File size: 95,318 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:07:27.171838Z"
},
"title": "An End-to-End Network for Emotion-Cause Pair Extraction",
"authors": [
{
"first": "Aaditya",
"middle": [],
"last": "Singh",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
"location": {}
},
"email": ""
},
{
"first": "Shreeshail",
"middle": [],
"last": "Hingane",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
"location": {}
},
"email": ""
},
{
"first": "Saim",
"middle": [],
"last": "Wani",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
"location": {}
},
"email": ""
},
{
"first": "Ashutosh",
"middle": [],
"last": "Modi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
"location": {}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clausepairs of emotions and their corresponding causes in a document. Unlike the more wellstudied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (\u223c 6.5% increase in F1 score) over the multi-stage approach and achieves comparable performance to the state of the art methods.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clausepairs of emotions and their corresponding causes in a document. Unlike the more wellstudied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (\u223c 6.5% increase in F1 score) over the multi-stage approach and achieves comparable performance to the state of the art methods.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "There have been several works on emotions prediction from the text (Alswaidan and Menai, 2020; Witon et al., 2018) as well as generating emotion oriented texts (Ghosh et al., 2017; Colombo et al., 2019; Goswamy et al., 2020) . However, recently the focus has also shifted to finding out the underlying cause(s) that lead to the emotion expressed in the text. In this respect, Gui et al. (2016) proposed the Emotion Cause Extraction (ECE), a task aimed at detecting the cause behind a given emotion annotation. The task is defined as a clause level classification problem. The text is divided at the clause level and the task is to detect the clause containing the cause, given the clause containing the emotion. However, the applicability of models solving the ECE problem is limited by the fact that emotion annotations are required at test time. More recently, introduced the Emotion-Cause Pair Extraction (ECPE) task i.e. extracting all possible emotion-cause clause pairs in a document with no emotion annotations. Thus, ECPE opens up avenues for applications of real-time sentiment-cause analysis in tweets and product reviews. ECPE builds on the existing and well studied ECE task. Figure 1 shows an example with ground truth annotations.",
"cite_spans": [
{
"start": 95,
"end": 114,
"text": "Witon et al., 2018)",
"ref_id": "BIBREF28"
},
{
"start": 160,
"end": 180,
"text": "(Ghosh et al., 2017;",
"ref_id": "BIBREF15"
},
{
"start": 181,
"end": 202,
"text": "Colombo et al., 2019;",
"ref_id": null
},
{
"start": 203,
"end": 224,
"text": "Goswamy et al., 2020)",
"ref_id": "BIBREF16"
},
{
"start": 376,
"end": 393,
"text": "Gui et al. (2016)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [
{
"start": 1188,
"end": 1196,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Xia and Ding (2019) use a two-stage architecture to extract potential emotion-cause clauses. In Stage 1, the model extracts a set of emotion clauses and a set of cause clauses (not mutually exclusive) from the document. In Stage 2, it performs emotioncause pairing and filtering, i.e. eliminating pairs that the model predicts as an invalid emotion-cause pair. However, this fails to fully capture the mutual dependence between emotion and cause clauses since clause extraction happens in isolation from the pairing step. Thus, the model is never optimized using the overall task as the objective. Also, certain emotion clauses are likely not to be detected without the corresponding cause clauses as the context for that emotion. Recent methods such as Ding et al. (2020a) and Ding et al. (2020b) use complex encoder and classifier architectures to resolve these limitations of the multi-stage method.",
"cite_spans": [
{
"start": 754,
"end": 773,
"text": "Ding et al. (2020a)",
"ref_id": "BIBREF8"
},
{
"start": 778,
"end": 797,
"text": "Ding et al. (2020b)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we propose an end-to-end model to explicitly demonstrate the effectiveness of joint training on the ECPE task. The proposed model attempts to take into account the mutual interdependence between emotion and cause clauses. Based on the benchmark English-language corpus used in the ECE task of the NTCIR-13 workshop (Gao et al., 2017) , we evaluate our approach on this dataset after adapting it for the ECPE task. We demonstrate that the proposed approach works sig-Clause 1: Adele arrived at her apartment late in the afternoon after a long day of work. Clause 2: She was still furious with her husband for not remembering her 40th birthday. Clause 3: As soon as she unlocked the door, she gasped with surprise; Clause 4: Mikhael and Harriet had organized a huge party for her. Figure 1 : An example document. The above example contains two emotion-cause pairs. Clause 2 is an emotion clause (furious) and is also the corresponding cause clause (for not remembering her 40th birthday). Clause 3 is an emotion clause (surprise) and Clause 4 is its corresponding cause clause (organized a huge party for her).",
"cite_spans": [
{
"start": 330,
"end": 348,
"text": "(Gao et al., 2017)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 794,
