File size: 95,318 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:27.171838Z"
    },
    "title": "An End-to-End Network for Emotion-Cause Pair Extraction",
    "authors": [
        {
            "first": "Aaditya",
            "middle": [],
            "last": "Singh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Shreeshail",
            "middle": [],
            "last": "Hingane",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Saim",
            "middle": [],
            "last": "Wani",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Ashutosh",
            "middle": [],
            "last": "Modi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indian Institute of Technology Kanpur (IIT Kanpur",
                "location": {}
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clausepairs of emotions and their corresponding causes in a document. Unlike the more wellstudied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (\u223c 6.5% increase in F1 score) over the multi-stage approach and achieves comparable performance to the state of the art methods.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clausepairs of emotions and their corresponding causes in a document. Unlike the more wellstudied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (\u223c 6.5% increase in F1 score) over the multi-stage approach and achieves comparable performance to the state of the art methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "There have been several works on emotions prediction from the text (Alswaidan and Menai, 2020; Witon et al., 2018) as well as generating emotion oriented texts (Ghosh et al., 2017; Colombo et al., 2019; Goswamy et al., 2020) . However, recently the focus has also shifted to finding out the underlying cause(s) that lead to the emotion expressed in the text. In this respect, Gui et al. (2016) proposed the Emotion Cause Extraction (ECE), a task aimed at detecting the cause behind a given emotion annotation. The task is defined as a clause level classification problem. The text is divided at the clause level and the task is to detect the clause containing the cause, given the clause containing the emotion. However, the applicability of models solving the ECE problem is limited by the fact that emotion annotations are required at test time. More recently, introduced the Emotion-Cause Pair Extraction (ECPE) task i.e. extracting all possible emotion-cause clause pairs in a document with no emotion annotations. Thus, ECPE opens up avenues for applications of real-time sentiment-cause analysis in tweets and product reviews. ECPE builds on the existing and well studied ECE task. Figure 1 shows an example with ground truth annotations.",
                "cite_spans": [
                    {
                        "start": 95,
                        "end": 114,
                        "text": "Witon et al., 2018)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 160,
                        "end": 180,
                        "text": "(Ghosh et al., 2017;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 181,
                        "end": 202,
                        "text": "Colombo et al., 2019;",
                        "ref_id": null
                    },
                    {
                        "start": 203,
                        "end": 224,
                        "text": "Goswamy et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 376,
                        "end": 393,
                        "text": "Gui et al. (2016)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1188,
                        "end": 1196,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Xia and Ding (2019) use a two-stage architecture to extract potential emotion-cause clauses. In Stage 1, the model extracts a set of emotion clauses and a set of cause clauses (not mutually exclusive) from the document. In Stage 2, it performs emotioncause pairing and filtering, i.e. eliminating pairs that the model predicts as an invalid emotion-cause pair. However, this fails to fully capture the mutual dependence between emotion and cause clauses since clause extraction happens in isolation from the pairing step. Thus, the model is never optimized using the overall task as the objective. Also, certain emotion clauses are likely not to be detected without the corresponding cause clauses as the context for that emotion. Recent methods such as Ding et al. (2020a) and Ding et al. (2020b) use complex encoder and classifier architectures to resolve these limitations of the multi-stage method.",
                "cite_spans": [
                    {
                        "start": 754,
                        "end": 773,
                        "text": "Ding et al. (2020a)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 778,
                        "end": 797,
                        "text": "Ding et al. (2020b)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose an end-to-end model to explicitly demonstrate the effectiveness of joint training on the ECPE task. The proposed model attempts to take into account the mutual interdependence between emotion and cause clauses. Based on the benchmark English-language corpus used in the ECE task of the NTCIR-13 workshop (Gao et al., 2017) , we evaluate our approach on this dataset after adapting it for the ECPE task. We demonstrate that the proposed approach works sig-Clause 1: Adele arrived at her apartment late in the afternoon after a long day of work. Clause 2: She was still furious with her husband for not remembering her 40th birthday. Clause 3: As soon as she unlocked the door, she gasped with surprise; Clause 4: Mikhael and Harriet had organized a huge party for her. Figure 1 : An example document. The above example contains two emotion-cause pairs. Clause 2 is an emotion clause (furious) and is also the corresponding cause clause (for not remembering her 40th birthday). Clause 3 is an emotion clause (surprise) and Clause 4 is its corresponding cause clause (organized a huge party for her).",
                "cite_spans": [
                    {
                        "start": 330,
                        "end": 348,
                        "text": "(Gao et al., 2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 794,
