the future, we are planning to improve this approach with the most recent models such as BERT (Devlin et al., 2018) ",
"cite_spans": [
{
"start": 263,
"end": 284,
"text": "(Devlin et al., 2018)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "6"
},
{
"text": "https://en.wikipedia.org/wiki/Arabic chat alphabet",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://en.glosbe.com/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/fbougares/TSAC 5 http://rahab.e-monsite.com/medias/files/corpus.rar 6 https://github.com/iamaziz/arembeddings/tree/master/datasets",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "In this section, more details about the obtained results on each model, corpus are given.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Toward building a large-scale arabic sentiment lexicon",
"authors": [
{
"first": "Muhammad",
"middle": [],
"last": "Abdul-Mageed",
"suffix": ""
},
{
"first": "Mona",
"middle": [],
"last": "Diab",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 6th international global WordNet conference",
"volume": "",
"issue": "",
"pages": "18--22",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Muhammad Abdul-Mageed and Mona Diab. 2012. Toward building a large-scale arabic sentiment lexicon. In Proceedings of the 6th international global WordNet conference, pages 18-22.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Automatic lexicon construction for arabic sentiment analysis",
"authors": [
{
"first": "Nawaf",
"middle": [],
"last": "Abdulla",
"suffix": ""
},
{
"first": "Salwa",
"middle": [],
"last": "Mohammed",
"suffix": ""
},
{
"first": "Mahmoud",
"middle": [],
"last": "Al-Ayyoub",
"suffix": ""
},
{
"first": "Mohammed",
"middle": [],
"last": "Al-Kabi",
"suffix": ""
}
],
"year": 2014,
"venue": "Future Internet of Things and Cloud",
"volume": "",
"issue": "",
"pages": "547--552",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nawaf Abdulla, Salwa Mohammed, Mahmoud Al-Ayyoub, Mohammed Al-Kabi, et al. 2014. Au- tomatic lexicon construction for arabic sentiment analysis. In Future Internet of Things and Cloud (Fi- Cloud), 2014 International Conference on, pages 547- 552. IEEE.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Arabic sentiment analysis: Lexicon-based and corpus-based",
"authors": [],
"year": null,
"venue": "Applied Electrical Engineering and Computing Technologies (AEECT), 2013 IEEE Jordan Conference on",
"volume": "",
"issue": "",
"pages": "1--6",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arabic sentiment analysis: Lexicon-based and corpus-based. In Applied Electrical Engineering and Computing Technologies (AEECT), 2013 IEEE Jordan Conference on, pages 1-6. IEEE.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Automatic transliteration of romanized dialectal arabic",
"authors": [
{
"first": "Mohamed",
"middle": [],
"last": "Al-Badrashiny",
"suffix": ""
},
{
"first": "Ramy",
"middle": [],
"last": "Eskander",
"suffix": ""
},
{
"first": "Nizar",
"middle": [],
"last": "Habash",
"suffix": ""
},
{
"first": "Owen",
"middle": [],
"last": "Rambow",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Eighteenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "30--38",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohamed Al-Badrashiny, Ramy Eskander, Nizar Habash, and Owen Rambow. 2014. Automatic transliteration of romanized dialectal arabic. In Proceedings of the Eighteenth Conference on Computa- tional Natural Language Learning, pages 30-38.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Arasentitweet: A corpus for arabic sentiment analysis of saudi tweets",
"authors": [
{
"first": "Nora",
"middle": [],
"last": "Al-Twairesh",
"suffix": ""
},
{
"first": "Hend",
"middle": [],
"last": "Al-Khalifa",
"suffix": ""
},
{
"first": "Abdulmalik",
"middle": [],
"last": "Al-Salman",
"suffix": ""
},
{
"first": "Yousef",
"middle": [],
"last": "Al-Ohali",
"suffix": ""
}
],
"year": 2017,
"venue": "Procedia Computer Science",
"volume": "117",
"issue": "",
"pages": "63--72",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nora Al-Twairesh, Hend Al-Khalifa, AbdulMalik Al-Salman, and Yousef Al-Ohali. 2017. Arasenti- tweet: A corpus for arabic sentiment analysis of saudi tweets. Procedia Computer Science, 117:63- 72.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Sentiment analysis of saudi dialect using deep learning techniques",
"authors": [
{
"first": "",
"middle": [],
"last": "Rahma M Alahmary",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Hmood",
"suffix": ""
},
{
"first": "Ahmed",
"middle": [
"Z"
],
"last": "Al-Dossari",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Emam",
"suffix": ""
}
],
"year": 2019,
"venue": "2019 International Conference on Electronics, Information, and Communication (ICEIC)",
"volume": "",
"issue": "",