"end": 802,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "nificantly better than the multi-stage method and achieves comparable performance to the state of the art methods. We also show that when used for the ECE task by providing ground truth emotion annotations, our model beats the state of the art performance of ECE models on the introduced corpus. We provide the dataset and implementations of our models via GitHub 1 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The problem of Emotion Cause Extraction (ECE) has been studied extensively over the past decade. ECE was initially proposed as a word-level sequence detection problem in . Attempts to solve this task focused on either classical machine learning techniques (Ghazi et al., 2015) , or on rule-based methods (Neviarouskaya and Aono, 2013; Gao et al., 2015) . Subsequently, the problem was reframed as a clause-level classification problem and the Chinese-language dataset introduced by Gui et al. (2016) has since become the benchmark dataset for ECE and the task has been an active area of research Yu et al., 2019; Li et al., 2018 Li et al., , 2019 Fan et al., 2019) .",
"cite_spans": [
{
"start": 256,
"end": 276,
"text": "(Ghazi et al., 2015)",
"ref_id": "BIBREF14"
},
{
"start": 304,
"end": 334,
"text": "(Neviarouskaya and Aono, 2013;",
"ref_id": "BIBREF24"
},
{
"start": 335,
"end": 352,
"text": "Gao et al., 2015)",
"ref_id": "BIBREF12"
},
{
"start": 482,
"end": 499,
"text": "Gui et al. (2016)",
"ref_id": "BIBREF18"
},
{
"start": 596,
"end": 612,
"text": "Yu et al., 2019;",
"ref_id": "BIBREF31"
},
{
"start": 613,
"end": 628,
"text": "Li et al., 2018",
"ref_id": "BIBREF22"
},
{
"start": 629,
"end": 646,
"text": "Li et al., , 2019",
"ref_id": "BIBREF21"
},
{
"start": 647,
"end": 664,
"text": "Fan et al., 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "However, the main limitation of ECE remains that it requires emotion annotations even during test time, which severely limits the applicability of ECE models. To address this, introduced a new task called emotion-cause pair extraction (ECPE), which extracts both emotion and its cause without requiring the emotion annotation. They demonstrated the results of their two-stage architecture on the benchmark Chinese language ECE corpus (Gui et al., 2016) . Following their work, several works have been proposed to address the limitations of the two-stage architecture (Ding et al. (2020a) ",
"cite_spans": [
{
"start": 434,
"end": 452,
"text": "(Gui et al., 2016)",
"ref_id": "BIBREF18"
},
{
"start": 567,
"end": 587,
"text": "(Ding et al. (2020a)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Formally, a document consists of text that is segmented into an ordered set of clauses D = [c 1 , c 2 , ..., c d ] and the ECPE task aims to extract a set of emotion-cause pairs",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Definition",
"sec_num": "3"
},
{
"text": "P = {..., (c i , c j ), ...} (c i , c j \u2208 D)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Definition",
"sec_num": "3"
},
{
"text": ", where c i is an emotion clause and c j is the corresponding cause clause. In the ECE task, we are additionally given the annotations of emotion clauses and the goal is to detect (one or more) clauses containing the cause for each emotion clause.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Task Definition",
"sec_num": "3"
},
{
"text": "We propose an end-to-end emotion cause pairs extraction model (Figure 2 ), henceforth referred to as E2E-PExt E (refer to section 6 for the naming convention). The model takes an entire document as its input and computes, for each ordered pair of clauses (c i , c j ), the probability of being a potential emotion-cause pair. To facilitate the learning of suitable clause representations required for this primary task, we train the model on two other auxiliary tasks: Emotion Detection and Cause Detection.",
"cite_spans": [],
"ref_spans": [
{
"start": 62,
"end": 71,
"text": "(Figure 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "We propose a hierarchical architecture. Word level representations are used to obtain clausal representations (vi BiLSTM) and clause level representations are further contextualized using another BiLSTM network. The resulting contextualized clause representations are then used for the classification task. Let w j i represent the vector representation of the j th word in the i th clause. Each clause c i in the document d is passed through a word-level encoder (BiLSTM + Attention (Bahdanau et al., 2015) ) to obtain the clause representation s i . The clause embeddings are then fed into two separate clause-level encoders (Emotion-Encoder and Cause-Encoder) each of which corresponds, respectively, to the two auxiliary tasks. The purpose of the clause-level encoders is to help learn contextualized clause representations by incorporating context from the neighboring clauses in the document. For each clause c i , we obtain its contextualized representations r e i and r c i by passing it through a BiLSTM network.",
"cite_spans": [
{
"start": 483,
"end": 506,
"text": "(Bahdanau et al., 2015)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "For the clause c i , its contextual representations r e i and r c i are then used to predict whether the clause is an emotion-clause and a cause-clause respectively, i.e., y e i = softmax(W e * r e i + b e );",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "(1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "y c i = softmax(W c * r c i + b c )",
"eq_num": "(2)"
}
],
"section": "Approach",
"sec_num": "4"
},
{
