File size: 88,383 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:33:41.572560Z"
    },
    "title": "Abstractive Text Summarization for Sanskrit Prose: A Study of Methods and Approaches",
    "authors": [
        {
            "first": "Shagun",
            "middle": [],
            "last": "Sinha",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nehru University",
                "location": {
                    "settlement": "New Delhi"
                }
            },
            "email": "[email protected]"
        },
        {
            "first": "Girish",
            "middle": [],
            "last": "Nath",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nehru University",
                "location": {
                    "settlement": "New Delhi"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The authors present a work-in-progress in the eld of Abstractive Text Summarization (ATS) for Sanskrit Prose-a rst attempt at ATS for Sanskrit (SATS). We will evaluate recent approaches and methods used for ATS and argue for the ones to be adopted for Sanskrit prose considering the unique properties of the language. There are three goals of SATS-to make manuscript summaries, to enrich the semantic processing of Sanskrit, and to improve the information retrieval systems in the language. While Extractive Text Summarization (ETS) is an important method, the summaries it generates are not always coherent. For qualitative coherent summaries, ATS is considered a better option by scholars. This paper reviews various ATS/ETS approaches for Sanskrit and other Indian Languages done till date. In the preliminary overview, authors conclude that of the two available approaches-structure-based and semantics-based-the latter would be viable owing to the rich morphology of Sanskrit. Moreover, a graph-based method may also be suitable. The second suggested method is the supervised-learning method. The authors also suggest attempting cross-lingual summarization as an extension to this work in future.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The authors present a work-in-progress in the eld of Abstractive Text Summarization (ATS) for Sanskrit Prose-a rst attempt at ATS for Sanskrit (SATS). We will evaluate recent approaches and methods used for ATS and argue for the ones to be adopted for Sanskrit prose considering the unique properties of the language. There are three goals of SATS-to make manuscript summaries, to enrich the semantic processing of Sanskrit, and to improve the information retrieval systems in the language. While Extractive Text Summarization (ETS) is an important method, the summaries it generates are not always coherent. For qualitative coherent summaries, ATS is considered a better option by scholars. This paper reviews various ATS/ETS approaches for Sanskrit and other Indian Languages done till date. In the preliminary overview, authors conclude that of the two available approaches-structure-based and semantics-based-the latter would be viable owing to the rich morphology of Sanskrit. Moreover, a graph-based method may also be suitable. The second suggested method is the supervised-learning method. The authors also suggest attempting cross-lingual summarization as an extension to this work in future.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Text Summarization (TS) is a core area of study under Computational Linguistics (CL) and Natural Language Processing (NLP) for generation of coherent text summaries. One of the earliest works was by Luhn (1958) from IBM where he proposed to create summaries of the abstracts of scienti3c papers. TS has also been developed for a number of Indian Languages (ILs). Extractive text summarization (ETS) and abstractive text summarization (ATS) are two primary approaches that focus on summarizing IL internet content, newspaper articles, research papers, o6cial documents etc (Sankar et al., 2011; Embar et al., 2013; Talukder et al., 2019; Gupta & Lehal, 2011 ; so on). Sanskrit is studied in various forms today mostly as a compositional language preserving several million texts of great intellectual value. The issues of text availability, readability and the need to access the knowledge in it have presented a huge requirement for ATS and related research for Sanskrit. The capacity of Sanskrit to in3nitely condense an expression with recurrent usage of concatenating techniques like euphonic combinations (sandhi), compounding (samasa), scrambling, verb elision for prosody etc make it di6cult to arrive at the structural or collocational meaning of the expression. When creating summaries, it is important that the semantics is processed well. Doing a good ATS for Sanskrit thus becomes extremely challenging. Summarization can be categorized di?erently on different bases: Single versus multi-document (based on the number of documents (Jones, 1999) , textual versus multimedia (based on the mode of document), extractive versus abstractive (based on the mode of the output (Afantenos et al, 2005; Moawad & Aref, 2012) . This paper is the description of an ongoing work on Sanskrit ATS (SATS) by the authors. The main contribution of this paper lies in its surveying the existing approaches to TS done for Sanskrit till date and to look at some challenges in processing Sanskrit for ATS. The paper proposes a semantic approach for any deeper processing of the texts in the language. The authors focus on single document summarization only because a multi-document ATS may be more complex due to various factors like semantic relatedness, diversity of subject matter, size etc.",
                "cite_spans": [
                    {
                        "start": 199,
                        "end": 210,
                        "text": "Luhn (1958)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 572,
                        "end": 593,
                        "text": "(Sankar et al., 2011;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 594,
                        "end": 613,
                        "text": "Embar et al., 2013;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 614,
                        "end": 636,
                        "text": "Talukder et al., 2019;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 637,
                        "end": 656,
                        "text": "Gupta & Lehal, 2011",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1542,
                        "end": 1555,
                        "text": "(Jones, 1999)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1680,
                        "end": 1703,
                        "text": "(Afantenos et al, 2005;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1704,
                        "end": 1724,
                        "text": "Moawad & Aref, 2012)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The origin and development of TS was inspired by the need to turn long English scienti3c texts into shorter ones (Luhn, 1958) . Currently, most ideas around TS techniques under Natural Language Processing are based on the growth of the internet and the need to condense information therein (Sunitha et. al., 2016) . In this backdrop, it is important to make one observation. While Sanskrit prose content on the net needs to be summarized as well, there are two key objectives of SATS which are di?erent from those of TS in any other language of the present day:",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 125,
                        "text": "(Luhn, 1958)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 290,
                        "end": 313,
                        "text": "(Sunitha et. al., 2016)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for Sanskrit ATS",
                "sec_num": "2."
