File size: 142,855 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:52.044663Z"
    },
    "title": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing",
    "authors": [
        {
            "first": "Erenay",
            "middle": [],
            "last": "Dayanik",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Stuttgart",
                "location": {
                    "settlement": "Stuttgart",
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Sebastian",
            "middle": [],
            "last": "Pad\u00f3",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Stuttgart",
                "location": {
                    "settlement": "Stuttgart",
                    "country": "Germany"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Text classification is a central tool in NLP, including social media analysis. However, when the target classes are strongly correlated with other textual attributes, text classification models can pick up \"wrong\" features, leading to bad generalization and biases. In social media analysis, this problem surfaces for demographic user classes such as language, topic, or gender, which influence how an author writes a text to a substantial extent. Adversarial training has been claimed to mitigate this problem, but a thorough evaluation is missing. In this paper, we experiment with text classification of the correlated attributes of document topic and author gender, using a novel multilingual parallel corpus of TED talk transcripts. Our findings are: (a) individual classifiers for topic and author gender are indeed biased; (b) debiasing with adversarial training works for topic, but breaks down for author gender; (c) gender debiasing results differ across languages. We interpret the result in terms of feature space overlap, highlighting the role of linguistic surface realization of the target classes.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Text classification is a central tool in NLP, including social media analysis. However, when the target classes are strongly correlated with other textual attributes, text classification models can pick up \"wrong\" features, leading to bad generalization and biases. In social media analysis, this problem surfaces for demographic user classes such as language, topic, or gender, which influence how an author writes a text to a substantial extent. Adversarial training has been claimed to mitigate this problem, but a thorough evaluation is missing. In this paper, we experiment with text classification of the correlated attributes of document topic and author gender, using a novel multilingual parallel corpus of TED talk transcripts. Our findings are: (a) individual classifiers for topic and author gender are indeed biased; (b) debiasing with adversarial training works for topic, but breaks down for author gender; (c) gender debiasing results differ across languages. We interpret the result in terms of feature space overlap, highlighting the role of linguistic surface realization of the target classes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Natural language processing, and machine learning more generally, has recently received a significant deal of criticism because of the frequent presence of bias in the predictions, where we define bias as a systematic difference in system performance on one set of instances compared to another. Such biases have been identified in NLP tasks such as word representation (Bolukbasi et al., 2016) , textual inference (Rudinger et al., 2017) , coreference resolution (Zhao et al., 2018 ), text classification (Dixon et al., 2018) and emotion intensity prediction (Kiritchenko and Mohammad, 2018) .",
                "cite_spans": [
                    {
                        "start": 370,
                        "end": 394,
                        "text": "(Bolukbasi et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 415,
                        "end": 438,
                        "text": "(Rudinger et al., 2017)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 464,
                        "end": 482,
                        "text": "(Zhao et al., 2018",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 506,
                        "end": 526,
                        "text": "(Dixon et al., 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 560,
                        "end": 592,
                        "text": "(Kiritchenko and Mohammad, 2018)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In text classification tasks, a principal source of such biases are demographic attributes of authors, such as gender, age, or race 1 . The reason is that these attributes shape speakers' language use substantially (Hovy, 2015) . NLP models are not only able in principle to pick up such cues, as studies on modeling demographic attributes show (Koppel et al., 2004) , but they actually have a motivation to do so whenever some demographic attribute is strongly correlated with the model's classification target and therefore supports its recognition. As an example, in social psychology, Gross et al. (1997) report that elderly people experience and express their emotions less intensely than younger people. Therefore, in a corpus of emotional expressions across age groups, it is reasonable for a model that predicts emotion intensity to look out for linguistic cues regarding author age, even if these cues are not really related to emotion intensity per se, such as typical markers of youth language (\"rad\", \"fam\", \"FTW\", etc.).",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 227,
                        "text": "(Hovy, 2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 345,
                        "end": 366,
                        "text": "(Koppel et al., 2004)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 589,
                        "end": 608,
                        "text": "Gross et al. (1997)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This focus is arguably problematic, though, since it can give rise to a form of age bias -namely, overestimating emotion intensity for documents exhibiting youth language. More generally, the bias-inducing role of demographic attributes is dangerous for studies that use texts from a multitude of authors -often gathered from social mediato draw inferences about the authors (Sobkowicz et al., 2012; Cheng et al., 2015) . In such studies, demographic biases can lead to erroneous causal attributions (as our case will illustrate).",
                "cite_spans": [
                    {
                        "start": 375,
                        "end": 399,
                        "text": "(Sobkowicz et al., 2012;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 400,
                        "end": 419,
                        "text": "Cheng et al., 2015)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To counteract the presence of biases in NLP, researchers have devised debiasing methods. Due to its general applicability and high effectiveness, adversarial debiasing has become one of the most widely used methods for bias mitigation (Elazar and Goldberg, 2018; Zhang et al., 2018; Arduini et al., 2020) . Unfortunately, these advances are not accompanied by an analysis of the prerequisites that need to be satisfied for adversarial training to perform successfully. It has been established empirically is that adversarial training works well for many cases in NLP; nevertheless, we demonstrate that there are relatively simple setups where it can fail. We analyze what factors contribute to the failure.",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 262,
                        "text": "(Elazar and Goldberg, 2018;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 263,
                        "end": 282,
                        "text": "Zhang et al., 2018;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 283,
                        "end": 304,
                        "text": "Arduini et al., 2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Concretely, we consider the correlated attributes of document topic (scientific / non-scientific) and author gender on a self-collected multilingual corpus of TED talk transcripts in French, German, Spanish, and Turkish. This setup enables us to observe the interplay between linguistic properties and adversarial debiasing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our investigation proceeds in three steps. First, we train independent classifiers for each attribute and evaluate them with regard to overall performance and with regard to the bias they exhibit. In the second step, we apply adversarial debiasing to the predicting of each attribute with respect to the other, and re-evaluate the debiased models. Finally, in the third step we discuss the differences observed in the previous step: (a), both document topic and author gender can be classified reasonably well by independent classifiers, but exhibit considerable bias; (b), author gender bias in topic classifiers can be reduced by adversarial training; however, adversarial debiasing in the opposite direction fails completely; (c) this effect is true for all languages except French. Our interpretation is that the failure of adversarial debiasing is due to the fact that feature space for author gender is subsumed the topic feature space for all languages except French, where gender is expressed overtly by morphological cues that can be picked up by the model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Regarding bias analysis at the representation level, the most important source of bias is arguably formed by corpus-derived embeddings which are used by virtually all current NLP systems. There have been several efforts to investigate the amount of bias within monolingual (Bolukbasi et al., 2016; Caliskan et al., 2017; Garg et al., 2018; Swinger et al., 2019) and multilingual embeddings. (Lauscher and Glava\u0161, 2019; Zhao et al., 2020) . Bias analysis at the system level has investigated a range of applications such as NER (Mehrabi et al., 2020) , Machine Translation (Stanovsky et al., 2019) , Natural Language Inference (Rudinger et al., 2017) , Emotion Intensity Prediction (Kiritchenko and Mohammad, 2018) , Coreference Resolution (Rudinger et al., 2018; Zhao et al., 2018) and Text Classification .",
                "cite_spans": [
                    {
                        "start": 273,
                        "end": 297,
                        "text": "(Bolukbasi et al., 2016;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 298,
                        "end": 320,
                        "text": "Caliskan et al., 2017;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 321,
                        "end": 339,
                        "text": "Garg et al., 2018;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 340,
                        "end": 361,
                        "text": "Swinger et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 391,
                        "end": 418,
                        "text": "(Lauscher and Glava\u0161, 2019;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 419,
                        "end": 437,
                        "text": "Zhao et al., 2020)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 527,
                        "end": 549,
                        "text": "(Mehrabi et al., 2020)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 572,