"text": "As observed by , we also noticed that performance on the two auxiliary tasks could be improved if done in an interactive manner rather than independently. Hence, the Cause-Encoder also makes use of the corresponding emotion-detection prediction y e i , when generating r c i (Figure 2 ). For the primary task, every ordered pair (c i , c j ) is represented by concatenating r e i , r c j and pe ij , wherein pe ij is the positional embedding vector representing the relative positioning between the two clauses i, j in the document (Shaw et al., 2018) .",
"cite_spans": [
{
"start": 532,
"end": 551,
"text": "(Shaw et al., 2018)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [
{
"start": 275,
"end": 284,
"text": "(Figure 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "The primary task is solved by passing this pairrepresentation through a fully-connected neural network to get the pair-predictions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "r p ij = [r e i \u2295 r c j \u2295 pe ij ]; (3) h p ij = ReLU(W p 1 * r p ij + b p 1 ); (4) y p ij = softmax(W p 2 * h p ij + b p 2 )",
"eq_num": "(5)"
}
],
"section": "Approach",
"sec_num": "4"
},
{
"text": "To train the end-to-end model, loss function is set as the weighted sum of loss on the primary task as well as the two auxiliary tasks i.e.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "L total = \u03bb c * L c + \u03bb e * L e + \u03bb p * L p , where L e , L c",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": ", and L p are cross-entropy errors for emotion, cause and pair predictions respectively. Further, L p = L pos + loss weight * L neg , where L pos and L neg are the errors attributed to positive and negative examples respectively. We use hyperparameter loss weight to scale down L neg , since there are far more negative examples than positive ones in the primary pairing task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "4"
},
{
"text": "We adapt an existing Emotion-Cause Extraction (ECE) (Fan et al., 2019; Li et al., 2019) corpus for evaluating our proposed models (as well as the architectures proposed in previous work). The corpus was introduced in the NTCIR-13 Workshop (Gao et al., 2017) for the ECE challenge.",
"cite_spans": [
{
"start": 52,
"end": 70,
"text": "(Fan et al., 2019;",
"ref_id": "BIBREF10"
},
{
"start": 71,
"end": 87,
"text": "Li et al., 2019)",
"ref_id": "BIBREF21"
},
{
"start": 239,
"end": 257,
"text": "(Gao et al., 2017)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus/Data Description",
"sec_num": "5"
},
{
"text": "The corpus consists of 2843 documents taken from several English novels. Each document is annotated with the following information: i) emotioncause pairs present in the document, that is, the set of emotion clauses and their corresponding cause clauses; ii) emotion category of each clause; and iii) the keyword within the clause denoting the labeled emotion. We do not use the emotion category or the keyword during training of either ECE or ECPE tasks only the emotion-cause pairs are used. At test time, none of the annotations are used for the ECPE task. For ECE task, emotion annotation is provided at test time and the model predicts the corresponding cause clauses. 80%-10%-10% splits are used for training, validation and testing. 10 such randomly generated splits are used to get statistically significant results, and the average results are reported. For the purpose of evaluation on our dataset, we reproduced the two-stage model: ECPE 2-stage . We also adapted two models that achieve state of the art performance on the ECPE task: ECPE-2D(BERT) (Ding et al., 2020a) and ECPE-MLL(ISML-6) (Ding et al., 2020b ) and compared them against our model: E2E-PExt E . The model is trained for 15 epochs using Adam optimizer (Kingma and Ba, 2014). The learning rate and batch size were set to 0.005 and 32 respectively. Model weights and biases were initialized by sampling from a uniform distribution U(\u22120.10, 0.10). GloVe word embeddings (Pennington et al., 2014) of 200 dimension are used. For regularization, we set the dropout rate to 0.8 for word embeddings and L2 weight decay of 1e-5 over softmax parameters. We set \u03bb c : \u03bb e : \u03bb p = 1 : 1 : 2.5. The values chosen through grid search on the hyperparameter space reflect the higher importance of the primary pair detection task compared to the auxiliary tasks. To obtain better positional embeddings which encode the relative positioning between clauses, we trained randomly initialized embeddings after setting the clipping distance (Shaw et al., 2018) to 10 all clauses that have a distance of 10 or more between them have the same positional embedding.",
"cite_spans": [
{
"start": 1059,
"end": 1079,
"text": "(Ding et al., 2020a)",
"ref_id": "BIBREF8"
},
{
"start": 1101,
"end": 1120,
"text": "(Ding et al., 2020b",
"ref_id": "BIBREF9"
},
{
"start": 1444,
"end": 1469,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF25"
},
{
"start": 1996,
"end": 2015,
"text": "(Shaw et al., 2018)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Corpus/Data Description",
"sec_num": "5"
},
{
"text": "Cause Extraction Pair Extraction Precision",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Emotion Extraction",
"sec_num": null
},
{
"text": "We use the same evaluation metrics (precision, recall and F1-score), as used in the past work on ECE and ECPE tasks. Following , the metric definitions are defined as: The results are summarized in Table 1 . Our model E2E-PExt E outperforms ECPE 2-stage on the task of emotion-cause pair extraction by a significant margin of 6.5%. This explicitly demonstrates that an end-to-end model works much better since it leverages the mutual dependence between the emotion and cause clauses. As shown in Table 1 , our model achieves comparable performance to the highly parameterized and complex models ECPE-2D(BERT) and ECPE-MLL(ISML-6) (which either leverage a pre-trained BERT (Devlin et al., 2019) and 2D Transformer (Vaswani et al., 2017) or iterative BiL-STM encoder). To further demonstrate this point, we compare the number of trainable parameters across models in Table 2 .",
