File size: 91,678 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:32.854803Z"
    },
    "title": "Emotional RobBERT and Insensitive BERTje: Combining Transformers and Affect Lexica for Dutch Emotion Detection",
    "authors": [
        {
            "first": "Luna",
            "middle": [],
            "last": "De Bruyne",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team Ghent University",
                "institution": "",
                "location": {}
            },
            "email": "[email protected]"
        },
        {
            "first": "Orph\u00e9e",
            "middle": [],
            "last": "De Clercq",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team Ghent University",
                "institution": "",
                "location": {}
            },
            "email": "[email protected]"
        },
        {
            "first": "V\u00e9ronique",
            "middle": [
                "Hoste"
            ],
            "last": "Lt",
            "suffix": "",
            "affiliation": {
                "laboratory": "Language and Translation Technology Team Ghent University",
                "institution": "",
                "location": {}
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In a first step towards improving Dutch emotion detection, we try to combine the Dutch transformer models BERTje and RobBERT with lexicon-based methods. We propose two architectures: one in which lexicon information is directly injected into the transformer model and a meta-learning approach where predictions from transformers are combined with lexicon features. The models are tested on 1,000 Dutch tweets and 1,000 captions from TV-shows which have been manually annotated with emotion categories and dimensions. We find that RobBERT clearly outperforms BERTje, but that directly adding lexicon information to transformers does not improve performance. In the meta-learning approach, lexicon information does have a positive effect on BERTje, but not on RobBERT. This suggests that more emotional information is already contained within this latter language model.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In a first step towards improving Dutch emotion detection, we try to combine the Dutch transformer models BERTje and RobBERT with lexicon-based methods. We propose two architectures: one in which lexicon information is directly injected into the transformer model and a meta-learning approach where predictions from transformers are combined with lexicon features. The models are tested on 1,000 Dutch tweets and 1,000 captions from TV-shows which have been manually annotated with emotion categories and dimensions. We find that RobBERT clearly outperforms BERTje, but that directly adding lexicon information to transformers does not improve performance. In the meta-learning approach, lexicon information does have a positive effect on BERTje, but not on RobBERT. This suggests that more emotional information is already contained within this latter language model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Computational analysis of affect in Dutch texts is mostly restricted to polarity analysis (negative/positive/neutral), for which we know a tradition of lexicon-based approaches. Recently, a BERT-based model, BERTje (de Vries et al., 2019) , and a RoBERTa-based model, RobBERT (Delobelle et al., 2020) , have been created for Dutch, and they have achieved promising results on the task of sentiment analysis. For emotion detection, however, these models have not yet been evaluated.",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 238,
                        "text": "(de Vries et al., 2019)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 276,
                        "end": 300,
                        "text": "(Delobelle et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In a first step towards improving emotion detection for Dutch, we will evaluate BERTje and RobBERT on the task of emotion detection. Instead of casting aside the many efforts that have been made in the creation of Dutch sentiment and emotion lexica, we will investigate whether transformers and affect lexica can complement each other. Attempts of combining BERT models with additional features have already been successful for tasks like abusive language and sarcasm detection (Koufakou et al., 2020; Kumar et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 478,
                        "end": 501,
                        "text": "(Koufakou et al., 2020;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 502,
                        "end": 521,
                        "text": "Kumar et al., 2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We consider two architectures. In the first one, we inject lexicon information in the transformer model before the prediction layer. We do this by concatenating the [CLS] token of the target sentence (which BERT and RoBERTa models use as input for prediction) with a lexicon vector obtained from seven Dutch affect lexica. In the second approach, we employ a meta-learning architecture and use a support vector machine (SVM) that learns from the transformer model's output. The predictions from the transformer are concatenated with the lexicon vector and used as input for the SVM.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 170,
                        "text": "[CLS]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We evaluate our models on 1,000 Dutch Tweets and 1,000 transcribed utterances from Flemish TVshows. As multiple researchers have emphasized the need of studying emotions not only in terms of basic emotions, but based on dimensions like valence, arousal and dominance as well (Buechel and Hahn, 2016; , the data has been annotated in a bi-representational design: both with categorical annotations for anger, joy, fear, love, sadness or neutral, and scores for the dimensions valence, arousal and dominance. First we will discuss related work on Dutch emotion detection and other attempts on combining transformer models with additional features in Section 2. In Section 3, we will describe the methodology of our experiments and in Section 4, we report the results. We end with a conclusion in Section 5.",
                "cite_spans": [
                    {
                        "start": 275,
                        "end": 299,
                        "text": "(Buechel and Hahn, 2016;",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Although most emotion detection research deals with the English language, recent studies have shown interest in other languages as well, e.g. the recent work of Ahmad et al. (2020) SemEval-2018 task on Affect in Tweets, for which in addition to English data, Arabic and Spanish datasets were released . Moreover, research on multilingual emotion detection (Buechel and Hahn, 2018; \u00d6hman et al., 2018) and sentiment analysis (Lo et al., 2017; Vilares et al., 2018) is emerging.",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 180,
