File size: 78,892 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:33:38.964479Z"
    },
    "title": "A Deeper Study on Features for Named Entity Recognition",
    "authors": [
        {
            "first": "Sobha",
            "middle": [],
            "last": "Lalitha",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "AU-KBC Research Centre MIT Campus of Anna University Chromepet",
                "location": {
                    "settlement": "Chennai",
                    "country": "India"
                }
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper deals with the various features used for the identification of named entities. The performance of the machine learning system heavily depends on the feature selection criteria. The intention to trace the essential features required for the development of named entity system across languages motivated us to conduct this study. The linguistic analysis was done to find out the part of speech patterns surrounding the context of named entities and from the observation linguistic oriented features are identified for both Indian and European languages. The Indian languages belongs to Dravidian language family such as Tamil, Telugu, Malayalam, Indo-Aryan language family such as Hindi, Punjabi, Bengali and Marathi, European languages such as English, Spanish, Dutch, German and Hungarian are used in this work. The machine learning technique CRFs was used for the system development. The experiments were conducted using the linguistic features and the results obtained for each languages are comparable with state-of-art systems.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper deals with the various features used for the identification of named entities. The performance of the machine learning system heavily depends on the feature selection criteria. The intention to trace the essential features required for the development of named entity system across languages motivated us to conduct this study. The linguistic analysis was done to find out the part of speech patterns surrounding the context of named entities and from the observation linguistic oriented features are identified for both Indian and European languages. The Indian languages belongs to Dravidian language family such as Tamil, Telugu, Malayalam, Indo-Aryan language family such as Hindi, Punjabi, Bengali and Marathi, European languages such as English, Spanish, Dutch, German and Hungarian are used in this work. The machine learning technique CRFs was used for the system development. The experiments were conducted using the linguistic features and the results obtained for each languages are comparable with state-of-art systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Named Entity Recognition (NER) is defined as the process of automatic identification of proper nouns and classifies the identified entities into predefined categories such as person, location, organization, facilities, products, temporal or numeric expressions etc. Even though named entity recognition is a well-established research filed and lot of research works are available for various languages, to the best of our language no work was found on the deeper analysis of features required for named entity system across languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "1."
            },
            {
                "text": "Initially the term NER was defined in Message Understanding Conference (MUC), when the structured information about company and defense related activities needed to be extracted from the unstructured text. It was noticed that the main information units to be extracted are named entities (Grishman et al. 1996) . The very first research work in NER was done by Lisa F. Rau, who developed the system to recognize company names using hand-crafted rules. In MUC-7, five out of eight systems were generated using rule based method (Chinchor 1998) . Nadeau et al. (2007) has reported fifteen years of research carried out in the field of entity recognition. Guti\u00e9rrez et al. (2015) developed a Spanish NE system using CRF. The dataset was obtained from CONLL 2002 shared task. Ekbal et al. (2008) worked on a Bengali named entity recognition using CRF. Ekbal et al. (2009) contributed NER systems for Hindi & Bengali using CRF framework. Kaur et al. (2012) built an NE system for Punjabi language. Bindu & Sumam Mary (2012) used CRF based approach for identifying named entities in Malayalam text. Khanam et.al. (2016) has worked on the Named Entity Identification for Telugu Language using hybrid approach. Sobha et al. (2007) developed a multilingual named entity system to identify the place names using Finite State Automaton (FSA). Vijayakrishna & Sobha (2008) focused on the Tamil NER for tourism domain which consists of nested tagging of named entities. Malarkodi & Sobha (2012a) built a NE system for Indian languages like Tamil, Telugu, Hindi, Marathi, Punjabi and Bengali using CRF. Malarkodi et al. (2012b) discussed the various challenges, while developing the NE system in Tamil language. Sobha et al. (2013) has participated in ICON NLP tool contest and submitted the test runs for 5 Indian languages and English. Patil et al. (2016) reported a work on NER for Marathi using HMM. Jaspreet et al. (2015) contributed Punjabi NER using 2 machine learning approaches namely HMM and MEMM. Antony et.al. (2014) constructed the NE system for Tamil Biomedical documents using SVM classifier. Lakshmi et.al. (2016) has worked on the Malayalam NER using Fuzzy-SVM and it is based on the semantic features and linguistic grammar rules. Jiljo et.al. (2016) used TnT and Maximum Entropy Markov model for NE identification in Malayalam data. The proposed methodology yields 82.5% accuracy.",
                "cite_spans": [
                    {
                        "start": 288,
                        "end": 310,
                        "text": "(Grishman et al. 1996)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 527,
                        "end": 542,
                        "text": "(Chinchor 1998)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 545,
                        "end": 565,
                        "text": "Nadeau et al. (2007)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 653,
                        "end": 676,
                        "text": "Guti\u00e9rrez et al. (2015)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 772,
                        "end": 791,
                        "text": "Ekbal et al. (2008)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 848,
                        "end": 867,