            },
            {
                "text": "\u2022 A large body of scienti3c literature is available in Sanskrit and a lot of it is in the manuscript (MS) form. The study of an MS is a far more complex and tedious process which involves editing and re-editing a historical document till the authentic content is achieved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for Sanskrit ATS",
                "sec_num": "2."
            },
            {
                "text": "\u2022 SATS will require semantic analysis. This could pave the way for better semantic processing of Sanskrit. Since ATS works on the principle of 'key essence' of the text rather than extracting the suitable sentences, it could help enhance algo-rithms for processing the relative meaning of the words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for Sanskrit ATS",
                "sec_num": "2."
            },
            {
                "text": "Sanskrit TS so far has explored the extractive aspect only. Barve et.al. (2015) use three TS approaches to obtain text summary for Sanskrit based on a query given by the user -Average Term Frequency-Inverse Sentence Frequency (tf-isf), Vector Space Model (VSM), and Graph-Based Approach. They concluded that the VSM produced the best summary with 80% accuracy. ETS is a good approach for prose that has a high frequency of the query-word, as is seen in Barve et. al (2015) . However, not all prose may yield such results. In most cases, the keyword is not always repeated but is indicated through pronouns. While query-directed extraction can be highly successful in the former, it may not be so for the latter. Besides, the ETS also faces the incoherence disadvantage as mentioned by Mishra & Gayen (2018) . Abstractive approach, on the other hand, is more likely to resolve this. It 'abstracts' the essence from the text to be summarized. This leads to complexity in language processing but once successful, can result in enhanced summary quality with natural text generation. Scholars suggest that non-extractive methods generate better summaries because they reduce the information loss (Mishra & Gayen, 2018) . ATS has also been found better than ETS in other work (Giuseppe & Jackie, 2008) .",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 79,
                        "text": "Barve et.al. (2015)",
                        "ref_id": null
                    },
                    {
                        "start": 453,
                        "end": 472,
                        "text": "Barve et. al (2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 785,
                        "end": 806,
                        "text": "Mishra & Gayen (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1191,
                        "end": 1213,
                        "text": "(Mishra & Gayen, 2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1270,
                        "end": 1295,
                        "text": "(Giuseppe & Jackie, 2008)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literature Survey",
                "sec_num": "3."
            },
            {
                "text": "Scholars have di?erent bases for organizing the types of TS. Most of them can come under one or more of these categories:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Major ATS approaches for Indian Languages:",
                "sec_num": "3.1."
            },
            {
                "text": "1. Structure vs Semantic approach (Sunitha C et al., 2016) , 2. Machine Learning (ML) based methods (Anh & Trang, 2019; Talukder et al., 2019) , and 3. Corpora based approach (Hasler et al., 2003) 3.1.1. Sunitha C et. al. (2016) present a survey of the current techniques in ATS for ILs. Key approaches to ATS in ILs can be divided into two categories: Structurebased and Semantics based. Some notable works in ILs include Rich Semantic Graph approach for Hindi (Subramaniam & Dalal, 2015) , Malayalam (Kabeer & Idicula, 2014) , ATS through an extractive approach for Kannada (Kallimani et. el, 2014) . Structure-based approaches require the source text sentences to be collected in a prede3ned structure (Sunitha et al, 2016) . The types of structures mentioned are Tree-based, Ontology-based, Lead and Phrase structure based, Rule based and Templatebased. Each of these methods aims to collect the sentences from the source text and then generate a summary later.",
                "cite_spans": [
                    {
                        "start": 34,
                        "end": 58,
                        "text": "(Sunitha C et al., 2016)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 100,
                        "end": 119,
                        "text": "(Anh & Trang, 2019;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 120,
                        "end": 142,
                        "text": "Talukder et al., 2019)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 175,
                        "end": 196,
                        "text": "(Hasler et al., 2003)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 204,
                        "end": 228,
                        "text": "Sunitha C et. al. (2016)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 462,
                        "end": 489,
                        "text": "(Subramaniam & Dalal, 2015)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 502,
                        "end": 526,
                        "text": "(Kabeer & Idicula, 2014)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 576,
                        "end": 600,
                        "text": "(Kallimani et. el, 2014)",
                        "ref_id": null
                    },
                    {
                        "start": 705,
                        "end": 726,
                        "text": "(Sunitha et al, 2016)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Major ATS approaches for Indian Languages:",
                "sec_num": "3.1."