                        "text": "Ahmad et al. (2020)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 356,
                        "end": 380,
                        "text": "(Buechel and Hahn, 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 381,
                        "end": 400,
                        "text": "\u00d6hman et al., 2018)",
                        "ref_id": null
                    },
                    {
                        "start": 424,
                        "end": 441,
                        "text": "(Lo et al., 2017;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 442,
                        "end": 463,
                        "text": "Vilares et al., 2018)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Concerning the automatic modelling of affect in Dutch, the main focus still is on sentiment analysis instead of fine-grained emotions. Many studies have used sentiment lexica for this purpose (e.g. Van de Kauter et al., 2015; De Clercq et al., 2017; Wang et al., 2020) . Recently, transformer models like BERTje (de Vries et al., 2019) and RobBERT (Delobelle et al., 2020) have been used to classify reviews from the Dutch Book Reviews dataset as either positive or negative, in which RobBERT came out as best (accuracy of 95% versus 93%).",
                "cite_spans": [
                    {
                        "start": 205,
                        "end": 225,
                        "text": "Kauter et al., 2015;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 226,
                        "end": 249,
                        "text": "De Clercq et al., 2017;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 250,
                        "end": 268,
                        "text": "Wang et al., 2020)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 348,
                        "end": 372,
                        "text": "(Delobelle et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The only publicly available dataset for Dutch emotion detection is deLearyous (Vaassen and Daelemans, 2011) . It consists of 740 Dutch sentences from conversations, annotated according to Leary's Rose (Leary, 1957) . Vaassen and Daelemans (2011) found that classifying sentences from deLearyous into the quadrants or octants of Leary's Rose was difficult for machine learners, most likely because of the sparseness of the data and low interannotator agreement. However, after this study, no further studies on Dutch emotion detection were published. This clearly shows the need of new data and methods for this task.",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 107,
                        "text": "(Vaassen and Daelemans, 2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 201,
                        "end": 214,
                        "text": "(Leary, 1957)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 217,
                        "end": 245,
                        "text": "Vaassen and Daelemans (2011)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Some researchers already revealed that combining BERT models with handcrafted features can have a positive effect on performance, e.g. for the task of essay scoring (accuracy of 71% versus 80%) (Uto et al., 2020) and sarcasm detection (F1score of 78% versus 80%) (Kumar et al., 2021) . Lexicon features have been combined with BERT as well, e.g. for abusive language detection (Koufakou et al., 2020) , for which the authors found an improvement on four out of six datasets compared to a plain BERT model (maximum improve-ment of 3%). In all of these studies, the handcrafted features or lexicon features were injected into the transformer architecture by concatenating them with the BERT representation before the prediction layer.",
                "cite_spans": [
                    {
                        "start": 194,
                        "end": 212,
                        "text": "(Uto et al., 2020)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 263,
                        "end": 283,
                        "text": "(Kumar et al., 2021)",
                        "ref_id": null
                    },
                    {
                        "start": 377,
                        "end": 400,
                        "text": "(Koufakou et al., 2020)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We collect data from two domains: Twitter posts (Tweets subcorpus) and utterances from reality TVshows (Captions). For the Tweets subcorpus, a list of 72 emojis was used as query in the Dutch tweets database Twiqs.nl, with as search period 1-1-2017 to 31-12-2017. Based on this one-year datadump we sampled a random subset of 1,000 tweets, but made sure that no duplicates or non-Dutch tweets were present in the dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method 3.1 Data",
                "sec_num": "3"
            },
            {
                "text": "For Captions, episodes of three emotionally loaded Flemish reality TV-shows (Blind getrouwd; Bloed, zweet en luxeproblemen and Ooit vrij) were used. Three episodes per show were transcribed using a literal transcription method (without correcting colloquial elements). 1,000 utterances (sentences or short sequences of sentences) were selected from these transcripts, based on a rough screening of emotional content and more or less equally distributed over the shows (335 instances from Blind getrouwd, 331 from Bloed, zweet en luxeproblemen and 334 from Ooit vrij).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method 3.1 Data",
                "sec_num": "3"
            },
            {
                "text": "All data was annotated with both categorical labels and dimensions. For the categorical annotation, the instances were labeled with one out of six labels: joy, love, anger, fear, sadness, or neutral. For annotating the dimensions valence, arousal and dominance, best-worst scaling was employed as this was shown to be a reliable annotation method (De Bruyne et al., 2021) . Per subcorpus, the 1,000 instances were converted into 2,000 4-tuples and distributed among the annotators. For each trial, the annotator had to indicate the best and worst example for each dimension: highest and lowest valence, highest and lowest arousal, and highest and lowest dominance. Best-worst counts were then converted to scores from 0 to 1 with the Rescorla-Wagner update rule (Rescorla et al., 1972) . See Table 1 for an annotated example of an instance in each domain. Table 2 lists the number of instances per emotion category in each domain. For the valence, arousal and dominance annotations, the mean ranges between 0.46 and 0.52 for all dimensions in both subsets, the standard deviation ranges between 0.18 and 0.22, the minimum between 0.05 and 0.07 and the maximum between 0.96 and 0.97. For the experiments, both datasets were split in 800 instances for training, 100 for validating and 100 for testing (same splits for all models/tasks).",