                        "end": 596,
                        "text": "(Stanovsky et al., 2019)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 626,
                        "end": 649,
                        "text": "(Rudinger et al., 2017)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 681,
                        "end": 713,
                        "text": "(Kiritchenko and Mohammad, 2018)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 739,
                        "end": 762,
                        "text": "(Rudinger et al., 2018;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 763,
                        "end": 781,
                        "text": "Zhao et al., 2018)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A number of strategies have been explored for bias mitigation. One common strategy for reducing the bias is to target the representational level again, that is, corpora (Hall Maudslay et al., 2019; Zhao et al., 2018) and word embeddings (Kaneko and Bollegala, 2019; Bolukbasi et al., 2016) . Other methods target the model architecture in various ways. For example, Qian et al. (2019) introduce an additional term to be used in loss function of language generation model, seeking to reduce the gender bias exhibited by the model.",
                "cite_spans": [
                    {
                        "start": 169,
                        "end": 197,
                        "text": "(Hall Maudslay et al., 2019;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 198,
                        "end": 216,
                        "text": "Zhao et al., 2018)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 237,
                        "end": 265,
                        "text": "(Kaneko and Bollegala, 2019;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 266,
                        "end": 289,
                        "text": "Bolukbasi et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 366,
                        "end": 384,
                        "text": "Qian et al. (2019)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A more fundamental idea is to adopt adversarial training (Goodfellow et al., 2014) to other tasks. For instance, Ganin and Lempitsky (2015) adapted adversarial training to the task of domain adaptation by introducing Gradient Reversal Layer (GRL) which acts as an identity function during forward pass and reverses the gradient by multiplying it by a negative scalar during the backward pass. Elazar and Goldberg (2018) apply the idea to the removal of demographic bias; McHardy et al. 2019remove publication source as a bias variable from a satire detection model. reported that adversarial training with GRL layer can remove unintended bias from the representations of POS tagging and Sentiment analysis models while maintaining task performance. Zhang et al. (2018) show that adversarial training mitigates the bias in word embeddings while maintaining its performance on word analogies task. Finally, Arduini et al. (2020) demonstrate how adversarial learning can be used for debiasing knowledge graph embeddings.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 82,
                        "text": "(Goodfellow et al., 2014)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 113,
                        "end": 139,
                        "text": "Ganin and Lempitsky (2015)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 393,
                        "end": 419,
                        "text": "Elazar and Goldberg (2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 749,
                        "end": 768,
                        "text": "Zhang et al. (2018)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 905,
                        "end": 926,
                        "text": "Arduini et al. (2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In order to conduct a study on the relationship between topic and author gender in multiple languages, we require a multilingual comparable corpus for which topic and gender information are available. The corpus should be as parallel as possible so that any differences in outcome across languages are not simply due to differences in the evaluation data. Among the available multilingual parallel data sets, arguably the two most prominent ones are WIT 3 and OPUS. WIT 3 (Cettolo et al., 2012) consists of lecture translations automatically crawled from the TED talks in a variety of languages and was used in the evaluation campaigns IWSLT 2013 and 2014. OPUS (Tiedemann, 2012) is a collection of data from several sources which provides sentence alignments as well as linguistic markup (for some languages). Unfortunately, neither corpus provides topic or gender labels.",
                "cite_spans": [
                    {
                        "start": 472,
                        "end": 494,
                        "text": "(Cettolo et al., 2012)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 662,
                        "end": 679,
                        "text": "(Tiedemann, 2012)",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "For this reason, we create a new multilingual parallel dataset with these annotations, based on TED talks (http://ted.com/talks). A TED talk is a presentation at the TED conference or one of its international partner events. TED talks are limited to a maximum length of 18 minutes and may be on any topic. TED talks are rehearsed talks and at least semi-formal, while still definitely belonging to the category of spoken language. In this regard, they are comparable to the widely used Europarl corpus (Koehn, 2005) . The talks are divided according to the languages, topics and posted dates. All original talks are presented in English, but volunteers provide (and double check) translations into other languages. Authors are identified by name.",
                "cite_spans": [
                    {
                        "start": 502,
                        "end": 515,
                        "text": "(Koehn, 2005)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "Checking for which languages the TED webpage provided substantial numbers of transcripts (as of February 2020) led us to select German (DE), Spanish (ES), French (FR) and Turkish (TR) as target languages. We crawled all 1518 TED talks for which transcripts in all four target languages were available. We conducted some preprocessing: we cleaned transcripts by removing extra line breaks, extra spaces, and punctuation marks. Inspired by the work in open-domain Question Answering (Yang et al., 2019) , we then segmented the transcripts into a sequence of segments. Rather than using paragraphs or sentences as segments directly, we split articles into segments with the length of 60 words by sliding window as Wang et al. (2019) demonstrated that splitting articles into non-overlapping fixed-length segments leads to better results in Question Answering.",
                "cite_spans": [
                    {
                        "start": 481,
                        "end": 500,
                        "text": "(Yang et al., 2019)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 711,
                        "end": 729,
                        "text": "Wang et al. (2019)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "Finally, we annotated the transcripts with topic and author gender information. For topic, we grouped transcripts into two classes according to the community-provided tags. The instances that have either Technology or Science tag were labeled as SciTech while the rest was labeled as Other. This grouping strategy led to a balanced dataset (53% Science, 47% Other). For author gender, we assume a binary gender classification (male/female) to be compatible with existing datasets Pardo et al., 2016) . This should not be understood as a rejection of non-binary gender. We manually determine the author's gender infor- mation on the basis of gender indicating pronouns such as he, she, his, her that are used to refer to the authors in their biographies published in the authors' TED Talks profile or on other websites, keeping only clear cases. The majority gender is male (69%). Table 1 describes the final dataset. 2 The corpus has very similar properties across languages. The main exception is the lower number of words in Turkish which is due to the agglutinative nature of Turkish morphology. For instance, the English sentence with four words \"I am at your house.\" is translated into a single word Turkish sentence \"Evinizdeyim.\"",
                "cite_spans": [
                    {
                        "start": 480,
                        "end": 499,
                        "text": "Pardo et al., 2016)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 917,
                        "end": 918,
                        "text": "2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 880,
                        "end": 887,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "4 Experimental Design Table 2 shows a correlation matrix for the two attributes of topic and author gender in our TED corpus. Indeed, the corpus shows a clear correlation between the two: while male authors are represented about equally in TED for scientific-technological topics and other topics, female authors are underrepresented for scientifictechnological topics. As motivated in the Introduction, this situation can lead to the model mistakenly picking up linguistic cues from one attribute to predict the other, leading to systematic biases. We therefore believe that this corpus can serve as a reasonable case study for correlated document attributes. We proceed as follows: Experiment 1: We learn individual neural models for topic and gender classification. We expect, for each attribute, that predictions are biased regarding the other attribute. Experiment 2: We debias these models by adversarial training. We expect the models to focus better on features that are predictive of the individual attributes, and to show less bias. We follow and Zhao et al. (2020) by measuring the amount of bias in the models as the average difference in classification performance between documents aggregated by author gender (Male vs Female) or aggregated by topic (SciTech vs Other).",
                "cite_spans": [
                    {
                        "start": 1057,
                        "end": 1075,
                        "text": "Zhao et al. (2020)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 22,
                        "end": 29,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "In our first experiment, we set up neural classification models for the two tasks of topic and gender classification individually and evaluate them for the presence of bias in their predictions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Simple Classification and Bias Analysis",
                "sec_num": "5"
            },
            {
                "text": "Figure 1 depicts the model architecture we use for both classification tasks. We use a neural text classifier based on the BERT Transformer (Devlin et al., 2019) with some adjustments. While transformers have shown good performance on many language tasks, most of them can only encode and generate representations for a fixed length token sequence -e.g., BERT implementations are often limited to 512 tokens per sequence. As the average token number per TED talk (cf. the global context vector for the input by summing paragraph representations element-wise. Finally, the global representation of the input is fed through a Multi-Layer Perceptron to a Softmax layer. Our model can be understood as an adaptation of standard transformer classifiers to longer texts.",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 161,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "5.1"