            },
            {
                "text": "In the Semantics based approach, there are three phases that lead to the summary-document input, semantic review and representation and then 3nally summary based on this semantic representation through Natural Language Generation (Sunitha et al., 2016) . Multimodal semantic, Information Item-based and Semantic Graph (Moawad & Aref, 2012) are the methods which focus primarily on the semantic representation of the source text. It is important to note that abstraction will need semantic representation at some stage. and that ATS requires two major components always -meaning extraction and summary generation in natural language.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 252,
                        "text": "(Sunitha et al., 2016)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 318,
                        "end": 339,
                        "text": "(Moawad & Aref, 2012)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Major ATS approaches for Indian Languages:",
                "sec_num": "3.1."
            },
            {
                "text": "A closer look reveals that the ILs popularly use : the graph-, the POS-NER-, and textual position-based methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Major ATS approaches for Indian Languages:",
                "sec_num": "3.1."
            },
            {
                "text": "Of the given types, one common method is the ontology based method. Ontology refers to the 'theory of existence' or a list of all the things that exist (Russell & Norvig, 2019) . A number of such summarization tools have been developed for a 3eld-speci3c summarization. For example, Texminer is a tool that summarizes papers of Port and Coastal Engineering (Hipola et al, 2014) ; or it may be related to a particular sci-enti3c 3eld (Luhn, 1958) . We 3nd it noteworthy that ontology is important in areas where a 3nite set of vocabulary pertaining to the 3eld can be enlisted. However, in extraction techniques in NLP, a method of ontology extraction does exist (Russell & Norvig, 2019 ). This may be a possible approach to get some ontology out of a general document, but its reliability for summarization purposes may have to be tested. This brings us to the next possible approach to Indian languages text summarization which is graph-based summarization. Graphs are created out of the text document with its words as vertices and the links between them as edges (Subramaniam & Dalal, 2015) . This method can be used for languages with easy tokenization availability. An additional use of WordNet is also required here. Advanced work in graph-based methods includes 'Reduced Semantic Graph' (RSG) methods where an even more simpli3ed version of a text's graph is generated using ontology for word-sense instantiation, concept validation and sentence-ranking (Moawad & Aref, 2012) . RSG methods have been deployed for Hindi (Subramaniam & Dalal, 2015) and Malayalam (Kabeer & Idicula, 2014) . The results for Hindi are reported to be up to the mark (Subramaniam & Dalal, 2015) . Due to the rich morphology of Sanskrit, a standard word-order may not be followed even in current prose. Semantic representation thus becomes an essential element. This indicates that perhaps semantic approach would yield better results. Sakhare and Kumar (2016) . Although they use it for English through neural nets, the approach for information extraction is taken from Mimamsa which makes it relevant to our discussion. A pointer-generator method based on pre-trained word-embedding for ATS has been performed for English by Anh & Trang (2019) . The application for Sanskrit will need to be tested though they had the prepared CNN/Dailymail dataset for training already. Another e?ort in IL ATS has been by Talukder et al. (2019) where the model used is sequence to sequence RNN. They report the loss of training error to 0.008. The text-based method is classi3ed as the third method. This is the corpus-based method deployed by others (Hasler et al, 2003; Edmundson, 1969) discussed in the next section. Apart from graph-based methods, POS-NER based methods have also been deployed. Embar et al (2013) presents sArAmsha, an abstractive summarizer for Kannada. According to them, tools like POS tagging and NER implementation are used in the initial processing of documents and then an abstraction scheme is applied. This may also be classi3ed under the corpus based approach.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 176,
                        "text": "(Russell & Norvig, 2019)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 357,
                        "end": 377,
                        "text": "(Hipola et al, 2014)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 433,
                        "end": 445,
                        "text": "(Luhn, 1958)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 662,
                        "end": 685,
                        "text": "(Russell & Norvig, 2019",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 1066,
                        "end": 1093,
                        "text": "(Subramaniam & Dalal, 2015)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1461,
                        "end": 1482,
                        "text": "(Moawad & Aref, 2012)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1526,
                        "end": 1553,
                        "text": "(Subramaniam & Dalal, 2015)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1568,
                        "end": 1592,
                        "text": "(Kabeer & Idicula, 2014)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1651,
                        "end": 1678,
                        "text": "(Subramaniam & Dalal, 2015)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1919,
                        "end": 1943,
                        "text": "Sakhare and Kumar (2016)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 2210,
                        "end": 2228,
                        "text": "Anh & Trang (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 2392,
                        "end": 2414,
                        "text": "Talukder et al. (2019)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 2621,
                        "end": 2641,
                        "text": "(Hasler et al, 2003;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 2642,
                        "end": 2658,
                        "text": "Edmundson, 1969)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2769,
                        "end": 2787,
                        "text": "Embar et al (2013)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Major ATS approaches for Indian Languages:",
                "sec_num": "3.1."