                "cite_spans": [
                    {
                        "start": 347,
                        "end": 371,
                        "text": "(De Bruyne et al., 2021)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 762,
                        "end": 785,
                        "text": "(Rescorla et al., 1972)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 792,
                        "end": 799,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 856,
                        "end": 863,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Method 3.1 Data",
                "sec_num": "3"
            },
            {
                "text": "We investigate whether lexicon information and transformer models can be complementary either by injecting lexicon information directly into the transformer architecture or by using a metalearning approach in which predictions from transformer models are combined with lexicon features. Both models require the creation of a lexicon vector per target sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon information",
                "sec_num": "3.2"
            },
            {
                "text": "For the creation of this vector, we combine seven existing open-source Dutch sentiment and emotion lexica, namely Pattern (De Smedt and Daelemans, 2012) , Duoman (Jijkoun and Hofmann, 2009) , LIWC (Boot et al., 2017) , NRC Emotion (Mohammad and Turney, 2013) , NRC VAD (Mohammad, 2018), Memolon (Buechel et al., 2020) and the VAD norms by Moors et al. (2013) . For each word in the target sentence, lexicon values are obtained through a lookup in each affect lexicon. These values are then averaged over the words in the target sentence. The vector is 33-dimensional, as all lexica include values for multiple emotion categories or dimensions which add up to 33 in total. For lexica that do not have entries for any of the words in the sentence, the respective value in the lexicon vector is 0.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 152,
                        "text": "(De Smedt and Daelemans, 2012)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 162,
                        "end": 189,
                        "text": "(Jijkoun and Hofmann, 2009)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 197,
                        "end": 216,
                        "text": "(Boot et al., 2017)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 231,
                        "end": 258,
                        "text": "(Mohammad and Turney, 2013)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 295,
                        "end": 317,
                        "text": "(Buechel et al., 2020)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 339,
                        "end": 358,
                        "text": "Moors et al. (2013)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon information",
                "sec_num": "3.2"
            },
            {
                "text": "In this architecture, we inject the lexicon information into the transformer model while fine-tuning the model on the emotion detection tasks: emotion classification and emotion regression with the dimensions valence, arousal and dominance (VAD), and this in both domains. This injection occurs just before the prediction layer by concatenating the [CLS] token, which is normally used on its own as input for the classification, with the lexicon vector. This concatenated vector goes through a pre-classifier (linear layer with 2,048 nodes) and then to the prediction layer with Sigmoid activation function. The model architecture is shown in Figure 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 643,
                        "end": 651,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "3.3"
            },
            {
                "text": "Two Dutch transformer models are investigated: BERTje (de Vries et al., 2019), based on BERT by Devlin et al. (2019) and RobBERT (Delobelle et al., 2020) , the Dutch version of the robustly optimized RoBERTa (Liu et al., 2019) . RobBERT is trained on 39GB of common crawl data (Su\u00e1rez et al., 2019) , while BERTje is trained on only 12GB (including multiple genres).",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 116,
                        "text": "Devlin et al. (2019)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 129,
                        "end": 153,
                        "text": "(Delobelle et al., 2020)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 208,
                        "end": 226,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 277,
                        "end": 298,
                        "text": "(Su\u00e1rez et al., 2019)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "3.3"
            },
            {
                "text": "Both models are implemented with Hugging-Face's Transformers library (Wolf et al., 2019) . We use AdamW optimizer (Loshchilov and Hutter, 2017) and the ReduceLROnPlateau learning rate scheduler with l r = 5e \u2212 5. The loss function is Binary Cross Entropy for the classification task and Mean Squared Error loss for regression. The maximum sequence length is 64 tokens, batch size is 16 for Tweets and 64 for Captions. We set dropout to 0.2 and use GELU as activation function in the implementation of Hendrycks and Gimpel (2016) . The [CLS] token based on the concatenation of the last four layers of the model is used for prediction (and concatenated with the lexicon vector). The maximum number of epochs is set to 100 with a patience of 5 for early stopping.",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 88,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 114,
                        "end": 143,
                        "text": "(Loshchilov and Hutter, 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 501,
                        "end": 528,
                        "text": "Hendrycks and Gimpel (2016)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "3.3"
            },
            {
                "text": "In the second approach, we use a support vector machine as meta-learner that learns from the predictions of a transformer model. We apply the transformer model on the training set and the test set to extract probabilities and predictions for sentences. For the classification task we use the probabilities of the emotion classes as features (6 features) and for the regression task the predicted scores (3 features). During training, the output on the training set is accompanied by lexicon features (33 features) as input for the SVM. During testing, the output on the test set is combined with the lexicon features to feed the SVM. The model architecture is shown in Figure 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 669,