                        "end": 802,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "nificantly better than the multi-stage method and achieves comparable performance to the state of the art methods. We also show that when used for the ECE task by providing ground truth emotion annotations, our model beats the state of the art performance of ECE models on the introduced corpus. We provide the dataset and implementations of our models via GitHub 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The problem of Emotion Cause Extraction (ECE) has been studied extensively over the past decade. ECE was initially proposed as a word-level sequence detection problem in . Attempts to solve this task focused on either classical machine learning techniques (Ghazi et al., 2015) , or on rule-based methods (Neviarouskaya and Aono, 2013; Gao et al., 2015) . Subsequently, the problem was reframed as a clause-level classification problem and the Chinese-language dataset introduced by Gui et al. (2016) has since become the benchmark dataset for ECE and the task has been an active area of research Yu et al., 2019; Li et al., 2018 Li et al., , 2019 Fan et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 256,
                        "end": 276,
                        "text": "(Ghazi et al., 2015)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 304,
                        "end": 334,
                        "text": "(Neviarouskaya and Aono, 2013;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 335,
                        "end": 352,
                        "text": "Gao et al., 2015)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 482,
                        "end": 499,
                        "text": "Gui et al. (2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 596,
                        "end": 612,
                        "text": "Yu et al., 2019;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 613,
                        "end": 628,
                        "text": "Li et al., 2018",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 629,
                        "end": 646,
                        "text": "Li et al., , 2019",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 647,
                        "end": 664,
                        "text": "Fan et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "However, the main limitation of ECE remains that it requires emotion annotations even during test time, which severely limits the applicability of ECE models. To address this, introduced a new task called emotion-cause pair extraction (ECPE), which extracts both emotion and its cause without requiring the emotion annotation. They demonstrated the results of their two-stage architecture on the benchmark Chinese language ECE corpus (Gui et al., 2016) . Following their work, several works have been proposed to address the limitations of the two-stage architecture (Ding et al. (2020a) ",
                "cite_spans": [
                    {
                        "start": 434,
                        "end": 452,
                        "text": "(Gui et al., 2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 567,
                        "end": 587,
                        "text": "(Ding et al. (2020a)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Formally, a document consists of text that is segmented into an ordered set of clauses D = [c 1 , c 2 , ..., c d ] and the ECPE task aims to extract a set of emotion-cause pairs",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Definition",
                "sec_num": "3"
            },
            {
                "text": "P = {..., (c i , c j ), ...} (c i , c j \u2208 D)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Definition",
                "sec_num": "3"
            },
            {
                "text": ", where c i is an emotion clause and c j is the corresponding cause clause. In the ECE task, we are additionally given the annotations of emotion clauses and the goal is to detect (one or more) clauses containing the cause for each emotion clause.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Definition",
                "sec_num": "3"
            },
            {
                "text": "We propose an end-to-end emotion cause pairs extraction model (Figure 2 ), henceforth referred to as E2E-PExt E (refer to section 6 for the naming convention). The model takes an entire document as its input and computes, for each ordered pair of clauses (c i , c j ), the probability of being a potential emotion-cause pair. To facilitate the learning of suitable clause representations required for this primary task, we train the model on two other auxiliary tasks: Emotion Detection and Cause Detection.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 62,
                        "end": 71,
                        "text": "(Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "We propose a hierarchical architecture. Word level representations are used to obtain clausal representations (vi BiLSTM) and clause level representations are further contextualized using another BiLSTM network. The resulting contextualized clause representations are then used for the classification task. Let w j i represent the vector representation of the j th word in the i th clause. Each clause c i in the document d is passed through a word-level encoder (BiLSTM + Attention (Bahdanau et al., 2015) ) to obtain the clause representation s i . The clause embeddings are then fed into two separate clause-level encoders (Emotion-Encoder and Cause-Encoder) each of which corresponds, respectively, to the two auxiliary tasks. The purpose of the clause-level encoders is to help learn contextualized clause representations by incorporating context from the neighboring clauses in the document. For each clause c i , we obtain its contextualized representations r e i and r c i by passing it through a BiLSTM network.",
                "cite_spans": [
                    {
                        "start": 483,
                        "end": 506,