            },
            {
                "text": "Under this, Corpus is annotated with relevant annotation schemes like POS, NER, discourse annotation tools like the Rhetorical-Structure Theory (Mann & Thompson, 1988; Jones, 1999; Zahri et al., 2015) etc, which helps in extracting meaning at a later stage. Corpus type has also been used as an important basis for developing TS (Hasler et al., 2003) . Annotation of corpora to indicate meaningful units in a text is a viable method. The works suggest that semantic abstraction becomes easier with this annotated corpora. However, Oya T. et al. (2014) use template-based abstractive summarization which they report has reduced dependence on annotated corpora.",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 167,
                        "text": "(Mann & Thompson, 1988;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 168,
                        "end": 180,
                        "text": "Jones, 1999;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 181,
                        "end": 200,
                        "text": "Zahri et al., 2015)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 329,
                        "end": 350,
                        "text": "(Hasler et al., 2003)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus based approach:",
                "sec_num": "3.1.3."
            },
            {
                "text": "At this point, it is important to mention the extraction-based abstraction approach to TS one of which is the Information Extraction(IE) ATS (Kallimani et al, 2011). IE techniques are deployed in the initial stages in order to identify the important word units in the document. Abstraction is done from these extracted units (Kallimani et al, 2011; Afantenos et al., 2005) . Edmundson(1969) used a proper corpus divided into training and testing for summarization and evaluation. The method used is feature based only and he suggested that it was important to consider syntactic and semantic features in summarization. It may be noted that the 'abstracting' referred to in his article is focused on generating abstracts of articles based on extracted sentences. He terms this process as 'abstracting' (Edmundson & Wylls, 1961) , though it is di?erent from abstraction as we know it today. Other than ATS, some prominent works in ETS for Indian Languages have been covered by Dhanya & Jathavedan (2013) . The latter includes the thematic and positional score based method for Bengali (Sarkar, 2012) ; statistical features like cue phrase, title keyword, and similar features based extraction method for Punjabi (Gupta & Lehal, 2011) ; the graph-based text ranking method for Tamil (Sankar et al, 2011) performs extractive summary without any annotated corpora or supervised learning method. Patel et al. (2007) and D'Silva & Sharma (2019) look at multilingual translation problems with language independent TS being one option (Patel et al., 2007) . There are two reasons why it may not be useful to us. First, their approach is statistical and not semantic. It has been suggested by Edmundson (1969) that syntactic and semantic factors as well as context of a text (Jones, 1999) in TS be considered for better quality. We too believe that semantic representation is important for ATS. Two, their approach is mostly extractive. The other option, that of cross lingual TS using Machine Translation (MT) (D'Silva & Sharma, 2019) is a good option to be explored.",
                "cite_spans": [
                    {
                        "start": 325,
                        "end": 348,
                        "text": "(Kallimani et al, 2011;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 349,
                        "end": 372,
                        "text": "Afantenos et al., 2005)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 375,
                        "end": 390,
                        "text": "Edmundson(1969)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 801,
                        "end": 826,
                        "text": "(Edmundson & Wylls, 1961)",
                        "ref_id": null
                    },
                    {
                        "start": 975,
                        "end": 1001,
                        "text": "Dhanya & Jathavedan (2013)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1083,
                        "end": 1097,
                        "text": "(Sarkar, 2012)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1210,
                        "end": 1231,
                        "text": "(Gupta & Lehal, 2011)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1280,
                        "end": 1300,
                        "text": "(Sankar et al, 2011)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 1390,
                        "end": 1409,
                        "text": "Patel et al. (2007)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1526,
                        "end": 1546,
                        "text": "(Patel et al., 2007)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1683,
                        "end": 1699,
                        "text": "Edmundson (1969)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1765,
                        "end": 1778,
                        "text": "(Jones, 1999)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "3.1.4.",
                "sec_num": null
            },
            {
                "text": "A key point to be observed in these and general text summarization tools is the type and source of data. There are two primary domains of data on which most tools are based: Scienti3c articles and newspaper articles. Tools for the summary of these two types of texts are usually developed more. While extractive is a dominant approach for these domains, abstractive has also a good presence. However, to begin a process in Sanskrit ATS, we have focused our study on contemporary prose consisting of mainly newspaper articles and Sanskrit blogs. Observations regarding methods:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "3.1.5.",
                "sec_num": null
            },
            {
                "text": "1. Scholars use TS methods in a mixed manner. For e.g., a semantic graph may require ontology deployment for better semantic representation (Moawad & Aref, 2012) ; abstractive summarizer may 3rst extract relevant information before applying abstraction (Kalimanni et al, 2011).",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 161,
                        "text": "(Moawad & Aref, 2012)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "3.1.5.",
                "sec_num": null
            },
            {
                "text": "2. Supervised methods will need label summaries along with the texts. Thus, newspaper articles with their headlines are usually taken as the standard training corpus where the headline serves as the summary of the respective text. This is a feasible approach for a beginner-level work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "3.1.5.",
                "sec_num": null
            },
            {
                "text": "Some features of the Sanskrit writings and their challenges can be stated as following:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sanskrit ATS",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Sanskrit prose is strictly based on the principles of grammar which inspires its word-formation and usage. Owing to the Paninian model of Grammar, the language is rich in morphology. The principle of economy and precision have been important for Sanskrit prose (Kiparsky, 1991) . As a result, while the prose in Sanskrit in general is appreciated for its economy, it becomes di6cult for any man/machine processing, and more so for the ATS.",
                "cite_spans": [
                    {
                        "start": 263,
                        "end": 279,
                        "text": "(Kiparsky, 1991)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sanskrit ATS",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Compounds and Sandhis: Sanskrit prose is constituted on the samhita (continuous text) principle thereby using Compounds and Sandhis (euphonic combination) heavily. For instance, multiple words combined after removing their inOections is an example of a compound. Space does not act as a delimiter largely here. This along with potentially recursive sandhi and complex morphology make preprocessing a critical task for Sanskrit texts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sanskrit ATS",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Word Signicance: Most Sanskrit literary works, especially poetry, tend to be indirect in their intended meanings -abhidha(literal), lakshana(metaphor), vyanjana(euphemism). Poetry usually expresses meanings more than one but the same can go for most prose creations in literature also. The availability of lexical resources like the Amarakosha bear testimony to this fact, so does the long tradition of language analysis including the philosophy of Mimamsa (interpretation) and Nyaya (logic).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sanskrit ATS",
                "sec_num": "4."