                        "end": 677,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Meta-learner",
                "sec_num": "3.4"
            },
            {
                "text": "For all subtasks, we use a linear kernel and 1.0 as regularization parameter C. We use hinge loss and L2 penalty for classification and epsilon insensitive loss (L1 loss) for regression.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-learner",
                "sec_num": "3.4"
            },
            {
                "text": "We evaluate BERTje and RobBERT on the emotion classification (macro F1) and regression tasks (Pearson's r) for Tweets and Captions. We compare the results of the plain models and the models where the lexicon vector was injected.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "4.1"
            },
            {
                "text": "Models are run ten times to account for variability and to be able to statistically compare the performance of different methods. The mean and standard deviation of these runs are reported in Table 3 . Except for Captions classification, we observe that RobBERT is better for all datasets, with a notable margin: for Tweets classification and Captions regression there is an improvement of around 10% (from .16 to .26 and .60 to .68 respectively), and for Tweets regression the score almost doubled (from .36 to .70). This is in line with previous findings of RobBERT being more accurate in predicting sentiment (Delobelle et al., 2020) , although our results are even more distinct. The robustly optimised RoBERTa framework and the larger corpus on which RobBERT was pre-trained clearly show their effect, although scores are in general still rather low. The results for the regression tasks seem more promising than for the classification task, although scores are difficult to compare as different metrics are used. We further notice that there is quite some variation between the runs, especially for the classification tasks.",
                "cite_spans": [
                    {
                        "start": 612,
                        "end": 636,
                        "text": "(Delobelle et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 192,
                        "end": 199,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "4.1"
            },
            {
                "text": "Independent two-tailed t-tests were used for assessing whether the means of the models with and without lexicon vector are statistically different on a 5% significance level. For none of the datasets adding the lexicon vector was beneficial, as there was no significant difference in mean for any of the tasks (Tweets classification with BERTje: t(9) = 1.3, p = 0.22; Tweets classification with Rob-BERT: t(9) = 0.6, p = 0.54; Tweets regression with BERTje: t(9) = 0.7, p = 0.50; Tweets regression with RobBERT: t(9) = -0.6, p = 0.52; Captions classification with BERTje: t(9) = 0.8, p = 0.42; Captions classification with RobBERT: t(9) = -1.0, p = 0.31; Captions regression with BERTje: t(9) = 0.5, p = 0.60; Captions regression with RobBERT: t(9) = -0.6, p = 0.58). In contrast to previous studies regarding sarcasm and abusive language detection, we must thus conclude that this method of injecting lexicon information into the transformer model does not lead to higher performance on the task of emotion detection. We see two possible reasons for this: a) the lexica have no added value compared to the information that is already present in the language models, and/or b) the lexica do not have enough weight compared to the high-dimensional CLS token.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transformer model",
                "sec_num": "4.1"
            },
            {
                "text": "In the meta-learning approach, we identify the best run (lowest loss on validation set) among the plain transformer models (i.e. without lexica), and apply that model on the training and test sets of the corresponding datasets. The probabilities (for classification) and predictions (for regression) are then Table 3 : Results (macro F1-score and Pearson's r) of the plain transformer models (BERTje and RobBERT) versus the results with lexicon features added (BERTje/RobBERT + lex). F1-score and r is the average of 10 runs, standard deviation is shown between brackets. Table 4 : Results (macro F1-score and Pearson's r) of the plain transformer model versus the meta-learner. The results of an SVM model with only lexicon features are given in the first line as reference. The best result is shown in bold or bold italics if the best model is the meta-learner approach.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 309,
                        "end": 316,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 572,
                        "end": 579,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Meta-learner",
                "sec_num": "4.2"
            },
            {
                "text": "fed into an SVM together with the lexicon features. The results of the original plain transformer models and meta-learning models are shown in Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 143,
                        "end": 150,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Tweets Captions",
                "sec_num": null
            },
            {
                "text": "We see that a meta-learner using the output of a transformer model combined with lexicon features outperforms the plain transformer model in the case of BERTje for three out of four tasks (all but Captions classification). In the case of RobBERT, the meta-learner outperforms the plain transformer model for only one dataset (Captions regression), but only to a minor extent. In contrast to the previous approach, where lexicon information was injected directly into the transformer model, the meta-learner does seem to be able to improve performance. Where the previous approach might have failed because of the lexica not having enough weight, the meta-learner seems to be better in exploiting the lexicon information, however only for BERTje. Possibly, emotions are more contained in the RobBERT language model because of the improved training framework and notably larger training corpus, making RobBERT a more emotional language model. Therefore, RobBERT benefits less from the added lexicon information in contrast to BERTje.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tweets Captions",
                "sec_num": null
            },
            {