                        "text": "(Bahdanau et al., 2015)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "For the clause c i , its contextual representations r e i and r c i are then used to predict whether the clause is an emotion-clause and a cause-clause respectively, i.e., y e i = softmax(W e * r e i + b e );",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "y c i = softmax(W c * r c i + b c )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "As observed by , we also noticed that performance on the two auxiliary tasks could be improved if done in an interactive manner rather than independently. Hence, the Cause-Encoder also makes use of the corresponding emotion-detection prediction y e i , when generating r c i (Figure 2 ). For the primary task, every ordered pair (c i , c j ) is represented by concatenating r e i , r c j and pe ij , wherein pe ij is the positional embedding vector representing the relative positioning between the two clauses i, j in the document (Shaw et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 532,
                        "end": 551,
                        "text": "(Shaw et al., 2018)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 275,
                        "end": 284,
                        "text": "(Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "The primary task is solved by passing this pairrepresentation through a fully-connected neural network to get the pair-predictions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "r p ij = [r e i \u2295 r c j \u2295 pe ij ]; (3) h p ij = ReLU(W p 1 * r p ij + b p 1 ); (4) y p ij = softmax(W p 2 * h p ij + b p 2 )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "To train the end-to-end model, loss function is set as the weighted sum of loss on the primary task as well as the two auxiliary tasks i.e.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "L total = \u03bb c * L c + \u03bb e * L e + \u03bb p * L p , where L e , L c",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": ", and L p are cross-entropy errors for emotion, cause and pair predictions respectively. Further, L p = L pos + loss weight * L neg , where L pos and L neg are the errors attributed to positive and negative examples respectively. We use hyperparameter loss weight to scale down L neg , since there are far more negative examples than positive ones in the primary pairing task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "4"
            },
            {
                "text": "We adapt an existing Emotion-Cause Extraction (ECE) (Fan et al., 2019; Li et al., 2019) corpus for evaluating our proposed models (as well as the architectures proposed in previous work). The corpus was introduced in the NTCIR-13 Workshop (Gao et al., 2017) for the ECE challenge.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 70,
                        "text": "(Fan et al., 2019;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 71,
                        "end": 87,
                        "text": "Li et al., 2019)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 239,
                        "end": 257,
                        "text": "(Gao et al., 2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus/Data Description",
                "sec_num": "5"
            },
            {
                "text": "The corpus consists of 2843 documents taken from several English novels. Each document is annotated with the following information: i) emotioncause pairs present in the document, that is, the set of emotion clauses and their corresponding cause clauses; ii) emotion category of each clause; and iii) the keyword within the clause denoting the labeled emotion. We do not use the emotion category or the keyword during training of either ECE or ECPE tasks only the emotion-cause pairs are used. At test time, none of the annotations are used for the ECPE task. For ECE task, emotion annotation is provided at test time and the model predicts the corresponding cause clauses. 80%-10%-10% splits are used for training, validation and testing. 10 such randomly generated splits are used to get statistically significant results, and the average results are reported. For the purpose of evaluation on our dataset, we reproduced the two-stage model: ECPE 2-stage . We also adapted two models that achieve state of the art performance on the ECPE task: ECPE-2D(BERT) (Ding et al., 2020a) and ECPE-MLL(ISML-6) (Ding et al., 2020b ) and compared them against our model: E2E-PExt E . The model is trained for 15 epochs using Adam optimizer (Kingma and Ba, 2014). The learning rate and batch size were set to 0.005 and 32 respectively. Model weights and biases were initialized by sampling from a uniform distribution U(\u22120.10, 0.10). GloVe word embeddings (Pennington et al., 2014) of 200 dimension are used. For regularization, we set the dropout rate to 0.8 for word embeddings and L2 weight decay of 1e-5 over softmax parameters. We set \u03bb c : \u03bb e : \u03bb p = 1 : 1 : 2.5. The values chosen through grid search on the hyperparameter space reflect the higher importance of the primary pair detection task compared to the auxiliary tasks. To obtain better positional embeddings which encode the relative positioning between clauses, we trained randomly initialized embeddings after setting the clipping distance (Shaw et al., 2018) to 10 all clauses that have a distance of 10 or more between them have the same positional embedding.",
                "cite_spans": [
                    {
                        "start": 1059,
                        "end": 1079,
                        "text": "(Ding et al., 2020a)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1101,
                        "end": 1120,
                        "text": "(Ding et al., 2020b",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1444,
                        "end": 1469,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1996,
                        "end": 2015,
                        "text": "(Shaw et al., 2018)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus/Data Description",
                "sec_num": "5"
            },
            {
                "text": "Cause Extraction Pair Extraction Precision",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotion Extraction",
                "sec_num": null
            },
            {