"pages": "1--6",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rahma M Alahmary, Hmood Z Al-Dossari, and Ahmed Z Emam. 2019. Sentiment analysis of saudi dialect using deep learning techniques. In 2019 International Conference on Electronics, Informa- tion, and Communication (ICEIC), pages 1-6. IEEE.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Word embeddings for arabic sentiment analysis",
"authors": [
{
"first": "Lixin",
"middle": [],
"last": "Aziz Altowayan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tao",
"suffix": ""
}
],
"year": 2016,
"venue": "2016 IEEE International Conference on",
"volume": "",
"issue": "",
"pages": "3820--3825",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A Aziz Altowayan and Lixin Tao. 2016. Word embeddings for arabic sentiment analysis. In Big Data (Big Data), 2016 IEEE International Conference on, pages 3820-3825. IEEE.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Labr: A large scale arabic book reviews dataset",
"authors": [
{
"first": "Mohamed",
"middle": [],
"last": "Aly",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Atiya",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "494--498",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohamed Aly and Amir Atiya. 2013. Labr: A large scale arabic book reviews dataset. In Proceed- ings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 494-498.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Multilingual multiclass sentiment classification using convolutional neural networks",
"authors": [
{
"first": "Mohammed",
"middle": [],
"last": "Attia",
"suffix": ""
},
{
"first": "Younes",
"middle": [],
"last": "Samih",
"suffix": ""
},
{
"first": "Ali",
"middle": [],
"last": "El-Kahky",
"suffix": ""
},
{
"first": "Laura",
"middle": [],
"last": "Kallmeyer",
"suffix": ""
}
],
"year": 2018,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohammed Attia, Younes Samih, Ali El-Kahky, and Laura Kallmeyer. 2018. Multilingual multi- class sentiment classification using convolutional neural networks. In LREC.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Arabizi language models for sentiment analysis",
"authors": [
{
"first": "Ga\u00e9tan",
"middle": [],
"last": "Baert",
"suffix": ""
},
{
"first": "Souhir",
"middle": [],
"last": "Gahbiche",
"suffix": ""
},
{
"first": "Guillaume",
"middle": [],
"last": "Gadek",
"suffix": ""
},
{
"first": "Alexandre",
"middle": [],
"last": "Pauchet",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "592--603",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ga\u00e9tan Baert, Souhir Gahbiche, Guillaume Gadek, and Alexandre Pauchet. 2020. Arabizi language models for sentiment analysis. In Proceedings of the 28th International Conference on Computational Linguistics, pages 592-603.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Arabert: Transformer-based model for arabic language understanding",
"authors": [
{
"first": "Fady",
"middle": [],
"last": "Baly",
"suffix": ""
},
{
"first": "Hazem",
"middle": [],
"last": "Hajj",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection",
"volume": "",
"issue": "",
"pages": "9--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fady Baly, Hazem Hajj, et al. 2020. Arabert: Transformer-based model for arabic language un- derstanding. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pages 9-15.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Sentiment analysis in arabic: A review of the literature",
"authors": [
{
"first": "Naaima",
"middle": [],
"last": "Boudad",
"suffix": ""
},
{
"first": "Rdouan",
"middle": [],
"last": "Faizi",
"suffix": ""
}
],
"year": 2017,
"venue": "Ain Shams Engineering Journal",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Naaima Boudad, Rdouan Faizi, Rachid Oulad Haj Thami, and Raddouane Chiheb. 2017. Sentiment analysis in arabic: A review of the literature. Ain Shams Engineering Journal.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Arabizi detection and conversion to arabic",
"authors": [
{
"first": "Kareem",
"middle": [],
"last": "Darwish",
"suffix": ""
}
],
"year": 2013,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1306.6755"
]
},
"num": null,
"urls": [],
"raw_text": "Kareem Darwish. 2013. Arabizi detection and con- version to arabic. arXiv preprint arXiv:1306.6755.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Arabizi detection and conversion to arabic",
"authors": [
{
"first": "Kareem",
"middle": [],
"last": "Darwish",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)",
"volume": "",
"issue": "",
"pages": "217--224",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kareem Darwish. 2014. Arabizi detection and con- version to arabic. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Process- ing (ANLP), pages 217-224.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1810.04805"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language un- derstanding. arXiv preprint arXiv:1810.04805.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Sentiment analysis for arabizi text",
"authors": [
{
"first": "M",
"middle": [],
"last": "Rehab",
"suffix": ""
},
{