                "text": "As the recently developed transformer models for Dutch, BERTje and RobBERT, have not yet been tested on emotion detection tasks, we evaluated them on 1,000 Dutch Tweets and 1,000 captions for an emotion classification and regression task. We found that RobBERT outperformed BERTje in almost all cases. Further, we investigated whether these models could be enhanced with lexicon features and proposed two methods: one in which a lexicon vector was concatenated with the transformer's [CLS] token before prediction, and a meta-learning approach. In the first method, adding lexicon information did not seem beneficial. For the second approach, however, we found that the meta-learner had a positive effect in half of the cases, and especially on the models relying on BERTje, whereas the meta-learner had almost no impact on RobBERT. This is probably because more emotional information is already contained within this language model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "This research was carried out with the support of the Research Foundation -Flanders under a Strategic Basic Research fellowship.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Borrow from rich cousin: transfer learning for emotion detection using cross lingual embedding",
                "authors": [
                    {
                        "first": "Zishan",
                        "middle": [],
                        "last": "Ahmad",
                        "suffix": ""
                    },
                    {
                        "first": "Raghav",
                        "middle": [],
                        "last": "Jindal",
                        "suffix": ""
                    },
                    {
                        "first": "Asif",
                        "middle": [],
                        "last": "Ekbal",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattachharyya",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Expert Systems with Applications",
                "volume": "139",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zishan Ahmad, Raghav Jindal, Asif Ekbal, and Push- pak Bhattachharyya. 2020. Borrow from rich cousin: transfer learning for emotion detection us- ing cross lingual embedding. Expert Systems with Applications, 139:112851.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The dutch translation of the linguistic inquiry and word count (liwc) 2007 dictionary",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Boot",
                        "suffix": ""
                    },
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Zijlstra",
                        "suffix": ""
                    },
                    {
                        "first": "Rinie",
                        "middle": [],
                        "last": "Geenen",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Dutch Journal of Applied Linguistics",
                "volume": "6",
                "issue": "1",
                "pages": "65--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Boot, Hanna Zijlstra, and Rinie Geenen. 2017. The dutch translation of the linguistic inquiry and word count (liwc) 2007 dictionary. Dutch Journal of Applied Linguistics, 6(1):65-76.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Emotion analysis as a regression problem -dimensional models and their implications on emotion representation and metrical evaluation",
                "authors": [
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "ECAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sven Buechel and Udo Hahn. 2016. Emotion analy- sis as a regression problem -dimensional models and their implications on emotion representation and metrical evaluation. In ECAI.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Word emotion induction for multiple languages as a deep multi-task learning problem",
                "authors": [
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1907--1918",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1173"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sven Buechel and Udo Hahn. 2018. Word emotion in- duction for multiple languages as a deep multi-task learning problem. In Proceedings of the 2018 Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 1907-1918, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Learning and evaluating emotion lexicons for 91 languages",
                "authors": [
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Susanna",
                        "middle": [],
                        "last": "R\u00fccker",
                        "suffix": ""
                    },
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Hahn",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1202--1217",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.112"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sven Buechel, Susanna R\u00fccker, and Udo Hahn. 2020. Learning and evaluating emotion lexicons for 91 lan- guages. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 1202-1217, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Annotating affective dimensions in user-generated content",
                "authors": [
                    {
                        "first": "Orph\u00e9e",
                        "middle": [],
                        "last": "Luna De Bruyne",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "1--29",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luna De Bruyne, Orph\u00e9e De Clercq, and V\u00e9ronique Hoste. 2021. Annotating affective dimensions in user-generated content. Language Resources and Evaluation, pages 1-29.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Towards an integrated pipeline for aspect-based sentiment analysis in various domains",
                "authors": [
                    {
                        "first": "Els",
                        "middle": [],
                        "last": "Orph\u00e9e De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "Gilles",
                        "middle": [],
                        "last": "Lefever",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jacobs",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
                "volume": "",
                "issue": "",
                "pages": "136--142",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-5218"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Orph\u00e9e De Clercq, Els Lefever, Gilles Jacobs, Tijl Carpels, and V\u00e9ronique Hoste. 2017. Towards an in- tegrated pipeline for aspect-based sentiment analysis in various domains. In Proceedings of the 8th Work- shop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 136- 142, Copenhagen, Denmark. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "vreselijk mooi!\"(terribly beautiful): A subjectivity lexicon for dutch adjectives",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Smedt",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "3568--3572",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom De Smedt and Walter Daelemans. 2012. \" vre- selijk mooi!\"(terribly beautiful): A subjectivity lex- icon for dutch adjectives. In LREC, pages 3568- 3572.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Robbert: a dutch roberta-based language model",