                "text": "We use the same evaluation metrics (precision, recall and F1-score), as used in the past work on ECE and ECPE tasks. Following , the metric definitions are defined as: The results are summarized in Table 1 . Our model E2E-PExt E outperforms ECPE 2-stage on the task of emotion-cause pair extraction by a significant margin of 6.5%. This explicitly demonstrates that an end-to-end model works much better since it leverages the mutual dependence between the emotion and cause clauses. As shown in Table 1 , our model achieves comparable performance to the highly parameterized and complex models ECPE-2D(BERT) and ECPE-MLL(ISML-6) (which either leverage a pre-trained BERT (Devlin et al., 2019) and 2D Transformer (Vaswani et al., 2017) or iterative BiL-STM encoder). To further demonstrate this point, we compare the number of trainable parameters across models in Table 2 .",
                "cite_spans": [
                    {
                        "start": 672,
                        "end": 693,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 713,
                        "end": 735,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 198,
                        "end": 205,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 496,
                        "end": 503,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 865,
                        "end": 872,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Emotion Extraction",
                "sec_num": null
            },
            {
                "text": "P = #",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Emotion Extraction",
                "sec_num": null
            },
            {
                "text": "Trainable parameters E2E-PExt E 790,257 ECPE-2D(BERT) 1,064,886 ECPE-MLL 6,370,452 Table 2 : Comparison of trainable parameters of our model (E2E-PExt E ) with the state-of-the-art models (ECPE-2D(BERT) and ECPE-MLL(ISML-6)). We achieve comparable performance with these models with fewer parameters and simpler architecture.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 83,
                        "end": 90,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Method",
                "sec_num": null
            },
            {
                "text": "We also evaluate our model on the ECE task. For this, we use a variant of E2E-PExt E i.e. E2E-CExt, so that it utilizes the emotion annotations. Specifically, we incorporate the knowledge of emotion annotations by incorporating them into the Cause-Encoder as well as the Pair-Prediction-Module and show that this improves performance in both the primary pair prediction task as well as the auxiliary cause detection task (appendix section A). E2E-CExt outperforms the state of the art model RHNN: (Fan et al., 2019) on the ECE task. This is indicative of the generalization capability of our model and further demonstrates that performance on ECPE can be enhanced with improvements in the quality of emotion predictions.",
                "cite_spans": [
                    {
                        "start": 497,
                        "end": 515,
                        "text": "(Fan et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": null
            },
            {
                "text": "We analyzed the effect of different components of the model on performance via ablation experiments. We present some notable results below. More results are presented in the Appendix. Positional Embeddings: For finding the extent to which positional embeddings affect the performance, we train E2E-PExt E without positional embeddings. This resulted in a slight drop in validation F1 score from 51.34 to 50.74, which suggests that the network is robust to withstanding the loss of distance information at the clause-level. Loss Weighting: To handle the problem of data imbalance, we varied loss weight. We observed (Figure 3 ) that assigning less weight to the negative examples leads to more predicted positives, and hence a better recall but worse precision.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 615,
                        "end": 624,
                        "text": "(Figure 3",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Ablation Experiments",
                "sec_num": "6.1"
            },
            {
                "text": "In this paper, we demonstrated that a simple endto-end model can achieve competitive performance on the ECPE task by leveraging the inherent correlation between emotions and their causes and optimizing directly on the overall objective. We also showed that a variant of our model which further uses emotion annotations, outperforms the previously best performing model on the ECE task, thereby showing its applicability to variety of related tasks involving emotion analysis. In future, we plan on developing a larger benchmark Englishlanguage dataset for the ECPE task. We plan to explore other model-architectures which we expect will help us learn richer representations for causality detection in clause-pairs. Table 3 : Results of Model variants using precision, recall, and F1-score on the ECPE task and the two sub-tasks.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 715,
                        "end": 722,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            }
        ],
        "back_matter": [
            {
                "text": "We present a variant of E2E-PExt E called E2E-PExt C (Figure 4 ). Here, we feed the clause embeddings s i into a clause-level BiLSTM to obtain context-aware clause encodings r c i which is fed into a softmax layer to obtain cause predictions y c i . We concatenate the cause predictions with the clause embeddings, s i \u2295 y c i , and feed them into another clause-level BiLSTM to obtain emotion representations r e i , which are fed into another softmax layer to obtain the emotion predictions y e i . The pair prediction network remains the same as described for E2E-PExt E . For finding the extent to which emotion labels can help in improving pair predictions, we present a variant of E2E-PExt E called E2E-CExt. We use the true emotion labels instead of emotion predictions y e i to obtain the context-aware clause encodings r c i . We also concatenate them with the input of pair-prediction network r e i \u2295 r c j \u2295 pe ij to make full use of the additional knowledge of emotion labels. Similarly, the corresponding variant of E2E-PExt C which utilizes true cause labels is called E2E-EExt. The results of model variation are shown in Table 3 . Here, the pair prediction network consists of a single fully connected layer. After comparing the performance of E2E-PExt C and E2E-EExt we conclude that huge improvements in performance can be achieved if the quality of cause predictions is improved.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 62,