            },
            {
                "text": "We first set up the model for topic classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Classification",
                "sec_num": "5.2"
            },
            {
                "text": "We approach it as a document-level binary classification task. The input to the model is the full transcript, and the model labels each transcript either as \"SciTech\" or \"Other\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Topic Classification",
                "sec_num": "5.2"
            },
            {
                "text": "The topic classification results are shown in Table 3, using weighted F 1 score for evaluation. First, we compare the overall performance across languages. A majority baseline performs at 37.6% for all languages, due to the parallel design of the dataset. The neural topic classifiers do substantially better, all showing very similar results around 81% F-Score. Their similar performance may be expected from the parallel nature of the corpus, but it also provides support to our assumption that the texts and transformer models perform comparably across languages. When we break down these results by the other attribute we are interested, namely author gender (Male vs Female), we find that the prediction quality of the topic classifier is an average of 3.6 points lower for male than for female authors. In other words, the topic classifiers show a consistent gender bias across languages, presumably due to the higher-entropy (more equal) topic distribution for male authors (cf. Table 2) . While this bias is lower than the bias of a majority baseline (which directly reflects the correlation between the two attributes), it is still substantial and arguably worth mitigating. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 986,
                        "end": 994,
                        "text": "Table 2)",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Topic Classification",
                "sec_num": "5.2"
            },
            {
                "text": "We now address the opposite task, author gender classification, predicting the labels Male and Female, re-using the model architecture from before. Table 4 summarizes the results. We see a pattern that differs substantially from topic classification, with much larger cross-lingual differences in performance. The results are again substantially above the 57% baseline. We obtain the best result for French (82%), and the worst for Turkish (70%), with a difference of 12% F-Score. This indicates that gender classification builds much more on language-specific information than topic classification. Arguably, for a word piece-based neural model like BERT, a primary source of evidence on author gender are linguistically marked expressions in the text where the author refers to themselves. Thus, prediction of the author gender should be easiest if a language has a frequent and unambiguous mechanism for gender marking (Corbett, 1991; Zmigrod et al., 2019) . Table 5 shows a multilingual example where French marks gender inflectionally, while the other languages do not. This is indicative of the general case: The languages that we consider in our experiment provide gender marking to different degrees. At one extreme, French marks most adjectives and many nouns consistently for gender. In contrast, Spanish marks gender only for a subset of the lexicon, and morphologically inconsistently (Harris, 1991) ; German marks only (some) nouns, and marking is sometimes optional. At the other extreme, Turkish does not mark gender at all.",
                "cite_spans": [
                    {
                        "start": 922,
                        "end": 937,
                        "text": "(Corbett, 1991;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 938,
                        "end": 959,
                        "text": "Zmigrod et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 1397,
                        "end": 1411,
                        "text": "(Harris, 1991)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 148,
                        "end": 155,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 962,
                        "end": 969,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "On this basis, we would expect French to perform best, and lower performance for the other three languages -exactly what we find. However, the performances for TR, DE, and ES are surprisingly close to one another, and substantially above the baseline: on the basis of what information in the texts do these classifiers base their predictions? DE Genau hier wurde ich geboren und verbrachte die ersten sieben Jahre meines Lebens. ES Esta es la tierra en la que nac\u00ed y pas\u00e9 los primeros siete a\u00f1os de mi vida. FR Je suis n\u00e9e ici m\u00eame, et j'y ai pass\u00e9 les sept premi\u00e8res ann\u00e9es de ma vie. TR Dogdugum yer buras\u0131 ve hayat\u0131m\u0131n ilk yedi y\u0131l\u0131n\u0131 burada ge\u00e7irdim. A look at the size of the biases suggests an explanation: The gender classifiers for DE, ES, and TR make substantial use of topic cues, which enables them to proceed to some extent due to the correlations between topic and gender, but also lead to biases of 6-9% (highest for Turkish, consistent with the analysis above). In contrast, the French classifier is least biased, indicating that its text contains enough cues for 'proper' gender classification. We illustrate this in Table 6 , where we report results on SciTech documents with female authors, that is, the smallest subcategory in our corpus. We find that the gender classifier for FR significantly outperforms the others, which provides additional evidence that the model relies less on the topic cues for gender classification.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1133,
                        "end": 1140,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "Summary. For both tasks, we find that the classification performance shows a bias with respect to the other attribute. The two tasks differ with respect to the cross-lingual component, though: Topic classification works about equally well in all languages. In contrast, author gender classification only works properly in the one language that has consistent linguistic marking of gender, while there is evidence that the other languages fall back on topic features also for this task, which directly leads to biased predictions. These observations motivate experiments into how well these models respond to debiasing. 6 Experiment 2: Adversarial Debiasing",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "Let P be some bias attribute (e.g., gender, race, age etc.) that we want our classifier to ignore while learning to solve another task T . Adversarial debiasing seeks to achieve this by constraining representations in a way so that representations do not rely on P in any substantial way. To this end, the model is trained to simultaneously predict the correct label for task T (\"main component\") and to prevent a jointly trained adversary (\"adversarial component\") from predicting P (McHardy et al., 2019) . We define the loss functions of the main (J M ) and adversarial (J A ) components as follows:",
                "cite_spans": [
                    {
                        "start": 484,
                        "end": 506,
                        "text": "(McHardy et al., 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "J A = \u2212E (x,y A )\u223cp data log P \u03b8 A \u222a\u03b8 F (y A , x)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "J M = \u2212E (x,y M )\u223cp data log P \u03b8 M \u222a\u03b8 F (y M , x) (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "where \u03b8 A , \u03b8 M are the parameters of adversarial and main components; y A and y M are the gold labels for main and adversary tasks. Note that the adversarial and main components share the same feature extractor (i.e., BERT) whose parameters (\u03b8 F ) are therefore updated by the gradients coming through the objective functions of both model parts. Let \u03bb be the meta-parameter controlling the intensity of the adversarial training and \u03b7 the learning rate. Then the following equations describe update rules for each component in the model:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b8 M := \u03b8 M \u2212 \u03b7 \u2202J M \u2202\u03b8 M (3) \u03b8 A := \u03b8 A \u2212 \u03b7 \u2202J A \u2202\u03b8 A (4) \u03b8 F := \u03b8 F \u2212 \u03b7 \u2202J M \u2202\u03b8 F \u2212 \u03bb \u2202J A \u2202\u03b8 F",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "Our application of this training method is shown in Figure 2 . We first debias the topic classifier by author gender (left-hand box); then we proceed to debias author gender classifier by topic (right-hand box). For example, to de-bias the topic classification, J M is the topic loss and J A the author gender loss; vice versa for author gender de-biasing.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 52,
                        "end": 60,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Author Gender Classification",
                "sec_num": "5.3"
            },
            {
                "text": "First, we debias topic classification to reduce the gender bias. The left-hand side of Figure 3 compares overall results across a range of values of \u03bb between 0 (no adversarial training) and 1 (equal weight of main and adversarial loss). We find that, similar to Experiment 1, the results are essentially identical across languages. Furthermore, the choice of \u03bb hardly matters in this interval: adversarial training does not have a major impact on topic classification. We report detailed results for \u03bb=1 in the right-hand side of Figure 3 . The small differences between the Overall results of the Original and Debiased models show that topic classification overall does not lose much by debiasing for gender. 3 The breakdown by gender shows that gender bias is substantially reduced overall. However, there are noticeable differences among languages. For Spanish and German, we see no overall loss of performance in topic classification, and a substantial reduction in gender bias. For French and Turkish, in contrast, we see a decrease of about 1.5 points in topic classification. Gender bias is reduced for French but hardly for Turkish. This is a somewhat surprising result, given the typological differences between the two languages. Our explanation is that in French, as discussed above, many words are morphologically marked for gender. Due to the correlation between the two attributes, these can be re-used by the topic classifier, but when they are penalized through adversarial training, we see a mild decrease in topic classification accuracy. In Turkish, as we have argued in Experiment 1, gender classification depends almost entirely on topic features since there is no linguistic marking of referent gender. Consequently, the adversarial training works against itself to an extent, resulting in a mildly worse topic classification but hardly any decrease in gender bias.",