"cite_spans": [
{
"start": 672,
"end": 693,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF7"
},
{
"start": 713,
"end": 735,
"text": "(Vaswani et al., 2017)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 198,
"end": 205,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 496,
"end": 503,
"text": "Table 1",
"ref_id": "TABREF1"
},
{
"start": 865,
"end": 872,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Emotion Extraction",
"sec_num": null
},
{
"text": "P = #",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Emotion Extraction",
"sec_num": null
},
{
"text": "Trainable parameters E2E-PExt E 790,257 ECPE-2D(BERT) 1,064,886 ECPE-MLL 6,370,452 Table 2 : Comparison of trainable parameters of our model (E2E-PExt E ) with the state-of-the-art models (ECPE-2D(BERT) and ECPE-MLL(ISML-6)). We achieve comparable performance with these models with fewer parameters and simpler architecture.",
"cite_spans": [],
"ref_spans": [
{
"start": 83,
"end": 90,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Method",
"sec_num": null
},
{
"text": "We also evaluate our model on the ECE task. For this, we use a variant of E2E-PExt E i.e. E2E-CExt, so that it utilizes the emotion annotations. Specifically, we incorporate the knowledge of emotion annotations by incorporating them into the Cause-Encoder as well as the Pair-Prediction-Module and show that this improves performance in both the primary pair prediction task as well as the auxiliary cause detection task (appendix section A). E2E-CExt outperforms the state of the art model RHNN: (Fan et al., 2019) on the ECE task. This is indicative of the generalization capability of our model and further demonstrates that performance on ECPE can be enhanced with improvements in the quality of emotion predictions.",
"cite_spans": [
{
"start": 497,
"end": 515,
"text": "(Fan et al., 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Method",
"sec_num": null
},
{
"text": "We analyzed the effect of different components of the model on performance via ablation experiments. We present some notable results below. More results are presented in the Appendix. Positional Embeddings: For finding the extent to which positional embeddings affect the performance, we train E2E-PExt E without positional embeddings. This resulted in a slight drop in validation F1 score from 51.34 to 50.74, which suggests that the network is robust to withstanding the loss of distance information at the clause-level. Loss Weighting: To handle the problem of data imbalance, we varied loss weight. We observed (Figure 3 ) that assigning less weight to the negative examples leads to more predicted positives, and hence a better recall but worse precision.",
"cite_spans": [],
"ref_spans": [
{
"start": 615,
"end": 624,
"text": "(Figure 3",
"ref_id": "FIGREF4"
}
],
"eq_spans": [],
"section": "Ablation Experiments",
"sec_num": "6.1"
},
{
"text": "In this paper, we demonstrated that a simple endto-end model can achieve competitive performance on the ECPE task by leveraging the inherent correlation between emotions and their causes and optimizing directly on the overall objective. We also showed that a variant of our model which further uses emotion annotations, outperforms the previously best performing model on the ECE task, thereby showing its applicability to variety of related tasks involving emotion analysis. In future, we plan on developing a larger benchmark Englishlanguage dataset for the ECPE task. We plan to explore other model-architectures which we expect will help us learn richer representations for causality detection in clause-pairs. Table 3 : Results of Model variants using precision, recall, and F1-score on the ECPE task and the two sub-tasks.",
"cite_spans": [],
"ref_spans": [
{
"start": 715,
"end": 722,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
}
],
"back_matter": [
{
"text": "We present a variant of E2E-PExt E called E2E-PExt C (Figure 4 ). Here, we feed the clause embeddings s i into a clause-level BiLSTM to obtain context-aware clause encodings r c i which is fed into a softmax layer to obtain cause predictions y c i . We concatenate the cause predictions with the clause embeddings, s i \u2295 y c i , and feed them into another clause-level BiLSTM to obtain emotion representations r e i , which are fed into another softmax layer to obtain the emotion predictions y e i . The pair prediction network remains the same as described for E2E-PExt E . For finding the extent to which emotion labels can help in improving pair predictions, we present a variant of E2E-PExt E called E2E-CExt. We use the true emotion labels instead of emotion predictions y e i to obtain the context-aware clause encodings r c i . We also concatenate them with the input of pair-prediction network r e i \u2295 r c j \u2295 pe ij to make full use of the additional knowledge of emotion labels. Similarly, the corresponding variant of E2E-PExt C which utilizes true cause labels is called E2E-EExt. The results of model variation are shown in Table 3 . Here, the pair prediction network consists of a single fully connected layer. After comparing the performance of E2E-PExt C and E2E-EExt we conclude that huge improvements in performance can be achieved if the quality of cause predictions is improved.",
"cite_spans": [],