"first": "Mosab",
"middle": [],
"last": "Duwairi",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Alfaqeh",
"suffix": ""
},
{
"first": "Areen",
"middle": [],
"last": "Wardat",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Alrabadi",
"suffix": ""
}
],
"year": 2016,
"venue": "Information and Communication Systems (ICICS)",
"volume": "",
"issue": "",
"pages": "127--132",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rehab M Duwairi, Mosab Alfaqeh, Mohammad Wardat, and Areen Alrabadi. 2016. Sentiment analysis for arabizi text. In Information and Com- munication Systems (ICICS), 2016 7th International Conference on, pages 127-132. IEEE.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Nileulex: A phrase and word level sentiment lexicon for egyptian and modern standard arabic",
"authors": [
{
"first": "",
"middle": [],
"last": "Samhaa R El-Beltagy",
"suffix": ""
}
],
"year": 2016,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Samhaa R El-Beltagy. 2016. Nileulex: A phrase and word level sentiment lexicon for egyptian and modern standard arabic. In LREC.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Building large arabic multi-domain resources for sentiment analysis",
"authors": [
{
"first": "Hady",
"middle": [],
"last": "Elsahar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Samhaa R El-Beltagy",
"suffix": ""
}
],
"year": 2015,
"venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
"volume": "",
"issue": "",
"pages": "23--34",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hady ElSahar and Samhaa R El-Beltagy. 2015. Building large arabic multi-domain resources for sentiment analysis. In International Conference on Intelligent Text Processing and Computational Lin- guistics, pages 23-34. Springer.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Arabic natural language processing: Challenges and solutions",
"authors": [
{
"first": "Ali",
"middle": [],
"last": "Farghaly",
"suffix": ""
},
{
"first": "Khaled",
"middle": [],
"last": "Shaalan",
"suffix": ""
}
],
"year": 2009,
"venue": "ACM Transactions on Asian Language Information Processing (TALIP)",
"volume": "8",
"issue": "4",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ali Farghaly and Khaled Shaalan. 2009. Arabic natural language processing: Challenges and so- lutions. ACM Transactions on Asian Language Infor- mation Processing (TALIP), 8(4):14.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Twitter benchmark dataset for arabic sentiment analysis",
"authors": [
{
"first": "Donia",
"middle": [],
"last": "Gamal",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Alfonse",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "El-Sayed",
"suffix": ""
},
{
"first": "Abdel-Badeeh M",
"middle": [],
"last": "El-Horbaty",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Salem",
"suffix": ""
}
],
"year": 2019,
"venue": "International Journal of Modern Education and Computer Science",
"volume": "11",
"issue": "1",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Donia Gamal, Marco Alfonse, El-Sayed M El- Horbaty, and Abdel-Badeeh M Salem. 2019. Twit- ter benchmark dataset for arabic sentiment anal- ysis. International Journal of Modern Education and Computer Science, 11(1):33.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Arsel: A large scale arabic sentiment and emotion lexicon",
"authors": [
{
"first": "Badaroand",
"middle": [],
"last": "Gilbert",
"suffix": ""
},
{
"first": "Jundiand",
"middle": [],
"last": "Hussein",
"suffix": ""
},
{
"first": "Hajj",
"middle": [],
"last": "Hazem",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Badaroand Gilbert, Jundiand Hussein, Hajj Hazem, El-Hajj Wassim, and Habash Nizar. 2018. Arsel: A large scale arabic sentiment and emotion lexicon.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Arabizi sentiment analysis based on transliteration and automatic corpus annotation",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Ahsan",
"middle": [],
"last": "Adeel",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Fodil",
"middle": [],
"last": "Benali",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
"volume": "",
"issue": "",
"pages": "335--341",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Ahsan Adeel, Faical Azouaou, Fodil Benali, Ala-eddine Hachani, and Amir Hus- sain. 2018a. Arabizi sentiment analysis based on transliteration and automatic corpus annotation. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Me- dia Analysis, pages 335-341.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Sentialg: Automated corpus annotation for algerian sentiment analysis",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Ahsan",
"middle": [],
"last": "Adeel",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Hussain",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1808.05079"
]