                "authors": [
                    {
                        "first": "Pieter",
                        "middle": [],
                        "last": "Delobelle",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Winters",
                        "suffix": ""
                    },
                    {
                        "first": "Bettina",
                        "middle": [],
                        "last": "Berendt",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2001.06286"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pieter Delobelle, Thomas Winters, and Bettina Berendt. 2020. Robbert: a dutch roberta-based language model. arXiv preprint arXiv:2001.06286.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Gaussian error linear units (gelus)",
                "authors": [
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Hendrycks",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Gimpel",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.08415"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dan Hendrycks and Kevin Gimpel. 2016. Gaus- sian error linear units (gelus). arXiv preprint arXiv:1606.08415.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Generating a non-english subjectivity lexicon: Relations that matter",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Jijkoun",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 12th Conference of the European Chapter",
                "volume": "",
                "issue": "",
                "pages": "398--405",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valentin Jijkoun and Katja Hofmann. 2009. Generat- ing a non-english subjectivity lexicon: Relations that matter. In Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009), pages 398-405.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Fine-grained analysis of explicit and implicit sentiment in financial news articles",
                "authors": [
                    {
                        "first": "Marjan",
                        "middle": [],
                        "last": "Van De Kauter",
                        "suffix": ""
                    },
                    {
                        "first": "Diane",
                        "middle": [],
                        "last": "Breesch",
                        "suffix": ""
                    },
                    {
                        "first": "Veronique",
                        "middle": [],
                        "last": "Hoste",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "EXPERT SYSTEMS WITH APPLICATIONS",
                "volume": "42",
                "issue": "11",
                "pages": "4999--5010",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.eswa.2015.02.007"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marjan Van de Kauter, Diane Breesch, and Veronique Hoste. 2015. Fine-grained analysis of explicit and implicit sentiment in financial news arti- cles. EXPERT SYSTEMS WITH APPLICATIONS, 42(11):4999-5010.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "HurtBERT: Incorporating lexical features with BERT for the detection of abusive language",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Koufakou",
                        "suffix": ""
                    },
                    {
                        "first": "Valerio",
                        "middle": [],
                        "last": "Endang Wahyu Pamungkas",
                        "suffix": ""
                    },
                    {
                        "first": "Viviana",
                        "middle": [],
                        "last": "Basile",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Patti",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Fourth Workshop on Online Abuse and Harms",
                "volume": "",
                "issue": "",
                "pages": "34--43",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.alw-1.5"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anna Koufakou, Endang Wahyu Pamungkas, Valerio Basile, and Viviana Patti. 2020. HurtBERT: Incorpo- rating lexical features with BERT for the detection of abusive language. In Proceedings of the Fourth Workshop on Online Abuse and Harms, pages 34-43, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Adversarial and auxiliary features-aware bert for sarcasm detection",
                "authors": [
                    {
                        "first": "Avinash",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Pranjal",
                        "middle": [],
                        "last": "Vishnu Teja Narapareddy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Veerubhotla Aditya Srikanth, Lalita Bhanu Murthy Neti, and Aruna Malapati. 2021",
                "volume": "",
                "issue": "",
                "pages": "163--170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Avinash Kumar, Vishnu Teja Narapareddy, Pran- jal Gupta, Veerubhotla Aditya Srikanth, Lalita Bhanu Murthy Neti, and Aruna Malapati. 2021. Ad- versarial and auxiliary features-aware bert for sar- casm detection. In 8th ACM IKDD CODS and 26th COMAD, CODS COMAD 2021, page 163-170, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Interpersonal diagnosis of personality: A functional theory and methodology for personality evaluation",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Leary",
                        "suffix": ""
                    }
                ],
                "year": 1957,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timothy Leary. 1957. Interpersonal diagnosis of per- sonality: A functional theory and methodology for personality evaluation. Ronald Press Company.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Multilingual sentiment analysis: from formal to informal and scarce resource languages",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Siaw Ling Lo",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Chiong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cornforth",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Artificial Intelligence Review",
                "volume": "48",
                "issue": "4",
                "pages": "499--527",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Siaw Ling Lo, Erik Cambria, Raymond Chiong, and David Cornforth. 2017. Multilingual sentiment analysis: from formal to informal and scarce re- source languages. Artificial Intelligence Review, 48(4):499-527.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "SemEval-2018 task 1: Affect in tweets",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Felipe",
                        "middle": [],
                        "last": "Bravo-Marquez",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Salameh",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 12th International Workshop on Semantic Evaluation",
                "volume": "",