"ref_spans": [
{
"start": 53,
"end": 62,
"text": "(Figure 4",
"ref_id": null
},
{
"start": 1137,
"end": 1144,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Appendix A Model Variants",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Information Systems",
"authors": [],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "1--51",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nourah Alswaidan and Mohamed El Bachir Menai. 2020. A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Infor- mation Systems, pages 1-51.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Neural machine translation by jointly learning to align and translate",
"authors": [
{
"first": "Dzmitry",
"middle": [],
"last": "Bahdanau",
"suffix": ""
},
{
"first": "Kyunghyun",
"middle": [],
"last": "Cho",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
}
],
"year": 2015,
"venue": "3rd International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "A unified sequence labeling model for emotion cause pair extraction",
"authors": [
{
"first": "Xinhong",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Qing",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Jianping",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "208--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xinhong Chen, Qing Li, and Jianping Wang. 2020. A unified sequence labeling model for emotion cause pair extraction. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 208-218.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Emotion cause detection with linguistic constructions",
"authors": [
{
"first": "Ying",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Sophia Yat Mei",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Shoushan",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Chu-Ren",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "179--187",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ying Chen, Sophia Yat Mei Lee, Shoushan Li, and Chu- Ren Huang. 2010. Emotion cause detection with linguistic constructions. In Proceedings of the 23rd International Conference on Computational Linguis- tics (Coling 2010), pages 179-187.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "A symmetric local search network for emotion-cause pair extraction",
"authors": [
{
"first": "Zifeng",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Zhiwei",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Yafeng",
"middle": [],
"last": "Yin",
"suffix": ""
},
{
"first": "Hua",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Qing",
"middle": [],
"last": "Gu",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "139--149",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zifeng Cheng, Zhiwei Jiang, Yafeng Yin, Hua Yu, and Qing Gu. 2020. A symmetric local search network for emotion-cause pair extraction. In Proceedings of the 28th International Conference on Computational Linguistics, pages 139-149.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Affect-driven dialog generation",
"authors": [],
"year": null,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "3734--3743",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1374"
]
},
"num": null,
"urls": [],
"raw_text": "Affect-driven dialog generation. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3734-3743, Minneapolis, Min- nesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Ecpe-2d: Emotion-cause pair extraction based on joint twodimensional representation, interaction and prediction",
"authors": [
{
"first": "Zixiang",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Rui",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Jianfei",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3161--3170",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zixiang Ding, Rui Xia, and Jianfei Yu. 2020a. Ecpe-2d: Emotion-cause pair extraction based on joint two- dimensional representation, interaction and predic- tion. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3161-3170.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "End-toend emotion-cause pair extraction based on sliding window multi-label learning",
"authors": [
{
"first": "Zixiang",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Rui",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Jianfei",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "3574--3583",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Zixiang Ding, Rui Xia, and Jianfei Yu. 2020b. End-to- end emotion-cause pair extraction based on sliding window multi-label learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3574-3583.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "A knowledge regularized hierarchical approach for emotion cause analysis",
"authors": [
{
"first": "Chuang",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "Hongyu",
"middle": [],
"last": "Yan",
"suffix": ""
},
{
"first": "Jiachen",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Lin",
"middle": [],
"last": "Gui",
"suffix": ""
},
{
"first": "Lidong",
"middle": [],
"last": "Bing",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Ruibin",
"middle": [],
"last": "Mao",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "5614--5624",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1563"
]
},
"num": null,
"urls": [],
"raw_text": "Chuang Fan, Hongyu Yan, Jiachen Du, Lin Gui, Li- dong Bing, Min Yang, Ruifeng Xu, and Ruibin Mao. 2019. A knowledge regularized hierarchical ap- proach for emotion cause analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5614-5624, Hong Kong, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Transition-based directed graph construction for emotion-cause pair extraction",