                        "text": "(Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 1137,
                        "end": 1144,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Appendix A Model Variants",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Information Systems",
                "authors": [],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nourah Alswaidan and Mohamed El Bachir Menai. 2020. A survey of state-of-the-art approaches for emotion recognition in text. Knowledge and Infor- mation Systems, pages 1-51.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Neural machine translation by jointly learning to align and translate",
                "authors": [
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2015. Neural machine translation by jointly learning to align and translate. In 3rd International Conference on Learning Representations, ICLR 2015.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A unified sequence labeling model for emotion cause pair extraction",
                "authors": [
                    {
                        "first": "Xinhong",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Qing",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jianping",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "208--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xinhong Chen, Qing Li, and Jianping Wang. 2020. A unified sequence labeling model for emotion cause pair extraction. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 208-218.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Emotion cause detection with linguistic constructions",
                "authors": [
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Sophia Yat Mei",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shoushan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Chu-Ren",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "179--187",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ying Chen, Sophia Yat Mei Lee, Shoushan Li, and Chu- Ren Huang. 2010. Emotion cause detection with linguistic constructions. In Proceedings of the 23rd International Conference on Computational Linguis- tics (Coling 2010), pages 179-187.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A symmetric local search network for emotion-cause pair extraction",
                "authors": [
                    {
                        "first": "Zifeng",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiwei",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Yafeng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Qing",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "139--149",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zifeng Cheng, Zhiwei Jiang, Yafeng Yin, Hua Yu, and Qing Gu. 2020. A symmetric local search network for emotion-cause pair extraction. In Proceedings of the 28th International Conference on Computational Linguistics, pages 139-149.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Affect-driven dialog generation",
                "authors": [],
                "year": null,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "3734--3743",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1374"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Affect-driven dialog generation. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3734-3743, Minneapolis, Min- nesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Tech- nologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Ecpe-2d: Emotion-cause pair extraction based on joint twodimensional representation, interaction and prediction",
                "authors": [
                    {
                        "first": "Zixiang",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfei",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3161--3170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zixiang Ding, Rui Xia, and Jianfei Yu. 2020a. Ecpe-2d: Emotion-cause pair extraction based on joint two- dimensional representation, interaction and predic- tion. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3161-3170.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "End-toend emotion-cause pair extraction based on sliding window multi-label learning",
                "authors": [
                    {
                        "first": "Zixiang",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfei",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "3574--3583",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zixiang Ding, Rui Xia, and Jianfei Yu. 2020b. End-to- end emotion-cause pair extraction based on sliding window multi-label learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3574-3583.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A knowledge regularized hierarchical approach for emotion cause analysis",
                "authors": [
                    {
                        "first": "Chuang",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Hongyu",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Jiachen",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Gui",
                        "suffix": ""
                    },
                    {
                        "first": "Lidong",
                        "middle": [],
                        "last": "Bing",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Ruibin",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5614--5624",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1563"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chuang Fan, Hongyu Yan, Jiachen Du, Lin Gui, Li- dong Bing, Min Yang, Ruifeng Xu, and Ruibin Mao. 2019. A knowledge regularized hierarchical ap- proach for emotion cause analysis. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5614-5624, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Transition-based directed graph construction for emotion-cause pair extraction",
                "authors": [
                    {