            },
            {
                "text": "\u2022 Diversity of verb usage: While lakaras (tense) are used to denote time, some su6xes are also used to indicate past and present tense. Thus, for the same verb, di?erent forms of it can be used to suggest the same meaning. For each such usage, meaning will have to be considered well before generating a summary of any type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sanskrit ATS",
                "sec_num": "4."
            },
            {
                "text": "To perform a preliminary data study, a total of 1310 sentences have been extracted from online sources and stored as data 3les. Current prose like the news articles from the All India Radio, DD News and other sources have been considered at this stage. The following may be observed about the data:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Study",
                "sec_num": "5."
            },
            {
                "text": "1. Sentences are usually short, with not more than 7 words per sentence on an average.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Study",
                "sec_num": "5."
            },
            {
                "text": "2. Owing to the fact that most digital sources in Sanskrit found so far exist as a way to teach prospective learners, there is no variety in content found there.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Study",
                "sec_num": "5."
            },
            {
                "text": "3. News articles o?er a good standard of sentences in Sanskrit while at the same time reducing the complexity of verbs. There are a few standard usages which ensure ease of meaning comprehension.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Study",
                "sec_num": "5."
            },
            {
                "text": "The short length of sentences indicates that with some basic preprocessing only, a TS method may be applied on the text. After going through the preliminary data, this has led us to conclude that we may start our work with focus on two approaches: 3rst, a graphbased method. Owing to short sentences in the current prose, generating a graph and the prospective relations among words may be quicker and e6cient. Second, supervised method where news articles and their headlines are taken as corpora for training. This would be on the lines of the ATS developed on English and other languages using the CNN/Dailymail dataset (Mishra & Gayen, 2018) . Preprocessing of the text is a necessary stage in the approach (Barve et. al, 2015) . This would ensure creation of words for ease of processing the text further. Contemporary simple prose that contains direct meanings instead of oblique ones should be used like Barve et al (2015) use Sanskrit Wikipedia articles to test their approaches (VSM, Graph and tf-isf). A work on these two methods will suggest further course of action. Annotation may be required if the results so indicate.",
                "cite_spans": [
                    {
                        "start": 623,
                        "end": 645,
                        "text": "(Mishra & Gayen, 2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 711,
                        "end": 731,
                        "text": "(Barve et. al, 2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 911,
                        "end": 929,
                        "text": "Barve et al (2015)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Study",
                "sec_num": "5."