"authors": [
{
"first": "Chuang",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "Chaofa",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Jiachen",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Lin",
"middle": [],
"last": "Gui",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3707--3717",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chuang Fan, Chaofa Yuan, Jiachen Du, Lin Gui, Min Yang, and Ruifeng Xu. 2020. Transition-based di- rected graph construction for emotion-cause pair ex- traction. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 3707-3717.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A rule-based approach to emotion cause detection for chinese micro-blogs",
"authors": [
{
"first": "Kai",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Hua",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Jiushuo",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2015,
"venue": "Expert Syst. Appl",
"volume": "42",
"issue": "9",
"pages": "",
"other_ids": {
"DOI": [
"10.1016/j.eswa.2015.01.064"
]
},
"num": null,
"urls": [],
"raw_text": "Kai Gao, Hua Xu, and Jiushuo Wang. 2015. A rule-based approach to emotion cause detection for chinese micro-blogs. Expert Syst. Appl., 42(9):45174528.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Overview of ntcir-13 eca task",
"authors": [
{
"first": "Qinghong",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Gui",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Yulan",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Jiannan",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kam-Fai",
"middle": [],
"last": "Wong",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the NTCIR-13 Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qinghong Gao, Gui Lin, Yulan He, Jiannan Hu, Qin Lu, Ruifeng Xu, and Kam-Fai Wong. 2017. Overview of ntcir-13 eca task. In Proceedings of the NTCIR-13 Conference.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Detecting emotion stimuli in emotion-bearing sentences",
"authors": [
{
"first": "Diman",
"middle": [],
"last": "Ghazi",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Inkpen",
"suffix": ""
},
{
"first": "Stan",
"middle": [],
"last": "Szpakowicz",
"suffix": ""
}
],
"year": 2015,
"venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
"volume": "",
"issue": "",
"pages": "152--165",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Diman Ghazi, Diana Inkpen, and Stan Szpakowicz. 2015. Detecting emotion stimuli in emotion-bearing sentences. In International Conference on Intelli- gent Text Processing and Computational Linguistics, pages 152-165. Springer.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Affect-lm: A neural language model for customizable affective text generation",
"authors": [
{
"first": "Sayan",
"middle": [],
"last": "Ghosh",
"suffix": ""
},
{
"first": "Mathieu",
"middle": [],
"last": "Chollet",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Laksana",
"suffix": ""
},
{
"first": "Louis-Philippe",
"middle": [],
"last": "Morency",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Scherer",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1704.06851"
]
},
"num": null,
"urls": [],
"raw_text": "Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency, and Stefan Scherer. 2017. Affect-lm: A neural language model for customiz- able affective text generation. arXiv preprint arXiv:1704.06851.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Adapting a language model for controlled affective text generation",
"authors": [
{
"first": "Tushar",
"middle": [],
"last": "Goswamy",
"suffix": ""
},
{
"first": "Ishika",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Ahsan",
"middle": [],
"last": "Barkati",
"suffix": ""
},
{
"first": "Ashutosh",
"middle": [],
"last": "Modi",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "2787--2801",
"other_ids": {
"DOI": [
"10.18653/v1/2020.coling-main.251"
]
},
"num": null,
"urls": [],
"raw_text": "Tushar Goswamy, Ishika Singh, Ahsan Barkati, and Ashutosh Modi. 2020. Adapting a language model for controlled affective text generation. In Proceed- ings of the 28th International Conference on Com- putational Linguistics, pages 2787-2801, Barcelona, Spain (Online). International Committee on Compu- tational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A question answering approach for emotion cause extraction",
"authors": [
{
"first": "Lin",
"middle": [],
"last": "Gui",
"suffix": ""
},
{
"first": "Jiannan",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Yulan",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Jiachen",
"middle": [],
"last": "Du",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1593--1602",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1167"
]
},
"num": null,
"urls": [],
"raw_text": "Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Qin Lu, and Jiachen Du. 2017. A question answering ap- proach for emotion cause extraction. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1593-1602, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Event-driven emotion cause extraction with corpus construction",
"authors": [
{
"first": "Lin",
"middle": [],
"last": "Gui",
"suffix": ""
},
{
"first": "Dongyin",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1639--1649",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1170"
]
},
"num": null,
"urls": [],
"raw_text": "Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Lu, and Yu Zhou. 2016. Event-driven emotion cause extrac- tion with corpus construction. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 1639-1649, Austin, Texas. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Adam: A method for stochastic optimization",