                "issue": "",
                "pages": "1--17",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-1001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and Svetlana Kiritchenko. 2018. SemEval- 2018 task 1: Affect in tweets. In Proceedings of The 12th International Workshop on Semantic Eval- uation, pages 1-17, New Orleans, Louisiana. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Understanding emotions: A dataset of tweets to study interactions between affect categories",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad and Svetlana Kiritchenko. 2018. Un- derstanding emotions: A dataset of tweets to study interactions between affect categories. In Proceed- ings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources As- sociation (ELRA).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 english words",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The Annual Conference of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad. 2018. Obtaining reliable hu- man ratings of valence, arousal, and dominance for 20,000 english words. In Proceedings of The An- nual Conference of the Association for Computa- tional Linguistics (ACL), Melbourne, Australia.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Crowdsourcing a word-emotion association lexicon",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "D"
                        ],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Computational Intelligence",
                "volume": "29",
                "issue": "3",
                "pages": "436--465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad and Peter D. Turney. 2013. Crowd- sourcing a word-emotion association lexicon. Com- putational Intelligence, 29(3):436-465.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Norms of valence, arousal, dominance, and age of acquisition for 4,300 dutch words. Behavior research methods",
                "authors": [
                    {
                        "first": "Agnes",
                        "middle": [],
                        "last": "Moors",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [
                            "De"
                        ],
                        "last": "Houwer",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Hermans",
                        "suffix": ""
                    },
                    {
                        "first": "Sabine",
                        "middle": [],
                        "last": "Wanmaker",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Van Schie",
                        "suffix": ""
                    },
                    {
                        "first": "Anne-Laura",
                        "middle": [],
                        "last": "Van Harmelen",
                        "suffix": ""
                    },
                    {
                        "first": "Maarten",
                        "middle": [
                            "De"
                        ],
                        "last": "Schryver",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "De Winne",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Brysbaert",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "45",
                "issue": "",
                "pages": "169--177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Agnes Moors, Jan De Houwer, Dirk Hermans, Sabine Wanmaker, Kevin Van Schie, Anne-Laura Van Harmelen, Maarten De Schryver, Jeffrey De Winne, and Marc Brysbaert. 2013. Norms of valence, arousal, dominance, and age of acquisition for 4,300 dutch words. Behavior research methods, 45(1):169-177.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Creating a dataset for multilingual fine-grained emotion-detection using gamification-based annotation",
                "authors": [
                    {
                        "first": "Kaisla",
                        "middle": [],
                        "last": "Emily\u00f6hman",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Kajava",
                        "suffix": ""
                    },
                    {
                        "first": "Timo",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Honkela",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
                "volume": "",
                "issue": "",
                "pages": "24--30",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6205"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Emily\u00d6hman, Kaisla Kajava, J\u00f6rg Tiedemann, and Timo Honkela. 2018. Creating a dataset for multilingual fine-grained emotion-detection using gamification-based annotation. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 24-30, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement",
                "authors": [
                    {
                        "first": "Allan",
                        "middle": [
                            "R"
                        ],
                        "last": "Robert A Rescorla",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "Classical conditioning II: Current research and theory",
                "volume": "2",
                "issue": "",
                "pages": "64--99",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert A Rescorla, Allan R Wagner, et al. 1972. A the- ory of pavlovian conditioning: Variations in the ef- fectiveness of reinforcement and nonreinforcement. Classical conditioning II: Current research and the- ory, 2:64-99.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Asynchronous pipeline for processing huge corpora on medium to low resource infrastructures",
                "authors": [
                    {
                        "first": "Pedro Javier Ortiz",
                        "middle": [],
                        "last": "Su\u00e1rez",
                        "suffix": ""
                    },
                    {
                        "first": "Beno\u00eet",
                        "middle": [],
                        "last": "Sagot",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Romary",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "7th Workshop on the Challenges in the Management of Large Corpora (CMLC-7). Leibniz-Institut f\u00fcr Deutsche Sprache",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pedro Javier Ortiz Su\u00e1rez, Beno\u00eet Sagot, and Laurent Romary. 2019. Asynchronous pipeline for process- ing huge corpora on medium to low resource infras- tructures. In 7th Workshop on the Challenges in the Management of Large Corpora (CMLC-7). Leibniz- Institut f\u00fcr Deutsche Sprache.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Neural automated essay scoring incorporating handcrafted features",
                "authors": [
                    {
                        "first": "Masaki",
                        "middle": [],
                        "last": "Uto",