},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Ahsan Adeel, Faical Azouaou, and Amir Hussain. 2018b. Sentialg: Automated cor- pus annotation for algerian sentiment analysis. arXiv preprint arXiv:1808.05079.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "The role of transliteration in the process of arabizi translation/sentiment analysis",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Fodil",
"middle": [],
"last": "Benali",
"suffix": ""
},
{
"first": "Ala",
"middle": [
"Eddine"
],
"last": "Hachani",
"suffix": ""
},
{
"first": "Marcelo",
"middle": [],
"last": "Mendoza",
"suffix": ""
}
],
"year": 2020,
"venue": "Recent Advances in NLP: The Case of Arabic Language",
"volume": "",
"issue": "",
"pages": "101--128",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Faical Azouaou, Fodil Benali, Ala Eddine Hachani, and Marcelo Mendoza. 2020a. The role of transliteration in the process of arabizi translation/sentiment analysis. In Re- cent Advances in NLP: The Case of Arabic Language, pages 101-128. Springer.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Approche hybride pour la translit\u00e9ration de l'arabizi alg\u00e9rien : une\u00e9tude pr\u00e9liminaire",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Fodil",
"middle": [],
"last": "Benali",
"suffix": ""
},
{
"first": "Houda",
"middle": [],
"last": "Hachani",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Saadane",
"suffix": ""
}
],
"year": 2018,
"venue": "Conference: 25e conf\u00e9rence sur le Traitement Automatique des Langues Naturelles (TALN)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Faical Azouaou, Fodil Benali, ala-eddine Hachani, and Houda Saadane. 2018c. Approche hybride pour la translit\u00e9ration de l'arabizi alg\u00e9rien : une\u00e9tude pr\u00e9liminaire. In Conference: 25e conf\u00e9rence sur le Traite- ment Automatique des Langues Naturelles (TALN), May 2018, Rennes, FranceAt: Rennes, France. https://www.researchgate.net/ publication/326354578_Approche_Hybride_ pour_la_transliteration_de_l%27arabizi_ algerien_une_etude_preliminaire.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Arautosenti: Automatic annotation and new tendencies for sentiment classification of arabic messages",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Chiclana",
"suffix": ""
}
],
"year": 2020,
"venue": "Social Network Analysis and Mining",
"volume": "10",
"issue": "1",
"pages": "1--20",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Faical Azouaou, and Francisco Chi- clana. 2020b. Arautosenti: Automatic annotation and new tendencies for sentiment classification of arabic messages. Social Network Analysis and Min- ing, 10(1):1-20.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Une approche fond\u00e9e sur les lexiques d'analyse de sentiments du dialecte alg\u00e9rien",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Houda",
"middle": [],
"last": "Sa\u00e2dane",
"suffix": ""
},
{
"first": "Nasredine",
"middle": [],
"last": "Semmar",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Faical Azouaou, Houda Sa\u00e2dane, and Nasredine Semmar. 2017. Une approche fond\u00e9e sur les lexiques d'analyse de sentiments du dialecte alg\u00e9rien.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "English vs arabic sentiment analysis: A survey presenting 100 work studies, resources and tools",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Valitutti",
"suffix": ""
}
],
"year": 2019,
"venue": "2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA)",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Faical Azouaou, and Alessandro Valitutti. 2019a. English vs arabic sentiment anal- ysis: A survey presenting 100 work studies, re- sources and tools. In 2019 IEEE/ACS 16th Interna- tional Conference on Computer Systems and Applica- tions (AICCSA), pages 1-8. IEEE.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Arabic natural language processing: An overview",
"authors": [
{
"first": "Imane",
"middle": [],
"last": "Guellil",
"suffix": ""
},
{
"first": "Houda",
"middle": [],
"last": "Sa\u00e2dane",
"suffix": ""
},
{
"first": "Faical",
"middle": [],
"last": "Azouaou",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Imane Guellil, Houda Sa\u00e2dane, Faical Azouaou, Billel Gueni, and Damien Nouvel. 2019b. Arabic natural language processing: An overview. Jour- nal of King Saud University-Computer and Informa- tion Sciences.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Introduction to arabic natural language processing",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Nizar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Habash",
"suffix": ""
}
],
"year": 2010,
"venue": "Synthesis Lectures on Human Language Technologies",
"volume": "3",
"issue": "1",
"pages": "1--187",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nizar Y Habash. 2010. Introduction to arabic natu- ral language processing. Synthesis Lectures on Hu- man Language Technologies, 3(1):1-187.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Maghrebi arabic dialect processing: an overview",
"authors": [
{
"first": "Salima",