"authors": [
{
"first": "P",
"middle": [],
"last": "Diederik",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Kingma",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ba",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1412.6980"
]
},
"num": null,
"urls": [],
"raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A text-driven rule-based system for emotion cause detection",
"authors": [
{
"first": "Sophia Yat Mei",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Ying",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Chu-Ren",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text",
"volume": "",
"issue": "",
"pages": "45--53",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sophia Yat Mei Lee, Ying Chen, and Chu-Ren Huang. 2010. A text-driven rule-based system for emotion cause detection. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 45-53, Los Angeles, CA. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Context-aware emotion cause analysis with multi-attention-based neural network",
"authors": [
{
"first": "Xiangju",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Shi",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Daling",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yifei",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2019,
"venue": "Knowl. Based Syst",
"volume": "174",
"issue": "",
"pages": "205--218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiangju Li, Shi Feng, Daling Wang, and Yifei Zhang. 2019. Context-aware emotion cause analysis with multi-attention-based neural network. Knowl. Based Syst., 174:205-218.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A co-attention neural network model for emotion cause analysis with emotional context awareness",
"authors": [
{
"first": "Xiangju",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Kaisong",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Shi",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Daling",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yifei",
"middle": [],
"last": "Zhang",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "4752--4757",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1506"
]
},
"num": null,
"urls": [],
"raw_text": "Xiangju Li, Kaisong Song, Shi Feng, Daling Wang, and Yifei Zhang. 2018. A co-attention neural network model for emotion cause analysis with emotional context awareness. In Proceedings of the 2018 Con- ference on Empirical Methods in Natural Language Processing, pages 4752-4757, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Affect-driven dialog generation",
"authors": [
{
"first": "Ashutosh",
"middle": [],
"last": "Modi",
"suffix": ""
},
{
"first": "Mubbasir",
"middle": [],
"last": "Kapadia",
"suffix": ""
},
{
"first": "Douglas",
"middle": [
"A"
],
"last": "Fidaleo",
"suffix": ""
},
{
"first": "James",
"middle": [
"R"
],
"last": "Kennedy",
"suffix": ""
},
{
"first": "Wojciech",
"middle": [],
"last": "Witon",
"suffix": ""
},
{
"first": "Pierre",
"middle": [],
"last": "Colombo",
"suffix": ""
}
],
"year": 2020,
"venue": "US Patent",
"volume": "10",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashutosh Modi, Mubbasir Kapadia, Douglas A. Fida- leo, James R. Kennedy, Wojciech Witon, and Pierre Colombo. 2020. Affect-driven dialog generation. US Patent 10,818,312.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Extracting causes of emotions from text",
"authors": [
{
"first": "Alena",
"middle": [],
"last": "Neviarouskaya",
"suffix": ""
},
{
"first": "Masaki",
"middle": [],
"last": "Aono",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Sixth International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "932--936",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alena Neviarouskaya and Masaki Aono. 2013. Extract- ing causes of emotions from text. In Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 932-936.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532-1543.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Self-attention with relative position representations",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Shaw",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "2",
"issue": "",
"pages": "464--468",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 464-468.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "\u0141ukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "5998--6008",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Disney at IEST 2018: Predicting emotions using an ensemble",
"authors": [
{
"first": "Wojciech",
"middle": [],
"last": "Witon",
"suffix": ""
},
{
"first": "Pierre",
"middle": [],
"last": "Colombo",
"suffix": ""
},
{
"first": "Ashutosh",
"middle": [],
"last": "Modi",
"suffix": ""
},
{
"first": "Mubbasir",
"middle": [],
"last": "Kapadia",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
"volume": "",
"issue": "",
"pages": "248--253",
"other_ids": {
"DOI": [
"10.18653/v1/W18-6236"
]
},
"num": null,
"urls": [],
"raw_text": "Wojciech Witon, Pierre Colombo, Ashutosh Modi, and Mubbasir Kapadia. 2018. Disney at IEST 2018: Pre- dicting emotions using an ensemble. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 248-253, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Emotion-cause pair extraction: A new task to emotion analysis in texts",
"authors": [
{
"first": "Rui",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Zixiang",
"middle": [],
"last": "Ding",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1003--1012",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1096"
]
},
"num": null,
"urls": [],