            },
            {
                "text": "This paper presents a preliminary attempt to develop a Sanskrit abstractive text summarizer for current prose. It surveyed the top abstractive summarization approaches to Indian languages, in general, with a view to zeroing in on one approach for the current work on Sanskrit ATS. Since there has not been any attempt at Sanskrit ATS so far, a beginning is being made for current Sanskrit prose mostly news articles. While summarization would not suit literary poetry, we could utilize dependency parsers to build semantic graphs for any verse in scienti3c texts. Prose in these texts could be further summarized if this work is advanced further from current prose to other prose styles. After surveying the available literature for ATS in ILs the authors propose that semantic approach would be better suited for the inherent complexities that Sanskrit is known for. Owing to rich morphology of the language, pre-de3ned structures may not result in a coherent or usable summary. Thus, a semantic approach would assist in arriving at a better analyzed summary. In the semantic approach, a graph-based method shall be a good start. Secondly, a supervised method for the available prose from the news article-headline combine may be emulated for Sanskrit too. The possibility of annotation should be considered after this, if required. The language of the output summary is one dimension of SATS which is out of the scope of this paper. For any other language, the abstracted summary is produced in the same language as the text. However, it",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "be explored if the abstractions of Sanskrit prose could be carried out in both Sanskrit as well as Hindi or English with the help of an existing Machine Translation",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "be explored if the abstractions of Sanskrit prose could be carried out in both Sanskrit as well as Hindi or English with the help of an existing Machine Trans- lation.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Summarization from Medical Documents: A Survey. Artificial Intelligence in Medicine",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Afantenos",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Karkaletsis",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Stamatopoulos",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "33.157-177.10.1016/j.artmed.2004.07.017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Afantenos, S., Karkaletsis, V. & Stamatopoulos, P. (2005). Summarization from Medical Documents: A Survey. Artificial Intelligence in Medicine. 33. 157-177. 10.1016/j.artmed.2004.07.017.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Abstractive Text Summarization Using Pointer-Generator Networks With Pre-trained Word Embedding",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "T"
                        ],
                        "last": "Anh",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "T T"
                        ],
                        "last": "Trang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Tenth International Symposium on Information and Communication Technology",
                "volume": "",
                "issue": "",
                "pages": "473--478",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anh, D. T., & Trang, N. T. T. (2019, December). Abstractive Text Summarization Using Pointer-Generator Networks With Pre-trained Word Embedding. In Proceedings of the Tenth International Symposium on Information and Communication Technology (pp. 473-478).",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Query-Based Extractive Text Summarization for Sanskrit",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Barve",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Desai",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sardinha",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Fourth International Conference on Frontiers in Intelligent Computing: Theory and Applications(FICTA)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barve, S, Desai, S. & Sardinha, R. (2015). \"Query-Based Extractive Text Summarization for Sanskrit\". In: Proceedings of the Fourth International Conference on Frontiers in Intelligent Computing: Theory and Applications(FICTA) .",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Digital Object",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Springer",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "I:10.1007/978-81-322-2695-6_47"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Springer. Digital Object I: 10.1007/978-81-322-2695-6_47",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A Study on Abstractive Summarization Techniques in Indian Languages",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Sunitha",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Jaya",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ganesh",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Fourth International Conference on Recent Trends in Computer Science and Engineering",
                "volume": "87",
                "issue": "",
                "pages": "25--31",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.procs.2016.05.121"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "C. Sunitha, A., Jaya, & Ganesh, A. (2016). \"A Study on Abstractive Summarization Techniques in Indian Languages\". In: Proceedings of the Fourth International Conference on Recent Trends in Computer Science and Engineering. Procedia Computer Science. 87(2016). pp 25-31. Elsevier: DOI: 10.1016/j.procs.2016.05.121",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Automatic Text Summarization of Indian Languages: A Multilingual Problem",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "D'silva",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Journal of Theoretical and Applied Information Technology",
                "volume": "97",
                "issue": "11",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D'Silva, J. & Sharma, U (2019). Automatic Text Summarization of Indian Languages: A Multilingual Problem. Journal of Theoretical and Applied Information Technology. 97(11).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "sArAmsha -A Kannada abstractive summarizer",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Embar",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Deshpande",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Vaishnavi",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kallimani",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "ICACCI2013.540-544.10.1109/ICACCI.2013.6637229"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Embar, V., Deshpande, S., Vaishnavi, A.K. & Jain, V. & Kallimani, J. (2013). sArAmsha -A Kannada abstractive summarizer. In: Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics , ICACCI 2013. 540-544. 10.1109/ICACCI.2013.6637229.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "New methods in automatic extracting",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Edmundson",
                        "suffix": ""
                    }
                ],
                "year": 1969,
                "venue": "Journal of the ACM (JACM)",
                "volume": "16",
                "issue": "2",
                "pages": "264--285",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM (JACM) , 16 (2), 264-285.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic abstracting and indexing-survey and recommendations",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Edmundson",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "E"
                        ],
                        "last": "Wyllys",
                        "suffix": ""
                    }
                ],
                "year": 1961,
                "venue": "Communications of the ACM",
                "volume": "4",
                "issue": "5",
                "pages": "226--234",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edmundson, H. P., & Wyllys, R. E. (1961). Automatic abstracting and indexing-survey and recommendations. Communications of the ACM , 4 (5), 226-234.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Features Selection and Weight learning for Punjabi Text Summarization",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "S"
                        ],
                        "last": "Lehal",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "International Journal of Engineering Trends and Technology",