                        "first": "Chuang",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Chaofa",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Jiachen",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Gui",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3707--3717",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chuang Fan, Chaofa Yuan, Jiachen Du, Lin Gui, Min Yang, and Ruifeng Xu. 2020. Transition-based di- rected graph construction for emotion-cause pair ex- traction. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 3707-3717.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A rule-based approach to emotion cause detection for chinese micro-blogs",
                "authors": [
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Hua",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Jiushuo",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Expert Syst. Appl",
                "volume": "42",
                "issue": "9",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.eswa.2015.01.064"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kai Gao, Hua Xu, and Jiushuo Wang. 2015. A rule-based approach to emotion cause detection for chinese micro-blogs. Expert Syst. Appl., 42(9):45174528.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Overview of ntcir-13 eca task",
                "authors": [
                    {
                        "first": "Qinghong",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Gui",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Yulan",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jiannan",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kam-Fai",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the NTCIR-13 Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qinghong Gao, Gui Lin, Yulan He, Jiannan Hu, Qin Lu, Ruifeng Xu, and Kam-Fai Wong. 2017. Overview of ntcir-13 eca task. In Proceedings of the NTCIR-13 Conference.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Detecting emotion stimuli in emotion-bearing sentences",
                "authors": [
                    {
                        "first": "Diman",
                        "middle": [],
                        "last": "Ghazi",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Inkpen",
                        "suffix": ""
                    },
                    {
                        "first": "Stan",
                        "middle": [],
                        "last": "Szpakowicz",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "152--165",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diman Ghazi, Diana Inkpen, and Stan Szpakowicz. 2015. Detecting emotion stimuli in emotion-bearing sentences. In International Conference on Intelli- gent Text Processing and Computational Linguistics, pages 152-165. Springer.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Affect-lm: A neural language model for customizable affective text generation",
                "authors": [
                    {
                        "first": "Sayan",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Mathieu",
                        "middle": [],
                        "last": "Chollet",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Laksana",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Scherer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1704.06851"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency, and Stefan Scherer. 2017. Affect-lm: A neural language model for customiz- able affective text generation. arXiv preprint arXiv:1704.06851.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Adapting a language model for controlled affective text generation",
                "authors": [
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Goswamy",
                        "suffix": ""
                    },
                    {
                        "first": "Ishika",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Ahsan",
                        "middle": [],
                        "last": "Barkati",
                        "suffix": ""
                    },
                    {
                        "first": "Ashutosh",
                        "middle": [],
                        "last": "Modi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2787--2801",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.251"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tushar Goswamy, Ishika Singh, Ahsan Barkati, and Ashutosh Modi. 2020. Adapting a language model for controlled affective text generation. In Proceed- ings of the 28th International Conference on Com- putational Linguistics, pages 2787-2801, Barcelona, Spain (Online). International Committee on Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A question answering approach for emotion cause extraction",
                "authors": [
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Gui",
                        "suffix": ""
                    },
                    {
                        "first": "Jiannan",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Yulan",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Jiachen",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1593--1602",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1167"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lin Gui, Jiannan Hu, Yulan He, Ruifeng Xu, Qin Lu, and Jiachen Du. 2017. A question answering ap- proach for emotion cause extraction. In Proceed- ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1593-1602, Copenhagen, Denmark. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Event-driven emotion cause extraction with corpus construction",
                "authors": [
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Gui",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyin",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1639--1649",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1170"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lin Gui, Dongyin Wu, Ruifeng Xu, Qin Lu, and Yu Zhou. 2016. Event-driven emotion cause extrac- tion with corpus construction. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 1639-1649, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A text-driven rule-based system for emotion cause detection",
                "authors": [
                    {
                        "first": "Sophia Yat Mei",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Chu-Ren",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text",