                "cite_spans": [
                    {
                        "start": 711,
                        "end": 712,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 87,
                        "end": 95,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 531,
                        "end": 539,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Topic-Debiased Gender Classification",
                "sec_num": "6.1"
            },
            {
                "text": "Now we swap the main and adversarial tasks again, debiasing author gender classification with regard to topic. We use the same setup as in Experiment 1. The results are shown in Figure 4 . The left-hand side shows that varying \u03bb has a substantial effect this time. If we set \u03bb to a value close to 1 -a good choice for gender-debiased topic classification, as we have established in the previous subsectionthis leads to a breakdown of the gender classification model. Performance for all languages drops to a F-Score of around 57, the level of the major-ity baseline (cf . Table 4 ). Apparently, debiasing author gender classification by adversarial training against topic breaks the author gender classifier for all but small values of \u03bb.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 186,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 570,
                        "end": 579,
                        "text": ". Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Gender-Debiased Topic Classification",
                "sec_num": "6.2"
            },
            {
                "text": "As in the first experiment, we observe differences among languages: French stands out as the language for which the gender classification 'holds out' the longest for high values of \u03bb. Its ultimate failure indicates that even for French, gender marking on its own is not strong enough to support the author gender identification task -or at least our models are not powerful enough to pick up on these cues. The other languages, which, as we have argued in Experiment 1, make substantial use of topic cues for gender classification, fail even earlier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gender-Debiased Topic Classification",
                "sec_num": "6.2"
            },
            {
                "text": "The right-hand side of Figure 4 reports detailed results for \u03bb=0.2. In line with our analyses above, debiasing works for French but not for the other languages: We find clear decreases in performance (up to 6.2 points, for Spanish), and inconclusive changes in bias (decrease for Turkish by 4.4 points, increase for German by 1.6 points). While the patterns for these languages are not straightforward to interpret, it seems safe to conclude that topicdebiasing author gender is a failure both with regard to model performance and reduction of bias.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 23,
                        "end": 31,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Gender-Debiased Topic Classification",
                "sec_num": "6.2"
            },
            {
                "text": "The results of our two experiments show an intriguing asymmetry between the two tasks of topic and author gender classification when debiased for the respective other attribute. Reducing author gender bias in topic classification with adversarial training proceeds as expected, is relatively robust to the choice of \u03bb in the interval between 0 and 1, and shows a consistent pattern across languages which can be explained by the properties of the languages involved. In contrast, reducing topic bias in author gender classification relies heavily on \u03bb, quickly deteriorating to baseline level for large values of \u03bb, and does not consistently manage to reduce bias in any case. This asymmetry cannot be an artifact of model architecture or data alone, since we use the same model architecture on the same data. Instead, we believe that these patterns result from an interaction between the representation learning of the model and the information that the model can draw from the data. They can be understood through the latent feature space of the final shared layer in our architecture below the two heads (cf. Figure 2) , where each class can be characterized by a region of informative features. Figure 5 shows Venn diagram-style depictions of the three possible cases for a pair of attributes. In the left-hand case, (a), there is no overlap between the latent features of the two attributes. That is, the two attributes are independent of one another, and so is learning. However, this is by definition the case without correlations among attributes that we do not consider. In the center case, (b), there is an intersection between the latent features of the two attributes. The classifiers' use of this overlap potentially creates biases, but adversarial training exactly punishes the use of this region of latent feature space. Thus, debiased classifiers can learn either attribute to the extent that the part of the feature space outside the intersection is still sufficiently informative. The right-hand case, (c), is the limit case when one of the two attributes does not have an independent standing, that is, the informative latent features of attribute 1 are completely contained in the informative feature space of attribute 2. This leads to biases in either classifier just as case (b), but also creates an asymmetry in the effect of adversarial debiasing: Attribute 2 can be debiased by simply 'cutting out' the informative space of attribute 1, but debiasing attribute 1 in the opposite manner results in an empty feature space for attribute 1, and we would expect the classifier to revert to baseline performance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1112,
                        "end": 1121,
                        "text": "Figure 2)",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1199,
                        "end": 1207,
                        "text": "Figure 5",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "This set theoretic visualization is a major simplification of the latent feature space in neural models, where the three cases cannot apply categoriallythey rather represent different points on a continuum. Nevertheless, the predictions of the subsumption case, (c), match our experimental results well: Assuming that author gender features are included in topic features, we would expect to find successful debiasing of the topic classifier, but breakdown of the debiased author gender classifier. This is exactly the pattern of results that we have observed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "Note that this analysis builds on the behavior of the features of the attributes in the training data, in particular in a representation learning approach like the one we have pursued. In other words, changes of the data -or differences within the data, such as between languages -are expected to influence the outcome. Again, this is what we see: French, due to its consistent morphological marking of gender, is closer to case (b), while the other languages are closer to case (c).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7"
            },
            {
                "text": "This paper was concerned with text classification for correlated attributes, which pose an important but often overlooked challenge to model fairness -in particular, as we have argued, in the case of demographic attributes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "We specifically analyzed the relationship between document topic and author gender. We established that topic classifiers exhibit gender bias and author gender classifiers show topic bias; that adversarial debiasing corrects gender bias in topic classification but breaks down in the opposite di-rection; and that this effect varies by language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "Beyond the concrete study, our contribution is to draw attention to the general question of prerequisites for successful adversarial debiasing, which, to our knowledge, has not received much attention. Our results indicate that when the target attribute and the bias attribute are too strongly correlatedor, indeed, when the target attribute is subsumed by the bias attribute -adversarial debiasing fails: with a small weight on the bias component, no debiasing takes place; with a large weight, target attribute classification deteriorates to baseline level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "Furthermore, we find that the linguistic expression of the attributes matters greatly: the only language for which we achieved satisfactory results was French, due to the consistent morphological marking of gender which can be captured independently of topic (Zmigrod et al., 2019) . This highlights the importance of understanding the differences between languages regarding how they encode content (Dubossarsky et al., 2019) , and underscores the importance of cross-lingual methods.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 281,
                        "text": "(Zmigrod et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 400,
                        "end": 426,
                        "text": "(Dubossarsky et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "In future work, we plan to develop a diagnostic to recognize potentially problematic constellations of correlated attributes and improve debiasing. Table 8 : Topic classification F-scores of topic-debiased gender classifier and baseline model. For main task evaluation, check Figure 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 148,
                        "end": 155,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 276,
                        "end": 284,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "train the gender classifier on top of it. Table 7 summarizes the results for gender classification. Significant drop in gender classification performance indicates effectiveness of adversarial training.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 42,
                        "end": 49,
                        "text": "Table 7",
                        "ref_id": "TABREF13"
                    }
                ],
                "eq_spans": [],
                "section": "Overall",
                "sec_num": null
            },
            {
                "text": "As we swapped the main and adversarial tasks, we modify the baseline in the same way too. We start with training the feature extractor and gender classifier head on the topic classification task. Then,we freeze the feature extractor, remove the gender classifier and train the topic classifier on top of freezed feature extractor. Table 8 reports the results on topic classification. Similar to Table 7, adversarial debiasing drops the adversarial task (i.e. topic classification) performance significantly. However, as Figure 4 shows it leads to slight to moderate decrease in gender classification performance and inconclusive changes with regard to topic bias.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 331,
                        "end": 338,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 520,
                        "end": 528,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Overall",
                "sec_num": null
            },
            {