                "volume": "2",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gupta, V., & Lehal, G.S. (2011). Features Selection and Weight learning for Punjabi Text Summarization. International Journal of Engineering Trends and Technology. 2(2).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Extractive vs. NLG-based Abstractive Summarization of Evaluative Text: The Effect of Corpus Controversiality",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "K"
                        ],
                        "last": "Giuseppe C & Jackie",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Fifth International Natural Language Generation Conference, ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Giuseppe C & Jackie C. K. (2008), Extractive vs. NLG-based Abstractive Summarization of Evaluative Text: The Effect of Corpus Controversiality , Proceedings of the Fifth International Natural Language Generation Conference, ACL, https://www.aclweb.org/anthology/W08-1106",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Building better corpora for summarization",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hasler",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Orasan",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of Corpus Linguistics",
                "volume": "",
                "issue": "",
                "pages": "309--319",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hasler, L., Orasan, C., & Mitkov, R. (2003). Building better corpora for summarization. In Proceedings of Corpus Linguistics (pp. 309-319).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Ontology-based text summarization. The case of Texminer",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Hipola",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "A"
                        ],
                        "last": "Senso",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mederos-Leiva",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Dominguez-Velasco",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Library HiTech",
                "volume": "32",
                "issue": "2",
                "pages": "229--248",
                "other_ids": {
                    "DOI": [
                        "10.1108/LHT-01-2014-0005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hipola, P., Senso, J.A., Mederos-Leiva, A. & Dominguez-Velasco, S. (2014). Ontology-based text summarization. The case of Texminer. Library HiTech. 32(2) . pp 229-248. Emerald. DOI: 10.1108/LHT-01-2014-0005.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Automatic summarizing: factors and directions",
                "authors": [
                    {
                        "first": "K",
                        "middle": [
                            "S"
                        ],
                        "last": "Jones",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Advances in automatic text summarization",
                "volume": "",
                "issue": "",
                "pages": "1--12",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jones, K. S. (1999). Automatic summarizing: factors and directions. In Mani & Maybury (eds.) Advances in automatic text summarization (No. 1, pp. 1-12).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Information extraction by an abstractive text summarization for an Indian regional language",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Kallimani",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "G"
                        ],
                        "last": "Srinivasa",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "2011 7th International Conference on Natural Language Processing and Knowledge Engineering",
                "volume": "",
                "issue": "",
                "pages": "319--322",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kallimani, J. S., & Srinivasa, K. G. (2011). Information extraction by an abstractive text summarization for an Indian regional language. In 2011 7th International Conference on Natural Language Processing and Knowledge Engineering (pp. 319-322). IEEE.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Text summarization for Malayalam documents -An experience",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kabeer",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "M"
                        ],
                        "last": "Idicula",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the International Conference on Data Science & Engineering (ICDSE)",
                "volume": "",
                "issue": "",
                "pages": "145--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kabeer, R. & Idicula, S. M.(2014). \"Text summarization for Malayalam documents -An experience\" In: Proceedings of the International Conference on Data Science & Engineering (ICDSE), Kochi, pp. 145-150.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Economy and the Construction of Sivasutras",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Kiparsky",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kiparsky, P. (1991). Economy and the Construction of Sivasutras. PDF.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "The automatic creation of literature abstracts",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Luhn",
                        "suffix": ""
                    }
                ],
                "year": 1958,
                "venue": "IBM Journal of research and development",
                "volume": "2",
                "issue": "2",
                "pages": "159--165",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of research and development , 2 (2), 159-165. .",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Advances in Automatic Summarization",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Mani",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "T"
                        ],
                        "last": "Maybury",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mani, I. & Maybury, M. T. (1999). Advances in Automatic Summarization. MIT Press.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Rhetorical structure theory: Toward a functional theory of text organization",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "C"
                        ],
                        "last": "Mann",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Thompson",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Text-interdisciplinary Journal for the Study of Discourse",
                "volume": "8",
                "issue": "3",
                "pages": "243--281",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mann, W. C., & Thompson, S. A. (1988). Rhetorical structure theory: Toward a functional theory of text organization. Text-interdisciplinary Journal for the Study of Discourse , 8 (3). pp. 243-281.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Semantic Graph Reduction Approach for Abstractive Text Summarization",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Moawad",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [
                            "M"
                        ],
                        "last": "Aref",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICCES.2012.6408498"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Moawad, I F & Aref. M. ( 2012). \"Semantic Graph Reduction Approach for Abstractive Text Summarization\". In: ICCES. p 132-138. DOI: 10.1109/ICCES.2012.6408498",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Automatic Lossless Summarization of News Articles with Abstract Meaning Representation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Gayen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 3rd International Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mishra, R. and Gayen, T. (2018). \"Automatic Lossless Summarization of News Articles with Abstract Meaning Representation.\" In: Proceedings of the 3rd International Conference Computer Science and Computational Engineering. Procedia Computer Science. PDF.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A template-based abstractive meeting summarization: Leveraging summary and source text relationships",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Oya",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Mehdad",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Carenini",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 8th International Natural Language Generation Conference (INLG)",
                "volume": "",
                "issue": "",