                        "suffix": ""
                    },
                    {
                        "first": "Yikuan",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Maomi",
                        "middle": [],
                        "last": "Ueno",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masaki Uto, Yikuan Xie, and Maomi Ueno. 2020. Neural automated essay scoring incorporating hand- crafted features. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, Barcelona, Spain (Online). International Committee on Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Automatic emotion classification for interpersonal communication",
                "authors": [
                    {
                        "first": "Frederik",
                        "middle": [],
                        "last": "Vaassen",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis (WASSA 2.011)",
                "volume": "",
                "issue": "",
                "pages": "104--110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Frederik Vaassen and Walter Daelemans. 2011. Auto- matic emotion classification for interpersonal com- munication. In Proceedings of the 2nd Workshop on Computational Approaches to Subjectivity and Sen- timent Analysis (WASSA 2.011), pages 104-110.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Babelsenticnet: a commonsense reasoning framework for multilingual sentiment analysis",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Vilares",
                        "suffix": ""
                    },
                    {
                        "first": "Haiyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Ranjan",
                        "middle": [],
                        "last": "Satapathy",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 IEEE Symposium Series on Computational Intelligence (SSCI)",
                "volume": "",
                "issue": "",
                "pages": "1292--1298",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Vilares, Haiyun Peng, Ranjan Satapathy, and Erik Cambria. 2018. Babelsenticnet: a common- sense reasoning framework for multilingual senti- ment analysis. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages 1292- 1298. IEEE.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Bertje: A dutch bert model",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Wietse De Vries",
                        "suffix": ""
                    },
                    {
                        "first": "Arianna",
                        "middle": [],
                        "last": "Van Cranenburgh",
                        "suffix": ""
                    },
                    {
                        "first": "Tommaso",
                        "middle": [],
                        "last": "Bisazza",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Caselli",
                        "suffix": ""
                    },
                    {
                        "first": "Malvina",
                        "middle": [],
                        "last": "Gertjan Van Noord",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nissim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1912.09582"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord, and Malvina Nissim. 2019. Bertje: A dutch bert model. arXiv preprint arXiv:1912.09582.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Dutch general public reaction on governmental covid-19 measures and announcements in twitter data",
                "authors": [
                    {
                        "first": "Shihan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Marijn",
                        "middle": [],
                        "last": "Schraagen",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [
                            "Tjong"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Kim",
                        "middle": [],
                        "last": "Sang",
                        "suffix": ""
                    },
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Dastani",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2006.07283"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shihan Wang, Marijn Schraagen, Erik Tjong Kim Sang, and Mehdi Dastani. 2020. Dutch general public reaction on governmental covid-19 measures and announcements in twitter data. arXiv preprint arXiv:2006.07283.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace's Transformers: State-of-the-art Natural Language Processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R'emi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R'emi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. HuggingFace's Trans- formers: State-of-the-art Natural Language Process- ing. ArXiv, abs/1910.03771.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "Transformer model with injection of lexicon features."
            },
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "Meta-learner (SVM) with predictions from transformer and lexicon values as input features."
            },
            "TABREF0": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Corpus</td><td>Text example</td><td/><td>categorical</td><td>dimensional</td></tr><tr><td/><td/><td/><td/><td>V</td><td>A</td><td>D</td></tr><tr><td>Tweets</td><td colspan=\"2\">@transavia Jaaah volgende vakantie Barcelona en na het zomerseizoen</td><td>joy</td><td>0.689 0.491 0.622</td></tr><tr><td/><td>naar de Algarve</td><td/><td/></tr><tr><td/><td>EN: @transavia Yeah</td><td>next holiday</td><td/></tr><tr><td/><td/><td/><td/><td>for Hindi or the</td></tr></table>",
                "text": "Barcelona and after summer season to the Algarve Captions Ik zou liever sterven dan hier te wonen, denk ik. sadness 0.156 0.384 0.301 EN: I'd rather die than live here, I think."
            },
            "TABREF1": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>valence, A = arousal, D = dominance).</td></tr></table>",
                "text": "Text examples from the Tweets and Captions subcorpora with their assigned categorical and dimensional label (V ="
            },
            "TABREF3": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table/>",
                "text": "Number of instances in each emotion category per subdataset. A = anger, F = fear, J = joy, L = love, S = sadness, N = neutral."
            },
            "TABREF4": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Transformers</td><td colspan=\"2\">Tweets</td><td colspan=\"2\">Captions</td></tr><tr><td>Model</td><td>F1 (SD)</td><td>r (SD)</td><td>F1 (SD)</td><td>r (SD)</td></tr><tr><td>plain BERTje</td><td>.16 (</td><td/><td/><td/></tr></table>",
                "text": ".05) .36 (.03) .26 (.04) .60 (.02) BERTje + lex .14 (.02) .35 (.03) .24 (.04) .59 (.02) plain RobBERT .26 (.09) .69 (.03) .22 (.08) .68 (.02) RobBERT + lex .23 (.07) .70 (.01) .25 (.04) .68 (.02)"
            }
        }
    }
}