                "text": "A subset of these has specific legal protection in many jurisdictions under the name of sensitive or protected attributes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Code and data are available at http://www.ims. uni-stuttgart.de/data/ted_wassa21. This includes the documents we based our gender determination on, along with the list of gendered pronouns we used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "See Appendix for performance on the adversarial task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Partial funding was provided by Deutsche Forschungsgemeinschaft (DFG) through project MARDY within SPP RATIO. We would like to thank Roman Klinger, Gabriella Lapesa, Vivi Nastase and Michael Roth for valuable comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            },
            {
                "text": "In our experiments, for each language we consider we use a cased BERT variant that was trained specifically for the target language. 4 We use the Adam optimizer with learning rates of 5e-5, \u03b2 1 = 0.9, \u03b2 2 = 0.999, a batch size of 48, a gradient clip threshold of 1.0 and a dropout with p=0.5 on all layers. We train the model for 15 epochs. The Multi Layer Perceptron consists of a single hidden layer with 300 hidden units. We evaluate each classifier using weighted F1-Score which calculate metrics for each label, and find their average weighted by the number of true instances for each label. We repeat every experiment using 5 random train (80%) test (20%) splits and report average of these 5 experiments.",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 134,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Appendix A Training of BERT-based document classifiers",
                "sec_num": null
            },
            {
                "text": "In addition to majority class classifier and nonadversarial model, we use a third baseline model to analyze how adversarial debiasing effects the model's performance on the adversary task. First, we train feature extractor along with the topic classifier head on the topic classification task. Next, we freeze the weights of the feature extractor and 4 DE: https://deepset.ai/german-bert, ES:https://github.com/dccuchile/beto, FR:https://camembert-model.fr/, TR: https://github.com/dbmdz/berts",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Adversarial Debiasing: Performance on adversarial tasks",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Adversarial learning for debiasing knowledge graph embeddings",
                "authors": [
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Arduini",
                        "suffix": ""
                    },
                    {
                        "first": "Lorenzo",
                        "middle": [],
                        "last": "Noci",
                        "suffix": ""
                    },
                    {
                        "first": "Federico",
                        "middle": [],
                        "last": "Pirovano",
                        "suffix": ""
                    },
                    {
                        "first": "Ce",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 16th International Workshop on Mining and Learning with Graphs (MLG)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mario Arduini, Lorenzo Noci, Federico Pirovano, Ce Zhang, Yash Raj Shrestha, and Bibek Paudel. 2020. Adversarial learning for debiasing knowledge graph embeddings. In Proceedings of the 16th In- ternational Workshop on Mining and Learning with Graphs (MLG), San Diego, California.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Man is to computer programmer as woman is to homemaker? debiasing word embeddings",
                "authors": [
                    {
                        "first": "Tolga",
                        "middle": [],
                        "last": "Bolukbasi",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "Venkatesh",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [
                            "T"
                        ],
                        "last": "Saligrama",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kalai",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "29",
                "issue": "",
                "pages": "4349--4357",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. 2016. Man is to computer programmer as woman is to homemaker? debiasing word embeddings. In Ad- vances in Neural Information Processing Systems, volume 29, pages 4349-4357.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Semantics derived automatically from language corpora contain human-like biases",
                "authors": [
                    {
                        "first": "Aylin",
                        "middle": [],
                        "last": "Caliskan",
                        "suffix": ""
                    },
                    {
                        "first": "Joanna",
                        "middle": [
                            "J"
                        ],
                        "last": "Bryson",
                        "suffix": ""
                    },
                    {
                        "first": "Arvind",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Science",
                "volume": "356",
                "issue": "6334",
                "pages": "183--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. 2017. Semantics derived automatically from language corpora contain human-like biases. Science, 356(6334):183-186.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Wit3: Web inventory of transcribed and translated talks",
                "authors": [
                    {
                        "first": "Mauro",
                        "middle": [],
                        "last": "Cettolo",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Girardi",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Conference of European Association for Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "261--268",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mauro Cettolo, Christian Girardi, and Marcello Fed- erico. 2012. Wit3: Web inventory of transcribed and translated talks. In Conference of European As- sociation for Machine Translation, pages 261-268, Trento, Italy.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Antisocial behavior in online discussion communities",
                "authors": [
                    {
                        "first": "Justin",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Cristian",
                        "middle": [],
                        "last": "Danescu-Niculescu-Mizil",
                        "suffix": ""
                    },
                    {
                        "first": "Jure",
                        "middle": [],
                        "last": "Leskovec",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the International AAAI Conference on Web and Social Media",
                "volume": "9",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Justin Cheng, Cristian Danescu-Niculescu-Mizil, and Jure Leskovec. 2015. Antisocial behavior in online discussion communities. In Proceedings of the Inter- national AAAI Conference on Web and Social Media, volume 9.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Gender. Cambridge Textbooks in Linguistics",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Greville",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Corbett",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1017/CBO9781139166119"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Greville G. Corbett. 1991. Gender. Cambridge Text- books in Linguistics. Cambridge University Press.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Bias in bios: A case study of semantic representation bias in a high-stakes setting",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "De-Arteaga",
                        "suffix": ""
                    },
                    {
                        "first": "Alexey",
                        "middle": [],
                        "last": "Romanov",
                        "suffix": ""
                    },
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Wallach",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Chayes",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Borgs",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Chouldechova",
                        "suffix": ""
                    },
                    {
                        "first": "Sahin",
                        "middle": [],
                        "last": "Geyik",
                        "suffix": ""
                    },
                    {
                        "first": "Krishnaram",
                        "middle": [],
                        "last": "Kenthapadi",
                        "suffix": ""
                    },
                    {
                        "first": "Adam Tauman",
                        "middle": [],
                        "last": "Kalai",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Conference on Fairness, Accountability, and Transparency, FAT* '19",
                "volume": "",
                "issue": "",
                "pages": "120--128",
                "other_ids": {
                    "DOI": [
                        "10.1145/3287560.3287572"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maria De-Arteaga, Alexey Romanov, Hanna Wal- lach, Jennifer Chayes, Christian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kentha- padi, and Adam Tauman Kalai. 2019. Bias in bios: A case study of semantic representation bias in a high-stakes setting. In Proceedings of the Confer- ence on Fairness, Accountability, and Transparency, FAT* '19, page 120-128, New York, NY, USA. As- sociation for Computing Machinery.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Measuring and mitigating unintended bias in text classification",
                "authors": [
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Dixon",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Sorensen",
                        "suffix": ""
                    },
                    {
                        "first": "Nithum",
                        "middle": [],
                        "last": "Thain",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Vasserman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES '18",
                "volume": "",
                "issue": "",
                "pages": "67--73",
                "other_ids": {
                    "DOI": [
                        "10.1145/3278721.3278729"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. 2018. Measuring and mitigat- ing unintended bias in text classification. In Pro- ceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES '18, page 67-73, New York, NY, USA. Association for Computing Machin- ery.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Proceedings of TyP-NLP: The First Workshop on Typology for Polyglot NLP",
                "authors": [
                    {
                        "first": "Haim",
                        "middle": [],
                        "last": "Dubossarsky",
                        "suffix": ""
                    },
                    {
                        "first": "Arya",
                        "middle": [
                            "D"
                        ],
                        "last": "Mccarthy",