"middle": [],
"last": "Harrat",
"suffix": ""
},
{
"first": "Karima",
"middle": [],
"last": "Meftouh",
"suffix": ""
},
{
"first": "Kamel",
"middle": [],
"last": "Sma\u00efli",
"suffix": ""
}
],
"year": 2017,
"venue": "ICNLSSP 2017-International Conference on Natural Language, Signal and Speech Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Salima Harrat, Karima Meftouh, and Kamel Sma\u00efli. 2017. Maghrebi arabic dialect processing: an overview. In ICNLSSP 2017-International Con- ference on Natural Language, Signal and Speech Pro- cessing.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Exploiting emoticons in sentiment analysis",
"authors": [
{
"first": "Alexander",
"middle": [],
"last": "Hogenboom",
"suffix": ""
},
{
"first": "Daniella",
"middle": [],
"last": "Bal",
"suffix": ""
},
{
"first": "Flavius",
"middle": [],
"last": "Frasincar",
"suffix": ""
},
{
"first": "Malissa",
"middle": [],
"last": "Bal",
"suffix": ""
},
{
"first": "Franciska",
"middle": [],
"last": "De",
"suffix": ""
},
{
"first": "Jong",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Uzay",
"middle": [],
"last": "Kaymak",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 28th Annual ACM Symposium on Applied Computing",
"volume": "",
"issue": "",
"pages": "703--710",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexander Hogenboom, Daniella Bal, Flavius Frasincar, Malissa Bal, Franciska de Jong, and Uzay Kaymak. 2013. Exploiting emoticons in sen- timent analysis. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages 703- 710. ACM.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "A set of parameters for automatically annotating a sentiment arabic corpus",
"authors": [
{
"first": "Guellil",
"middle": [],
"last": "Imane",
"suffix": ""
},
{
"first": "Darwish",
"middle": [],
"last": "Kareem",
"suffix": ""
},
{
"first": "Azouaou",
"middle": [],
"last": "Faical",
"suffix": ""
}
],
"year": 2019,
"venue": "International Journal of Web Information Systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Guellil Imane, Darwish Kareem, and Azouaou Faical. 2019. A set of parameters for automati- cally annotating a sentiment arabic corpus. Inter- national Journal of Web Information Systems.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Stemming arabic text",
"authors": [
{
"first": "Shereen",
"middle": [],
"last": "Khoja",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Garside",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shereen Khoja and Roger Garside. 1999. Stem- ming arabic text. Lancaster, UK, Computing Depart- ment, Lancaster University.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "A proposed lexicon-based sentiment analysis approach for the vernacular algerian arabic",
"authors": [
{
"first": "M'hamed",
"middle": [],
"last": "Mataoui",
"suffix": ""
},
{
"first": "Omar",
"middle": [],
"last": "Zelmati",
"suffix": ""
},
{
"first": "Madiha",
"middle": [],
"last": "Boumechache",
"suffix": ""
}
],
"year": 2016,
"venue": "Research in Computing Science",
"volume": "110",
"issue": "",
"pages": "55--70",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M'hamed Mataoui, Omar Zelmati, and Madiha Boumechache. 2016. A proposed lexicon-based sentiment analysis approach for the vernacular algerian arabic. Research in Computing Science, 110:55-70.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "An arabizi-english social media statistical machine translation system",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "May",
"suffix": ""
},
{
"first": "Yassine",
"middle": [],
"last": "Benjira",
"suffix": ""
},
{
"first": "Abdessamad",
"middle": [],
"last": "Echihabi",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 11th Conference of the Association for Machine Translation in the Americas",
"volume": "",
"issue": "",
"pages": "329--341",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jonathan May, Yassine Benjira, and Abdessamad Echihabi. 2014. An arabizi-english social media statistical machine translation system. In Proceed- ings of the 11th Conference of the Association for Ma- chine Translation in the Americas, pages 329-341.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Sentiment analysis of tunisian dialects: Linguistic ressources and experiments",
"authors": [
{
"first": "Salima",
"middle": [],
"last": "Medhaffar",
"suffix": ""
},
{
"first": "Fethi",
"middle": [],
"last": "Bougares",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Third Arabic Natural Language Processing Workshop",
"volume": "",
"issue": "",
"pages": "55--61",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Salima Medhaffar, Fethi Bougares, Yannick Es- teve, and Lamia Hadrich-Belguith. 2017. Sen- timent analysis of tunisian dialects: Linguistic ressources and experiments. In Proceedings of the Third Arabic Natural Language Processing Workshop, pages 55-61.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Sentiment lexicons for arabic social media",
"authors": [
{