"raw_text": "Rui Xia and Zixiang Ding. 2019. Emotion-cause pair extraction: A new task to emotion analysis in texts. In Proceedings of the 57th Annual Meeting of the As- sociation for Computational Linguistics, pages 1003- 1012, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Rthn: a rnn-transformer hierarchical network for emotion cause extraction",
"authors": [
{
"first": "Rui",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Mengran",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Zixiang",
"middle": [],
"last": "Ding",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 28th International Joint Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "5285--5291",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rui Xia, Mengran Zhang, and Zixiang Ding. 2019. Rthn: a rnn-transformer hierarchical network for emotion cause extraction. In Proceedings of the 28th International Joint Conference on Artificial Intelli- gence, pages 5285-5291. AAAI Press.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Multiple level hierarchical network-based clause selection for emotion cause extraction",
"authors": [
{
"first": "X",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Rong",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Ouyang",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Xiong",
"suffix": ""
}
],
"year": 2019,
"venue": "IEEE Access",
"volume": "7",
"issue": "",
"pages": "9071--9079",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "X. Yu, W. Rong, Z. Zhang, Y. Ouyang, and Z. Xiong. 2019. Multiple level hierarchical network-based clause selection for emotion cause extraction. IEEE Access, 7:9071-9079.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Emotion-cause pair extraction as sequence labeling based on a novel tagging scheme",
"authors": [
{
"first": "Chaofa",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Chuang",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "Jianzhu",
"middle": [],
"last": "Bao",
"suffix": ""
},
{
"first": "Ruifeng",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "3568--3573",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chaofa Yuan, Chuang Fan, Jianzhu Bao, and Ruifeng Xu. 2020. Emotion-cause pair extraction as se- quence labeling based on a novel tagging scheme. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3568-3573.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"uris": null,
"text": ",Ding et al. (2020b),,,Cheng et al. (2020),Chen et al. (2020)) . In order to explore the corpus further and to encourage future work from a broader commu-1 https://github.com/Aaditya-Singh/ E2E-ECPE nity, we use an English language ECE corpus. (see section 5).",
"num": null
},
"FIGREF2": {
"type_str": "figure",
"uris": null,
"text": "End-to-End network (E2E-PExt E )",
"num": null
},
"FIGREF3": {
"type_str": "figure",
"uris": null,
"text": "pairs = no. of emotion-cause pairs predicted by model #correct pairs = number of emotion-cause pairs predicted correctly by the model #annotated pairs = total number of actual emotion-cause pairs in the data P, R, F 1 for the two auxiliary classification tasks (emotion-detection and cause-detection) have the usual definition (see Gui et al. (2016)).",
"num": null
},
"FIGREF4": {
"type_str": "figure",
"uris": null,
"text": "Precision, Recall and F1 Score as a function of weight assigned to negative examples.",
"num": null
},
"FIGREF6": {
"type_str": "figure",
"uris": null,
"text": "End-to-End network variant (E2E-PExt C )",
"num": null
},
"TABREF0": {
"num": null,
"content": "<table><tr><td>ECPE 2-stage (Xia and Ding, 2019)</td><td colspan=\"2\">67.41 71.60</td><td>69.40</td><td colspan=\"2\">60.39 47.34</td><td>53.01</td><td>46.94 41.02</td><td>43.67</td></tr><tr><td>ECPE-2D(BERT) (Ding et al., 2020a)</td><td colspan=\"2\">74.35 69.68</td><td>71.89</td><td colspan=\"2\">64.91 53.53</td><td>58.55</td><td>60.49 43.84</td><td>50.73</td></tr><tr><td>ECPE-MLL(ISML-6) (Ding et al., 2020b)</td><td colspan=\"2\">75.46 69.96</td><td>72.55</td><td colspan=\"2\">63.50 59.19</td><td>61.10</td><td>59.26 45.30</td><td>51.21</td></tr><tr><td>E2E-PExt E (Ours)</td><td colspan=\"2\">71.63 67.49</td><td>69.43</td><td colspan=\"2\">66.36 43.75</td><td>52.26</td><td>51.34 49.29</td><td>50.17</td></tr><tr><td>RHNN (Fan et al., 2019)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>69.01 52.67</td><td>59.75</td></tr><tr><td>E2E-CExt (Ours)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>65.21 66.18</td><td>65.63</td></tr></table>",
"html": null,
"type_str": "table",
"text": "Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score"
},
"TABREF1": {
"num": null,
"content": "<table><tr><td>6 Experiments and Results</td></tr><tr><td>Naming Scheme for Model Variants:</td></tr><tr><td>E2E: End to End.</td></tr><tr><td>PExt/CExt/EExt: Pair Extraction/ Cause Ex-</td></tr><tr><td>traction/ Emotion Extraction.</td></tr><tr><td>Subscript E/C: represents how the auxiliary tasks</td></tr><tr><td>are solved interactively (emotion predictions used</td></tr><tr><td>for cause detection or vice versa).</td></tr></table>",
"html": null,
"type_str": "table",
"text": "Experimental results comparing our models with the already existing benchmarks. The top half compares our model for ECPE (E2E-PExtE) against the existing benchmarks. The bottom half compares existing ECE benchmark on this dataset against our model (E2E-CExt). Note that the Pair Extraction task in ECPE with true-emotion provided reduces to the Cause Extraction task of ECE. The results on RHNN and E2E-CExt are only for the primary task, since in the ECE setting, there are no auxiliary tasks. The evaluation metrics are same as the ones used in previous works."
}
}
}
} |