                        "suffix": ""
                    },
                    {
                        "first": "Edoardo",
                        "middle": [
                            "Maria"
                        ],
                        "last": "Ponti",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Vuli\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Vylomova",
                        "suffix": ""
                    },
                    {
                        "first": "Yevgeni",
                        "middle": [],
                        "last": "Berzak",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Cotterell",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haim Dubossarsky, Arya D. McCarthy, Edoardo Maria Ponti, Ivan Vuli\u0107, Ekaterina Vylomova, Yevgeni Berzak, Ryan Cotterell, Manaal Faruqui, Anna Ko- rhonen, and Roi Reichart, editors. 2019. Proceed- ings of TyP-NLP: The First Workshop on Typology for Polyglot NLP. Association for Computational Linguistics, Florence, Italy.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Adversarial removal of demographic attributes from text data",
                "authors": [
                    {
                        "first": "Yanai",
                        "middle": [],
                        "last": "Elazar",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "11--21",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yanai Elazar and Yoav Goldberg. 2018. Adversarial removal of demographic attributes from text data. In Proceedings of the 2018 Conference on Empiri- cal Methods in Natural Language Processing, pages 11-21, Brussels, Belgium. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Unsupervised domain adaptation by backpropagation",
                "authors": [
                    {
                        "first": "Yaroslav",
                        "middle": [],
                        "last": "Ganin",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Lempitsky",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 32nd International Conference on Machine Learning",
                "volume": "37",
                "issue": "",
                "pages": "1180--1189",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yaroslav Ganin and Victor Lempitsky. 2015. Unsu- pervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 1180-1189, Lille, France. JMLR.org.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Word embeddings quantify 100 years of gender and ethnic stereotypes. Proceedings of the National Academy of",
                "authors": [
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Garg",
                        "suffix": ""
                    },
                    {
                        "first": "Londa",
                        "middle": [],
                        "last": "Schiebinger",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Sciences",
                "volume": "115",
                "issue": "16",
                "pages": "3635--3644",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. Word embeddings quantify 100 years of gender and ethnic stereotypes. Pro- ceedings of the National Academy of Sciences, 115(16):E3635-E3644.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Generative adversarial nets",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [
                            "J"
                        ],
                        "last": "Goodfellow",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Pouget-Abadie",
                        "suffix": ""
                    },
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Mirza",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Warde-Farley",
                        "suffix": ""
                    },
                    {
                        "first": "Sherjil",
                        "middle": [],
                        "last": "Ozair",
                        "suffix": ""
                    },
                    {
                        "first": "Aaron",
                        "middle": [],
                        "last": "Courville",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 27th International Conference on Neural Information Processing Systems",
                "volume": "2",
                "issue": "",
                "pages": "2672--2680",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative ad- versarial nets. In Proceedings of the 27th Interna- tional Conference on Neural Information Processing Systems -Volume 2, page 2672-2680, Cambridge, MA, USA. MIT Press.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Emotion and aging: Experience, expression, and control",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "James",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [
                            "L"
                        ],
                        "last": "Gross",
                        "suffix": ""
                    },
                    {
                        "first": "Monisha",
                        "middle": [],
                        "last": "Carstensen",
                        "suffix": ""
                    },
                    {
                        "first": "Jeanne",
                        "middle": [],
                        "last": "Pasupathi",
                        "suffix": ""
                    },
                    {
                        "first": "Carina",
                        "middle": [
                            "G\u00f6testam"
                        ],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "Angie Yc",
                        "middle": [],
                        "last": "Skorpen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Psychology and aging",
                "volume": "12",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James J Gross, Laura L Carstensen, Monisha Pasu- pathi, Jeanne Tsai, Carina G\u00f6testam Skorpen, and Angie YC Hsu. 1997. Emotion and aging: Experi- ence, expression, and control. Psychology and ag- ing, 12(4):590.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "It's all in the name: Mitigating gender bias with name-based counterfactual data substitution",
                "authors": [
                    {
                        "first": "Hila",
                        "middle": [],
                        "last": "Rowan Hall Maudslay",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Gonen",
                        "suffix": ""
                    },
                    {
                        "first": "Simone",
                        "middle": [],
                        "last": "Cotterell",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5267--5275",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1530"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rowan Hall Maudslay, Hila Gonen, Ryan Cotterell, and Simone Teufel. 2019. It's all in the name: Mit- igating gender bias with name-based counterfactual data substitution. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 5267-5275, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The exponence of gender in spanish",
                "authors": [
                    {
                        "first": "James",
                        "middle": [
                            "W"
                        ],
                        "last": "Harris",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Linguistic Inquiry",
                "volume": "22",
                "issue": "1",
                "pages": "27--62",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James W. Harris. 1991. The exponence of gender in spanish. Linguistic Inquiry, 22(1):27-62.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Demographic factors improve classification performance",
                "authors": [
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "1",
                "issue": "",
                "pages": "752--762",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-1073"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dirk Hovy. 2015. Demographic factors improve classi- fication performance. In Proceedings of the 53rd An- nual Meeting of the Association for Computational Linguistics and the 7th International Joint Confer- ence on Natural Language Processing (Volume 1: Long Papers), pages 752-762, Beijing, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Gender-preserving debiasing for pre-trained word embeddings",
                "authors": [
                    {
                        "first": "Masahiro",
                        "middle": [],
                        "last": "Kaneko",
                        "suffix": ""
                    },
                    {
                        "first": "Danushka",
                        "middle": [],
                        "last": "Bollegala",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1641--1650",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1160"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Masahiro Kaneko and Danushka Bollegala. 2019. Gender-preserving debiasing for pre-trained word embeddings. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 1641-1650, Florence, Italy. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Examining gender and race bias in two hundred sentiment analysis systems",
                "authors": [
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    },
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics",
                "volume": "",
                "issue": "",
                "pages": "43--53",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S18-2005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Svetlana Kiritchenko and Saif Mohammad. 2018. Ex- amining gender and race bias in two hundred sen- timent analysis systems. In Proceedings of the Seventh Joint Conference on Lexical and Compu- tational Semantics, pages 43-53, New Orleans, Louisiana. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Europarl: A Parallel Corpus for Statistical Machine Translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Conference Proceedings: the tenth Machine Translation Summit",
                "volume": "",
                "issue": "",
                "pages": "79--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Conference Proceedings: the tenth Machine Translation Summit, pages 79-86, Phuket, Thailand. AAMT.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Automatically categorizing written texts by author gender",
                "authors": [
                    {
                        "first": "Moshe",
                        "middle": [],
                        "last": "Koppel",
                        "suffix": ""
                    },
                    {
                        "first": "Shlomo",
                        "middle": [],
                        "last": "Argamon",
                        "suffix": ""
                    },
                    {
                        "first": "Anat Rachel",
                        "middle": [],
                        "last": "Shimoni",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computing Reviews",
                "volume": "45",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Moshe Koppel, Shlomo Argamon, and Anat Rachel Shimoni. 2004. Automatically categorizing writ- ten texts by author gender. Computing Reviews, 45(1):43.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Are we consistently biased? multidimensional analysis of biases in distributional word vectors",