"first": "Saif",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Salameh",
"suffix": ""
},
{
"first": "Svetlana",
"middle": [],
"last": "Kiritchenko",
"suffix": ""
}
],
"year": 2016,
"venue": "LREC",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif Mohammad, Mohammad Salameh, and Svet- lana Kiritchenko. 2016a. Sentiment lexicons for arabic social media. In LREC.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "How translation alters sentiment",
"authors": [
{
"first": "M",
"middle": [],
"last": "Saif",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Svetlana",
"middle": [],
"last": "Salameh",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kiritchenko",
"suffix": ""
}
],
"year": 2016,
"venue": "Journal of Artificial Intelligence Research",
"volume": "55",
"issue": "",
"pages": "95--130",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saif M Mohammad, Mohammad Salameh, and Svetlana Kiritchenko. 2016b. How translation al- ters sentiment. Journal of Artificial Intelligence Re- search, 55:95-130.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Subjectivity and sentiment analysis of modern standard arabic and arabic microblogs",
"authors": [
{
"first": "Ahmed",
"middle": [],
"last": "Mourad",
"suffix": ""
},
{
"first": "Kareem",
"middle": [],
"last": "Darwish",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis",
"volume": "",
"issue": "",
"pages": "55--64",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ahmed Mourad and Kareem Darwish. 2013. Sub- jectivity and sentiment analysis of modern stan- dard arabic and arabic microblogs. In Proceed- ings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis, pages 55-64.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Astd: Arabic sentiment tweets dataset",
"authors": [
{
"first": "Mahmoud",
"middle": [],
"last": "Nabil",
"suffix": ""
},
{
"first": "Mohamed",
"middle": [],
"last": "Aly",
"suffix": ""
},
{
"first": "Amir",
"middle": [],
"last": "Atiya",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2515--2519",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mahmoud Nabil, Mohamed Aly, and Amir Atiya. 2015. Astd: Arabic sentiment tweets dataset. In Proceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, pages 2515- 2519.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Twitter as a corpus for sentiment analysis and opinion mining",
"authors": [
{
"first": "Alexander",
"middle": [],
"last": "Pak",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Paroubek",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alexander Pak and Patrick Paroubek. 2010. Twit- ter as a corpus for sentiment analysis and opinion mining.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "E",
"middle": [],
"last": "Matthew",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1802.05365"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contex- tualized word representations. arXiv preprint arXiv:1802.05365.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Sana: Sentiment analysis on newspapers comments in algeria",
"authors": [
{
"first": "Hichem",
"middle": [],
"last": "Rahab",
"suffix": ""
},
{
"first": "Abdelhafid",
"middle": [],
"last": "Zitouni",
"suffix": ""
},
{
"first": "Mahieddine",
"middle": [],
"last": "Djoudi",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hichem Rahab, Abdelhafid Zitouni, and Mahied- dine Djoudi. 2019. Sana: Sentiment analysis on newspapers comments in algeria. Journal of King Saud University-Computer and Information Sciences.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Sentiment after translation: A case-study on arabic social media posts",
"authors": [
{
"first": "Mohammad",
"middle": [],
"last": "Salameh",
"suffix": ""
},
{
"first": "Saif",
"middle": [],
"last": "Mohammad",
"suffix": ""
},
{
"first": "Svetlana",
"middle": [],
"last": "Kiritchenko",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies",
"volume": "",
"issue": "",
"pages": "767--777",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mohammad Salameh, Saif Mohammad, and Svet- lana Kiritchenko. 2015. Sentiment after transla- tion: A case-study on arabic social media posts. In Proceedings of the 2015 conference of the North Amer- ican chapter of the association for computational lin- guistics: Human language technologies, pages 767- 777.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "A simple but effective approach to improve arabizi-to-english statistical machine translation",
"authors": [
{
"first": "Arianna",
"middle": [],
"last": "Marlies Van Der Wees",
"suffix": ""
},
{
"first": "Christof",
"middle": [],
"last": "Bisazza",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Monz",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)",
"volume": "",
"issue": "",
"pages": "43--50",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marlies van der Wees, Arianna Bisazza, and Christof Monz. 2016. A simple but effective approach to improve arabizi-to-english statistical machine translation. In Proceedings of the 2nd Work- shop on Noisy User-generated Text (WNUT), pages 43-50.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Sentireview: Sentiment analysis based on text and emoticons",