                "volume": "",
                "issue": "",
                "pages": "45--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sophia Yat Mei Lee, Ying Chen, and Chu-Ren Huang. 2010. A text-driven rule-based system for emotion cause detection. In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text, pages 45-53, Los Angeles, CA. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Context-aware emotion cause analysis with multi-attention-based neural network",
                "authors": [
                    {
                        "first": "Xiangju",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Shi",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Daling",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yifei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Knowl. Based Syst",
                "volume": "174",
                "issue": "",
                "pages": "205--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiangju Li, Shi Feng, Daling Wang, and Yifei Zhang. 2019. Context-aware emotion cause analysis with multi-attention-based neural network. Knowl. Based Syst., 174:205-218.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A co-attention neural network model for emotion cause analysis with emotional context awareness",
                "authors": [
                    {
                        "first": "Xiangju",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Kaisong",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Shi",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Daling",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yifei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4752--4757",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1506"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiangju Li, Kaisong Song, Shi Feng, Daling Wang, and Yifei Zhang. 2018. A co-attention neural network model for emotion cause analysis with emotional context awareness. In Proceedings of the 2018 Con- ference on Empirical Methods in Natural Language Processing, pages 4752-4757, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Affect-driven dialog generation",
                "authors": [
                    {
                        "first": "Ashutosh",
                        "middle": [],
                        "last": "Modi",
                        "suffix": ""
                    },
                    {
                        "first": "Mubbasir",
                        "middle": [],
                        "last": "Kapadia",
                        "suffix": ""
                    },
                    {
                        "first": "Douglas",
                        "middle": [
                            "A"
                        ],
                        "last": "Fidaleo",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Kennedy",
                        "suffix": ""
                    },
                    {
                        "first": "Wojciech",
                        "middle": [],
                        "last": "Witon",
                        "suffix": ""
                    },
                    {
                        "first": "Pierre",
                        "middle": [],
                        "last": "Colombo",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "US Patent",
                "volume": "10",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashutosh Modi, Mubbasir Kapadia, Douglas A. Fida- leo, James R. Kennedy, Wojciech Witon, and Pierre Colombo. 2020. Affect-driven dialog generation. US Patent 10,818,312.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Extracting causes of emotions from text",
                "authors": [
                    {
                        "first": "Alena",
                        "middle": [],
                        "last": "Neviarouskaya",
                        "suffix": ""
                    },
                    {
                        "first": "Masaki",
                        "middle": [],
                        "last": "Aono",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Sixth International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "932--936",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alena Neviarouskaya and Masaki Aono. 2013. Extract- ing causes of emotions from text. In Proceedings of the Sixth International Joint Conference on Natural Language Processing, pages 932-936.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Glove: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 1532-1543.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Self-attention with relative position representations",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Shaw",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "2",
                "issue": "",
                "pages": "464--468",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with relative position representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 464-468.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Disney at IEST 2018: Predicting emotions using an ensemble",
                "authors": [
                    {
                        "first": "Wojciech",
                        "middle": [],
                        "last": "Witon",
                        "suffix": ""
                    },
                    {
                        "first": "Pierre",
                        "middle": [],
                        "last": "Colombo",
                        "suffix": ""
                    },
                    {
                        "first": "Ashutosh",
                        "middle": [],
                        "last": "Modi",
                        "suffix": ""
                    },
                    {
                        "first": "Mubbasir",
                        "middle": [],
                        "last": "Kapadia",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
                "volume": "",
                "issue": "",
                "pages": "248--253",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6236"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wojciech Witon, Pierre Colombo, Ashutosh Modi, and Mubbasir Kapadia. 2018. Disney at IEST 2018: Pre- dicting emotions using an ensemble. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 248-253, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Emotion-cause pair extraction: A new task to emotion analysis in texts",