                "authors": [
                    {
                        "first": "Anne",
                        "middle": [],
                        "last": "Lauscher",
                        "suffix": ""
                    },
                    {
                        "first": "Goran",
                        "middle": [],
                        "last": "Glava\u0161",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Eighth Joint Conference on Lexical and Computational Semantics",
                "volume": "",
                "issue": "",
                "pages": "85--91",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S19-1010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anne Lauscher and Goran Glava\u0161. 2019. Are we con- sistently biased? multidimensional analysis of bi- ases in distributional word vectors. In Proceed- ings of the Eighth Joint Conference on Lexical and Computational Semantics, pages 85-91, Minneapo- lis, Minnesota. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Towards robust and privacy-preserving text representations",
                "authors": [
                    {
                        "first": "Yitong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Cohn",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "25--30",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-2005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yitong Li, Timothy Baldwin, and Trevor Cohn. 2018. Towards robust and privacy-preserving text represen- tations. In Proceedings of the 56th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 25-30, Melbourne, Australia. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Adversarial training for satire detection: Controlling for confounding variables",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Mchardy",
                        "suffix": ""
                    },
                    {
                        "first": "Heike",
                        "middle": [],
                        "last": "Adel",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "660--665",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1069"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Robert McHardy, Heike Adel, and Roman Klinger. 2019. Adversarial training for satire detection: Con- trolling for confounding variables. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 660-665, Minneapolis, Minnesota. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Man is to person as woman is to location: Measuring gender bias in named entity recognition",
                "authors": [
                    {
                        "first": "Ninareh",
                        "middle": [],
                        "last": "Mehrabi",
                        "suffix": ""
                    },
                    {
                        "first": "Thamme",
                        "middle": [],
                        "last": "Gowda",
                        "suffix": ""
                    },
                    {
                        "first": "Fred",
                        "middle": [],
                        "last": "Morstatter",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Aram",
                        "middle": [],
                        "last": "Galstyan",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 31st ACM Conference on Hypertext and Social Media",
                "volume": "",
                "issue": "",
                "pages": "231--232",
                "other_ids": {
                    "DOI": [
                        "10.1145/3372923.3404804"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ninareh Mehrabi, Thamme Gowda, Fred Morstatter, Nanyun Peng, and Aram Galstyan. 2020. Man is to person as woman is to location: Measuring gender bias in named entity recognition. In Proceedings of the 31st ACM Conference on Hypertext and Social Media, page 231-232, New York, NY, USA. Associ- ation for Computing Machinery.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Overview of the 4th author profiling task at PAN 2016: Cross-genre evaluations",
                "authors": [
                    {
                        "first": "Francisco Manuel Rangel",
                        "middle": [],
                        "last": "Pardo",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Verhoeven",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Potthast",
                        "suffix": ""
                    },
                    {
                        "first": "Benno",
                        "middle": [],
                        "last": "Stein",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Working Notes of CLEF 2016 -Conference and Labs of the Evaluation forum",
                "volume": "",
                "issue": "",
                "pages": "5--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francisco Manuel Rangel Pardo, Paolo Rosso, Ben Verhoeven, Walter Daelemans, Martin Potthast, and Benno Stein. 2016. Overview of the 4th author pro- filing task at PAN 2016: Cross-genre evaluations. In Working Notes of CLEF 2016 -Conference and Labs of the Evaluation forum,\u00c9vora, Portugal, 5-8",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "CEUR Workshop Proceedings",
                "authors": [],
                "year": 2016,
                "venue": "",
                "volume": "1609",
                "issue": "",
                "pages": "750--784",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "September, 2016, volume 1609 of CEUR Workshop Proceedings, pages 750-784. CEUR-WS.org.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Reducing gender bias in word-level language models with a gender-equalizing loss function",
                "authors": [
                    {
                        "first": "Yusu",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Urwa",
                        "middle": [],
                        "last": "Muaz",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jae",
                        "middle": [
                            "Won"
                        ],
                        "last": "Hyun",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "223--228",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-2031"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yusu Qian, Urwa Muaz, Ben Zhang, and Jae Won Hyun. 2019. Reducing gender bias in word-level language models with a gender-equalizing loss func- tion. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Stu- dent Research Workshop, pages 223-228, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Social bias in elicited natural language inferences",
                "authors": [
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Rudinger",
                        "suffix": ""
                    },
                    {
                        "first": "Chandler",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First ACL Workshop on Ethics in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "74--79",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-1609"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rachel Rudinger, Chandler May, and Benjamin Van Durme. 2017. Social bias in elicited natural lan- guage inferences. In Proceedings of the First ACL Workshop on Ethics in Natural Language Process- ing, pages 74-79, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Gender bias in coreference resolution",
                "authors": [
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Rudinger",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Naradowsky",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Leonard",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "8--14",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rachel Rudinger, Jason Naradowsky, Brian Leonard, and Benjamin Van Durme. 2018. Gender bias in coreference resolution. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 8-14, New Orleans, LA.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Opinion mining in social media: Modeling, simulating, and forecasting political opinions in the web",
                "authors": [
                    {
                        "first": "Pawel",
                        "middle": [],
                        "last": "Sobkowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Kaschesky",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Bouchard",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Social Media in Government -Selections from the 12th Annual International Conference on Digital Government Research (dg.o2011)",
                "volume": "29",
                "issue": "",
                "pages": "470--479",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.giq.2012.06.005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pawel Sobkowicz, Michael Kaschesky, and Guillaume Bouchard. 2012. Opinion mining in social media: Modeling, simulating, and forecasting political opin- ions in the web. Government Information Quarterly, 29(4):470-479. Social Media in Government -Se- lections from the 12th Annual International Confer- ence on Digital Government Research (dg.o2011).",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Evaluating gender bias in machine translation",
                "authors": [
                    {
                        "first": "Gabriel",
                        "middle": [],
                        "last": "Stanovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1679--1684",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1164"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Gabriel Stanovsky, Noah A. Smith, and Luke Zettle- moyer. 2019. Evaluating gender bias in machine translation. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 1679-1684, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "What are the biases in my word embedding?",
                "authors": [
                    {
                        "first": "Nathaniel",
                        "middle": [],
                        "last": "Swinger",
                        "suffix": ""
                    },
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "De-Arteaga",
                        "suffix": ""
                    },
                    {
                        "first": "Neil",
                        "middle": [
                            "Thomas"
                        ],
                        "last": "Heffernan",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [
                            "V"
                        ],
                        "last": "Mark",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "M"
                        ],
                        "last": "Leiserson",
                        "suffix": ""
                    },
                    {
                        "first": "Adam Tauman",
                        "middle": [],
                        "last": "Kalai",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES '19",
                "volume": "",
                "issue": "",
                "pages": "305--311",
                "other_ids": {
                    "DOI": [
                        "10.1145/3306618.3314270"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nathaniel Swinger, Maria De-Arteaga, Neil Thomas Heffernan IV, Mark DM Leiserson, and Adam Tau- man Kalai. 2019. What are the biases in my word embedding? In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, AIES '19, page 305-311, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Parallel data, tools and interfaces in OPUS",