                "pages": "45--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oya, T., Mehdad, Y., Carenini, G., & Ng, R. (2014). A template-based abstractive meeting summarization: Leveraging summary and source text relationships. In Proceedings of the 8th International Natural Language Generation Conference (INLG) : pp. 45-53.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "A language independent approach to multilingual text summarization. Large scale semantic access to content (text, image, video, and sound",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Siddiqui",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [
                            "S"
                        ],
                        "last": "Tiwary",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "123--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patel, A., Siddiqui, T., & Tiwary, U. S. (2007). A language independent approach to multilingual text summarization. Large scale semantic access to content (text, image, video, and sound) , 123-132.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Comparative Study of Text Summarization in Indian Languages",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "M"
                        ],
                        "last": "Dhanya",
                        "suffix": ""
                    },
                    {
                        "first": "&",
                        "middle": [],
                        "last": "Jathavedan",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "International Journal of Computer Applications",
                "volume": "75",
                "issue": "6",
                "pages": "17--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P.M, Dhanya & Jathavedan M. (2013). \"Comparative Study of Text Summarization in Indian Languages.\" In: International Journal of Computer Applications. 75(6) : pp 17-21.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Ontology-Based Automatic Text Summarization using FarsNet",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ramezani",
                        "suffix": ""
                    },
                    {
                        "first": "Md",
                        "middle": [
                            "R"
                        ],
                        "last": "Feizi-Derakhshi",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Advances in Computer Science: an International Journal",
                "volume": "4",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramezani, M. & Feizi-Derakhshi, Md. R. (2015). Ontology-Based Automatic Text Summarization using FarsNet. Advances in Computer Science: an International Journal. 4(2) no.14.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Artificial Intelligence: A Modern Approach",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "J"
                        ],
                        "last": "Russell",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Norvig",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Russell, S J. & Norvig, P. (2019). Artificial Intelligence: A Modern Approach. Pearson.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Text Extraction for an Agglutinative Language",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Sankar",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Vijay",
                        "middle": [
                            "Sundar"
                        ],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "L"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Problem of Parsing in Indian languages",
                "volume": "11",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sankar, K., R, Vijay Sundar Kumar, Devi, S.L. (2011). Text Extraction for an Agglutinative Language. Language in India. 11(5). Special Vol: Problem of Parsing in Indian languages.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Syntactical Knowledge and Sanskrit Memansa Principle Based Approach for Text Summarization",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "Y"
                        ],
                        "last": "Sakhare",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "In: International Journal of Computer Science and Information Security (IJCSIS)",
                "volume": "14",
                "issue": "4",
                "pages": "1947--5500",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sakhare, D.Y. and Kumar R (2016). Syntactical Knowledge and Sanskrit Memansa Principle Based Approach for Text Summarization\" In: International Journal of Computer Science and Information Security (IJCSIS). 14(4). pp. 270-275. ISSN: 1947-5500.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Bengali text summarization by sentence extraction",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1201.2240"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sarkar, K. (2012). Bengali text summarization by sentence extraction. arXiv preprint arXiv:1201.2240 .",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Test Model for Rich Semantic Graph Representation for Hindi Text using Abstractive Method",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Subramaniam",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Dalal",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "In: International Research Journal of Engineering and Technology",
                "volume": "2",
                "issue": "2",
                "pages": "2395--0056",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Subramaniam, M. & Dalal V. (2015). \"Test Model for Rich Semantic Graph Representation for Hindi Text using Abstractive Method\" In: International Research Journal of Engineering and Technology. 2(2). pp 113-116. e-ISSN:2395-0056",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Bengali abstractive text summarization using sequence to sequence RNNs",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "A I"
                        ],
                        "last": "Talukder",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Abujar",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K M"
                        ],
                        "last": "Masum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Faisal",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Hossain",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "10th International Conference on Computing, Communication and Networking Technologies (ICCCNT)",
                "volume": "",
                "issue": "",
                "pages": "1--5",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Talukder, M. A. I., Abujar S., Masum, A. K. M., Faisal, F. & Hossain, S. A. (2019). \"Bengali abstractive text summarization using sequence to sequence RNNs,\" 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) . pp. 1-5.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Applications of Rhetorical Relations Between Sentences to Cluster-Based Text Summarization",
                "authors": [
                    {
                        "first": "N",
                        "middle": [
                            "A H"
                        ],
                        "last": "Zahri",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Fukumoto",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Suguru",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [
                            "B"
                        ],
                        "last": "Lynn",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ccsea",
                        "suffix": ""
                    },
                    {
                        "first": "Aifu",
                        "middle": [],
                        "last": "Dkmp",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sea-",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "73--92",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zahri, N.A.H., Fukumoto, F., Suguru, M., & Lynn, O.B. (2015). Applications of Rhetorical Relations Between Sentences to Cluster-Based Text Summarization. in Nagamalai et al. (eds.) CCSEA, DKMP, AIFU, SEA-2015. pp. 73-92.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "content": "<table><tr><td>help of a semantic analysis technique (Maji &amp; Fizi-</td></tr><tr><td>Derakhshi, 2015).</td></tr><tr><td>A neural-network based application of the Memansa</td></tr><tr><td>principle is used by</td></tr></table>",
                "text": "Unsupervised methods include graph-based, VSM, text-based. Graph-based method can be grouped with the semantic graph approach mentioned earlier. It creates a graph with concepts as vertices and the relation between them as edges(Majod, & Fizi-Derakhshi,  2015). VSM technique creates vectors of the units of text and then the most important units are extracted with the",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}