"authors": [
{
"first": "Payal",
"middle": [],
"last": "Yadav",
"suffix": ""
},
{
"first": "Dhatri",
"middle": [],
"last": "Pandya",
"suffix": ""
}
],
"year": 2017,
"venue": "Innovative Mechanisms for Industry Applications (ICIMIA",
"volume": "",
"issue": "",
"pages": "467--472",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Payal Yadav and Dhatri Pandya. 2017. Sentire- view: Sentiment analysis based on text and emoti- cons. In Innovative Mechanisms for Industry Appli- cations (ICIMIA), 2017 International Conference on, pages 467-472. IEEE.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"type_str": "figure",
"text": "Results of ASTD/QCRI/ArTwitter",
"num": null
},
"TABREF0": {
"content": "<table/>",
"text": "Sentiment analysis of Arabic/ Arabizi messages Input: Eng lex : English lexicon, ArTest corp [] : List of Arabic sentiment corpora, ArabiziTest corp [] : List of Arabizi sentiment corpora, ArabiziTrTest corp [] : List of Arabizi transliterated sentiment corpora, Facebook Key : A key for accessing RestFB API Output:",
"num": null,
"type_str": "table",
"html": null
},
"TABREF2": {
"content": "<table><tr><td colspan=\"2\">: Deep learning models architecture</td></tr><tr><td>80.99). However, the results obtained using</td><td>classifier (F1= 75.23). For deep learning</td></tr><tr><td>Word2vec model combined with shallow</td><td>classification, the combination of FastText,</td></tr><tr><td>classifiers outperform those obtained using</td><td>CBOW and CNN gives the best results for</td></tr><tr><td>FastText model combined with deep learning</td><td>the corpus Senti_Alg_test_trauto (F1-score=</td></tr><tr><td>classifiers. It can also be seen from this</td><td>69.78</td></tr><tr><td>Table that CBOW model results generally</td><td/></tr><tr><td>outperform the results returned by using the</td><td/></tr><tr><td>SG model. More details are presented (in the</td><td/></tr><tr><td>Appendices, section 7) in the Table 1)</td><td/></tr><tr><td>Results on the Arabizi side of Senti Alg</td><td/></tr><tr><td>(Senti Alg test Arabizi) obtained on the</td><td/></tr><tr><td>Arabizi side of Senti Alg, that we named</td><td/></tr><tr><td>Senti_Alg_test_Arabizi. However, as our</td><td/></tr><tr><td>language model and training corpus is in Ara-</td><td/></tr><tr><td>bic script, the corpus Senti_Alg_test_Arabizi</td><td/></tr><tr><td>was firstly transliterated. For showing the</td><td/></tr><tr><td>efficiency of our transliteration system, we</td><td/></tr><tr><td>transliterate this corpus in both ways, au-</td><td/></tr><tr><td>tomatically (for obtaining Senti_Alg_test_</td><td/></tr><tr><td>trauto) and manually (for obtaining Senti_</td><td/></tr><tr><td>Alg_test_trmanu). The best results for the</td><td/></tr><tr><td>corpus Senti_Alg_test_trauto were obtained</td><td/></tr><tr><td>using SG of Word2vec combined with SGD</td><td/></tr></table>",
"text": "",
"num": null,
"type_str": "table",
"html": null
},
"TABREF3": {
"content": "<table><tr><td>For</td></tr></table>",
"text": "Results",
"num": null,
"type_str": "table",
"html": null
},
"TABREF4": {
"content": "<table><tr><td>deep learning classification, the combination</td></tr><tr><td>of FastText, CBOW and LSTM gives the best</td></tr><tr><td>results (F1-score= 63.29). However, the results</td></tr><tr><td>obtained using Word2vec model combined</td></tr><tr><td>with shallow classifiers outperform those ob-</td></tr><tr><td>tained using FastText model combined with</td></tr><tr><td>deep learning classifiers. The CBOW model</td></tr><tr><td>results generally outperform the results re-</td></tr><tr><td>turned by using the SG model. More details</td></tr><tr><td>are presented (in the Appendices, section 7) in</td></tr><tr><td>the</td></tr></table>",
"text": "Synthesis of the best obtained results",
"num": null,
"type_str": "table",
"html": null
},
"TABREF5": {
"content": "<table><tr><td>into two parts: the first one</td></tr><tr><td>illustrates the sentiment classification results</td></tr><tr><td>obtained on TSAC test and the second one,</td></tr><tr><td>the results obtained on TSAC Test Tr. For the</td></tr><tr><td>experiments done on both corpora, it can be</td></tr><tr><td>seen that the best results were obtained using</td></tr></table>",
"text": "",
"num": null,
"type_str": "table",
"html": null
},
"TABREF6": {
"content": "<table><tr><td>the</td></tr></table>",
"text": "",
"num": null,
"type_str": "table",
"html": null
},
"TABREF7": {
"content": "<table><tr><td>matically, F1 was up to 73.69 (for TSAC Test)</td></tr><tr><td>and up to 75.24 (for TSAC Test TR). By us-</td></tr><tr><td>ing the manually reviewed corpus, F1 is up</td></tr><tr><td>to 75.61 (for TSAC Test) and up to 80.69</td></tr><tr><td>(for TSAC Tr</td></tr></table>",