                "authors": [
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)",
                "volume": "",
                "issue": "",
                "pages": "2214--2218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J\u00f6rg Tiedemann. 2012. Parallel data, tools and inter- faces in OPUS. In Proceedings of the Eighth In- ternational Conference on Language Resources and Evaluation (LREC'12), pages 2214-2218, Istanbul, Turkey. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "TwiSty: A multilingual twitter stylometry corpus for gender and personality profiling",
                "authors": [
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Verhoeven",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Daelemans",
                        "suffix": ""
                    },
                    {
                        "first": "Barbara",
                        "middle": [],
                        "last": "Plank",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)",
                "volume": "",
                "issue": "",
                "pages": "1632--1637",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ben Verhoeven, Walter Daelemans, and Barbara Plank. 2016. TwiSty: A multilingual twitter stylometry cor- pus for gender and personality profiling. In Proceed- ings of the Tenth International Conference on Lan- guage Resources and Evaluation (LREC'16), pages 1632-1637, Portoro\u017e, Slovenia. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Multi-passage BERT: A globally normalized BERT model for open-domain question answering",
                "authors": [
                    {
                        "first": "Zhiguo",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaofei",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Xiang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5878--5882",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1599"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhiguo Wang, Patrick Ng, Xiaofei Ma, Ramesh Nal- lapati, and Bing Xiang. 2019. Multi-passage BERT: A globally normalized BERT model for open-domain question answering. In Proceedings of the 2019 Conference on Empirical Methods in Nat- ural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5878-5882, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "End-to-end open-domain question answering with BERTserini",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yuqing",
                        "middle": [],
                        "last": "Xie",
                        "suffix": ""
                    },
                    {
                        "first": "Aileen",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Xingyu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Luchen",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Kun",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)",
                "volume": "",
                "issue": "",
                "pages": "72--77",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-4013"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. 2019. End-to-end open-domain question answering with BERTserini. In Proceedings of the 2019 Confer- ence of the North American Chapter of the Asso- ciation for Computational Linguistics (Demonstra- tions), pages 72-77, Minneapolis, Minnesota. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Mitigating unwanted biases with adversarial learning",
                "authors": [
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Hu Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Blake",
                        "middle": [],
                        "last": "Lemoine",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/3278721.3278779"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. 2018. Mitigating unwanted biases with adversarial learning. In Proceedings of the 2018",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Association for Computing Machinery",
                "authors": [],
                "year": null,
                "venue": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18",
                "volume": "",
                "issue": "",
                "pages": "335--340",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "AAAI/ACM Conference on AI, Ethics, and Society, AIES '18, page 335-340, New York, NY, USA. As- sociation for Computing Machinery.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Gender bias in multilingual embeddings and cross-lingual transfer",
                "authors": [
                    {
                        "first": "Jieyu",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Subhabrata",
                        "middle": [],
                        "last": "Mukherjee",
                        "suffix": ""
                    },
                    {
                        "first": "Saghar",
                        "middle": [],
                        "last": "Hosseini",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [
                            "Hassan"
                        ],
                        "last": "Awadallah",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2896--2907",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.260"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jieyu Zhao, Subhabrata Mukherjee, Saghar Hosseini, Kai-Wei Chang, and Ahmed Hassan Awadallah. 2020. Gender bias in multilingual embeddings and cross-lingual transfer. In Proceedings of the 58th Annual Meeting of the Association for Computa- tional Linguistics, pages 2896-2907, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Gender bias in coreference resolution: Evaluation and debiasing methods",
                "authors": [
                    {
                        "first": "Jieyu",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Tianlu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Yatskar",
                        "suffix": ""
                    },
                    {
                        "first": "Vicente",
                        "middle": [],
                        "last": "Ordonez",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "15--20",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-2003"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or- donez, and Kai-Wei Chang. 2018. Gender bias in coreference resolution: Evaluation and debiasing methods. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 15-20, New Orleans, Louisiana. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Counterfactual data augmentation for mitigating gender stereotypes in languages with rich morphology",
                "authors": [
                    {
                        "first": "Ran",
                        "middle": [],
                        "last": "Zmigrod",
                        "suffix": ""
                    },
                    {
                        "first": "Sabrina",
                        "middle": [
                            "J"
                        ],
                        "last": "Mielke",
                        "suffix": ""
                    },
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Wallach",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Cotterell",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1651--1661",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1161"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ran Zmigrod, Sabrina J. Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Counterfactual data augmen- tation for mitigating gender stereotypes in languages with rich morphology. In Proceedings of the 57th Annual Meeting of the Association for Computa- tional Linguistics, pages 1651-1661, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "Visualization of classification architecture for topic and author gender",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "Visualization of debiasing by adversarial training. Left: Adversarial training of topic classifier on author gender, Right: Adversarial training of author gender classifier on topic.",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "Results for topic classification with adversarial author gender training (F1 scores). Left: Overall results for different \u03bb values. Right: Detail results for \u03bb=1. Original: results from Experiment 1 (cf.",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "text": "Results for author gender classification with adversarial topic training (F1 scores). Left: Overall results for different \u03bb values. Right: Detail results for \u03bb=0.2. Original: results from Experiment 1 (cf.",
                "num": null
            },
            "FIGREF4": {
                "uris": null,
                "type_str": "figure",
                "text": "Three cases of latent feature space geometry for two attributes: (a) independent, (b) correlated, (c) subsumed",
                "num": null
            },
            "TABREF1": {
                "content": "<table><tr><td colspan=\"2\">Document Topic</td><td colspan=\"2\">SciTech Other</td></tr><tr><td>Author Gender</td><td>Male Female</td><td>524 180</td><td>518 296</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "Statistics of TED multilingual corpora."
            },
            "TABREF2": {
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF3": {
                "content": "<table><tr><td>) is much larger.</td></tr><tr><td>To address this limitation, we encode the input at</td></tr><tr><td>the paragraph level (cf. Section 3). Specifically, we</td></tr><tr><td>use the final hidden state corresponding to a special</td></tr><tr><td>classification token, [CLS], as the representation</td></tr><tr><td>for the corresponding paragraph. We then obtain</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF4": {
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "F1 scores for topic classification (bottom line: majority baseline, identical for all languages)"
            },
            "TABREF6": {
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "F1 scores for gender classification (bottom line: majority baseline, identical for all languages)"
            },
            "TABREF7": {
                "content": "<table><tr><td colspan=\"4\">: Example of inflectional gender marking in dif-</td></tr><tr><td colspan=\"4\">ferent languages (marking only present in French)</td></tr><tr><td>DE</td><td>ES</td><td>FR</td><td>TR</td></tr><tr><td colspan=\"4\">SciTech/Female 75.0 75.8 83.0 74.4</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF8": {
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF10": {
                "content": "<table><tr><td>). Lower bias</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF11": {
                "content": "<table><tr><td>). Lower</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": ""
            },
            "TABREF13": {
                "content": "<table><tr><td colspan=\"2\">Overall</td></tr><tr><td colspan=\"2\">Adv Baseline</td></tr><tr><td>DE 34.0</td><td>74.1</td></tr><tr><td>ES 37.0</td><td>72.0</td></tr><tr><td>FR 34.6</td><td>78.2</td></tr><tr><td>TR 32.8</td><td>69.2</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table",
                "text": "Gender classification F-scores of genderdebiased topic classifier and baseline model. For main task evaluation, seeFigure 3."
            }
        }
    }
}