                "authors": [
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Zixiang",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1003--1012",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1096"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rui Xia and Zixiang Ding. 2019. Emotion-cause pair extraction: A new task to emotion analysis in texts. In Proceedings of the 57th Annual Meeting of the As- sociation for Computational Linguistics, pages 1003- 1012, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Rthn: a rnn-transformer hierarchical network for emotion cause extraction",
                "authors": [
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Mengran",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zixiang",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 28th International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "5285--5291",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rui Xia, Mengran Zhang, and Zixiang Ding. 2019. Rthn: a rnn-transformer hierarchical network for emotion cause extraction. In Proceedings of the 28th International Joint Conference on Artificial Intelli- gence, pages 5285-5291. AAAI Press.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Multiple level hierarchical network-based clause selection for emotion cause extraction",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Rong",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Ouyang",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "7",
                "issue": "",
                "pages": "9071--9079",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Yu, W. Rong, Z. Zhang, Y. Ouyang, and Z. Xiong. 2019. Multiple level hierarchical network-based clause selection for emotion cause extraction. IEEE Access, 7:9071-9079.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Emotion-cause pair extraction as sequence labeling based on a novel tagging scheme",
                "authors": [
                    {
                        "first": "Chaofa",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Chuang",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Jianzhu",
                        "middle": [],
                        "last": "Bao",
                        "suffix": ""
                    },
                    {
                        "first": "Ruifeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "3568--3573",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chaofa Yuan, Chuang Fan, Jianzhu Bao, and Ruifeng Xu. 2020. Emotion-cause pair extraction as se- quence labeling based on a novel tagging scheme. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3568-3573.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": ",Ding et al. (2020b),,,Cheng et al. (2020),Chen et al. (2020)) . In order to explore the corpus further and to encourage future work from a broader commu-1 https://github.com/Aaditya-Singh/ E2E-ECPE nity, we use an English language ECE corpus. (see section 5).",
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "uris": null,
                "text": "End-to-End network (E2E-PExt E )",
                "num": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "uris": null,
                "text": "pairs = no. of emotion-cause pairs predicted by model #correct pairs = number of emotion-cause pairs predicted correctly by the model #annotated pairs = total number of actual emotion-cause pairs in the data P, R, F 1 for the two auxiliary classification tasks (emotion-detection and cause-detection) have the usual definition (see Gui et al. (2016)).",
                "num": null
            },
            "FIGREF4": {
                "type_str": "figure",
                "uris": null,
                "text": "Precision, Recall and F1 Score as a function of weight assigned to negative examples.",
                "num": null
            },
            "FIGREF6": {
                "type_str": "figure",
                "uris": null,
                "text": "End-to-End network variant (E2E-PExt C )",
                "num": null
            },
            "TABREF0": {
                "num": null,
                "content": "<table><tr><td>ECPE 2-stage (Xia and Ding, 2019)</td><td colspan=\"2\">67.41 71.60</td><td>69.40</td><td colspan=\"2\">60.39 47.34</td><td>53.01</td><td>46.94 41.02</td><td>43.67</td></tr><tr><td>ECPE-2D(BERT) (Ding et al., 2020a)</td><td colspan=\"2\">74.35 69.68</td><td>71.89</td><td colspan=\"2\">64.91 53.53</td><td>58.55</td><td>60.49 43.84</td><td>50.73</td></tr><tr><td>ECPE-MLL(ISML-6) (Ding et al., 2020b)</td><td colspan=\"2\">75.46 69.96</td><td>72.55</td><td colspan=\"2\">63.50 59.19</td><td>61.10</td><td>59.26 45.30</td><td>51.21</td></tr><tr><td>E2E-PExt E (Ours)</td><td colspan=\"2\">71.63 67.49</td><td>69.43</td><td colspan=\"2\">66.36 43.75</td><td>52.26</td><td>51.34 49.29</td><td>50.17</td></tr><tr><td>RHNN (Fan et al., 2019)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>69.01 52.67</td><td>59.75</td></tr><tr><td>E2E-CExt (Ours)</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>65.21 66.18</td><td>65.63</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td>6 Experiments and Results</td></tr><tr><td>Naming Scheme for Model Variants:</td></tr><tr><td>E2E: End to End.</td></tr><tr><td>PExt/CExt/EExt: Pair Extraction/ Cause Ex-</td></tr><tr><td>traction/ Emotion Extraction.</td></tr><tr><td>Subscript E/C: represents how the auxiliary tasks</td></tr><tr><td>are solved interactively (emotion predictions used</td></tr><tr><td>for cause detection or vice versa).</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Experimental results comparing our models with the already existing benchmarks. The top half compares our model for ECPE (E2E-PExtE) against the existing benchmarks. The bottom half compares existing ECE benchmark on this dataset against our model (E2E-CExt). Note that the Pair Extraction task in ECPE with true-emotion provided reduces to the Cause Extraction task of ECE. The results on RHNN and E2E-CExt are only for the primary task, since in the ECE setting, there are no auxiliary tasks. The evaluation metrics are same as the ones used in previous works."
            }
        }
    }
}