"text": "Synthesis of the best-obtained results on the manually reviewed corpus",
"num": null,
"type_str": "table",
"html": null
},
"TABREF8": {
"content": "<table><tr><td colspan=\"5\">or ELMO(Peters ML Algo Senti Alg test trauto Senti Alg test trmanu et al., 2018). Type ML Algo Arabic P R F1 GNB 93.50 74.80 83.11 LR 82.09 88.00 84.94 CBOW RF 85.07 75.20 79.83 SGD 85.28 90.40 87.77 LSVC 82.71 88.00 85.27 GNB 90.34 74.80 81.84 LR 85.10 86.80 85.94 SG RF 85.59 76.00 80.51 SGD 84.62 88.00 86.27 LSVC 85.32 86.00 85.66 CNN 80.03 80.00 79.99 CBOW MLP 81.04 81.00 80.99 LSTM 79.65 79.60 79.59 Bi-LSTM 79.92 79.60 79.54 CNN 78.44 78.20 78.15 MLP 79.63 79.60 79.59 SG LSTM 79.04 79.00 78.99 Bi-LSTM 76.84 76.80 76.79 Results on the Arabic side of Senti Alg (Senti Alg test Arabic) Model Word2vec FastText Figure 1: Model Type P R F1 P R F1 GNB 82.18 57.20 67.45 85.47 58.80 69.67 LR 69.81 74.00 71.84 75.00 76.80 75.89 CBOW RF 73.06 64.00 68.23 72.20 64.40 Model Type ML Algo SANA Alg P R F1 GNB 81.17 80.83 81.00 LR 76.23 70.83 73.43 CBOW RF 71.54 77.50 74.40 SGD 80.28 72.92 76.42 LSVC 74.44 69.17 71.71 Word2vec GNB 62.37 96.67 75.82 LR 79.09 72.50 75.65 SG RF 72.05 76.25 74.09 SGD 82.74 67.92 74.60 LSVC 78.80 71.25 74.84 CNN 62.26 62.30 62.28 CBOW MLP 59.65 60.00 59.64 LSTM 63.42 63.22 63.29 Bi-LSTM 62.08 62.07 60.29 FastText CNN 60.76 61.15 60.22 MLP 57.57 57.93 57.62 SG LSTM 60.37 60.23 60.29 Bi-LSTM 59.28 59.77 58.87 Figure 3: Results on SANA Alg Model Type ML Algo TSAC Test TSAC Test Tr P R F1 P R F1 GNB Type ML Algo TSAC Test TSAC Test Tr P R F1 P R F1 GNB 78.65 Model Type ML Algo Arabic P R F1 GNB 76.11 85.61 80.58 LR 71.93 75.31 73.58 CBOW RF 69.79 68.00 69.28 80.31 Model SGD 77.65 73.45 75.49 68.08 SGD 69.10 79.60 73.98 73.71 74.00 LSVC 70.90 74.66 72.73 73.85 LSVC 70.04 72.00 71.01 75.70 76.00 75.85 Word2vec</td></tr><tr><td colspan=\"2\">Word2vec</td><td/><td/></tr><tr><td/><td/><td/><td>GNB</td><td>66.33 92.59 77.29</td></tr><tr><td/><td/><td>GNB</td><td colspan=\"2\">79.50 63.60 70.67 85.41 63.20 LR 71.67 77.64 74.54</td><td>72.64</td></tr><tr><td/><td>SG CBOW</td><td>LR RF SG SGD LSVC CNN MLP CBOW</td><td colspan=\"2\">68.40 73.60 70.91 73.08 76.00 72.29 66.80 69.44 76.47 67.60 RF 71.09 67.12 69.05 69.49 82.00 75.23 75.10 77.20 SGD 71.12 82.58 76.42 69.08 72.40 70.70 72.76 74.80 LSVC 71.40 77.08 74.13 69.85 69.80 69.78 73.65 73.60 CNN 64.24 64.11 64.03 67.64 67.60 67.58 71.81 71.80 MLP 62.65 62.65 62.65</td><td>74.51 71.76 76.13 73.77 73.58 71.80</td></tr><tr><td/><td/><td>LSTM</td><td colspan=\"2\">68.69 68.60 68.56 70.01 70.00 LSTM 61.40 61.09 60.81</td><td>70.00</td></tr><tr><td/><td/><td colspan=\"3\">Bi-LSTM 68.95 68.80 68.74 71.93 71.40 Bi-LSTM 62.97 62.88 62.81</td><td>71.22</td></tr><tr><td>FastText</td><td>FastText</td><td/><td/></tr><tr><td/><td>SG</td><td colspan=\"3\">CNN MLP LSTM Bi-LSTM 68.84 68.80 68.78 70.60 70.60 68.52 68.20 68.06 73.29 72.60 68.25 68.20 68.18 71.37 71.20 CNN 63.30 63.27 63.26 69.42 69.40 69.39 72.60 72.60 MLP 60.83 60.81 60.78 SG LSTM 60.58 60.43 60.30 Bi-LSTM 60.48 60.41 60.34</td><td>72.40 71.14 72.60 70.60</td></tr><tr><td colspan=\"5\">Figure 2: Results on the Arabizi side of Senti Alg (Senti Alg test Arabizi) after translitera-</td></tr><tr><td>tion</td><td/><td/><td/></tr></table>",
"text": "36.71 50.38 81.25 65.76 72.69 LR 61.38 88.82 72.60 70.06 77.35 73.53 CBOW RF 58.75 78.82 67.32 70.01 64.41 67.10 SGD 61.81 89.29 73.05 71.72 77.88 74.68 LSVC 61.38 87.88 72.28 70.27 76.76 73.38 Word2vec GNB 60.92 89.76 72.58 71.51 76.76 74.04 LR 75.45 41.76 53.77 72.37 76.41 74.33 SG RF 59.15 77.59 67.12 67.28 60.35 63.63 SGD 62.02 90.76 73.69 71.44 79.47 75.24 LSVC 75.09 38.82 51.18 72.48 75.76 74.09 CNN 59.69 56.62 52.88 63.84 63.32 62.98 CBOW MLP 58.86 55.97 52.06 62.65 62.50 62.39 LSTM 59.12 55.79 51.36 63.01 62.21 61.61 Bi-LSTM 57.36 55.29 51.93 62.08 61.91 61.78 FastText CNN 57.70 55.79 52.88 61.45 61.38 61.33 MLP 55.87 54.21 50.71 62.21 62.15 62.10 SG LSTM 56.33 42.4 50.11 61.09 60.85 60.65 Bi-LSTM 57.25 54.88 50.87 61.36 61.15 60.96 Figure 4: Results on TSAC Test by using Senti Alg as training 32.29 45.79 82.39 57.24 67.55 LR 65.08 89.47 75.35 84.76 84.76 84.76 CBOW RF 62.51 83.76 71.59 87.13 78.82 82.77 SGD 64.34 92.12 75.76 82.55 89.06 85.68 LSVC 85.70 42.65 56.95 84.65 87.29 85.95 Word2vec GNB 76.39 31.59 44.69 82.70 56.53 67.16 LR 65.66 89.88 75.89 87.26 87.41 87.33 SG RF 83.45 33.82 48.14 87.53 78.88 82.98 SGD 65.46 89.65 75.67 83.76 91.65 87.53 LSVC 88.10 43.53 58.27 86.64 88.12 87.37 CNN 75.53 66.50 63.25 89.94 89.65 89.63 CBOW MLP 75.29 67.21 64.36 90.81 90.76 90.76 LSTM 75.71 67.41 64.55 91.52 91.41 91.41 Bi-LSTM 77.53 67.44 64.16 91.66 91.21 91.18 FastText CNN 75.85 66.85 63.69 91.58 91.47 91.46 MLP 76.13 67.50 64.57 91.65 91.59 91.59 SG LSTM 75.78 66.91 63.80 90.85 90.71 90.70 Bi-LSTM 77.10 65.59 61.50 91.39 91.03 91.01Figure 5: Results on TSAC Test using TSAC train Tr",
"num": null,
"type_str": "table",
"html": null
}
}
}
} |