                        "text": "Ekbal et al. (2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 933,
                        "end": 951,
                        "text": "Kaur et al. (2012)",
                        "ref_id": null
                    },
                    {
                        "start": 993,
                        "end": 1018,
                        "text": "Bindu & Sumam Mary (2012)",
                        "ref_id": null
                    },
                    {
                        "start": 1093,
                        "end": 1113,
                        "text": "Khanam et.al. (2016)",
                        "ref_id": null
                    },
                    {
                        "start": 1203,
                        "end": 1222,
                        "text": "Sobha et al. (2007)",
                        "ref_id": null
                    },
                    {
                        "start": 1332,
                        "end": 1360,
                        "text": "Vijayakrishna & Sobha (2008)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 1457,
                        "end": 1482,
                        "text": "Malarkodi & Sobha (2012a)",
                        "ref_id": null
                    },
                    {
                        "start": 1589,
                        "end": 1613,
                        "text": "Malarkodi et al. (2012b)",
                        "ref_id": null
                    },
                    {
                        "start": 1698,
                        "end": 1717,
                        "text": "Sobha et al. (2013)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1824,
                        "end": 1843,
                        "text": "Patil et al. (2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1890,
                        "end": 1912,
                        "text": "Jaspreet et al. (2015)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2094,
                        "end": 2115,
                        "text": "Lakshmi et.al. (2016)",
                        "ref_id": null
                    },
                    {
                        "start": 2235,
                        "end": 2254,
                        "text": "Jiljo et.al. (2016)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "1."
            },
            {
                "text": "Boj\u00f3rquez et al. (2015) worked on improving the Spanish NER used in the Text Dialog System (TDS) by using semisupervised technique. Zea et.al. (2016) developed a semisupervised NE system for Spanish language. Athavale et al. (2016) described a Neural Network model for NER based on the Bi Directional RNN-LSTM. In order to identify the mentions of medications, Adverse Drug Event (ADE) and symptoms of the diseases in the clinical notes (Florez et al. 2018) proposed the character-level word representation methods which can be used as an input feature to neural network model called LSTM.",
                "cite_spans": [
                    {
                        "start": 132,
                        "end": 149,
                        "text": "Zea et.al. (2016)",
                        "ref_id": null
                    },
                    {
                        "start": 437,
                        "end": 457,
                        "text": "(Florez et al. 2018)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "1."
            },
            {
                "text": "The various shared tasks conducted for Named Entity Recognition are discussed in this section. In 2002, CONLL shared task about NER was focused on Spanish and Dutch (Tjong et al. 2002) . The CONLL 2003 offered dataset for English and German (Tjong et al. 2003 ). The NERSSEAL shared task of IJCNLP-2008 was organized for 5 Indian Languages namely Hindi, Bengali, Oriya, Telugu and Urdu (Singh, 2008) . In 2013 AU-KBC has organized NER shared task as part of Forum for Information Retrieval for Evaluation (FIRE), to create a benchmark data for Indian Languages. The dataset was released for 4 Indian Languages like Bengali, Hindi, Malayalam, and Tamil and also for English. The various techniques used by the participants are CRF, rule based approach and list based search (Pattabhi & Sobha 2013) . The 2nd edition of NER track for IL has organized as part of FIRE 2014 for English and 3 IL namely Hindi, Malayalam, and Tamil. The main focus of this track is nested entity identification. The participants have used CRF and SVM for system development (Pattabhi et al. 2014 ). ",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 184,
                        "text": "Spanish and Dutch (Tjong et al. 2002)",
                        "ref_id": null
                    },
                    {
                        "start": 222,
                        "end": 259,
                        "text": "English and German (Tjong et al. 2003",
                        "ref_id": null
                    },
                    {
                        "start": 386,
                        "end": 399,
                        "text": "(Singh, 2008)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 773,
                        "end": 796,
                        "text": "(Pattabhi & Sobha 2013)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1051,
                        "end": 1072,
                        "text": "(Pattabhi et al. 2014",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "1."
            },
            {
                "text": "In this section, we discuss the corpus we have used for the study. The corpus for Tamil, Malayalam, and English was collected using an automated crawler program. The details of the POS tagset are explained in this section. The BIS POS tagset was used for Indian Languages. The Tamil POS tagger developed by Sobha et al. (2016) works with an accuracy of 95.16% (Sobha et al., 2016) . The Brills POS tagger (Brill et al., 1992 ) is used for this task. The dataset used for German are preprocessed with Stanford POS tagger (Manning et al., 2014) . The Spanish and Dutch dataset are obtained from the CONLL shared task are already tagged with POS information.",
                "cite_spans": [
                    {
                        "start": 307,
                        "end": 326,
                        "text": "Sobha et al. (2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 360,
                        "end": 380,
                        "text": "(Sobha et al., 2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 405,
                        "end": 424,
                        "text": "(Brill et al., 1992",
                        "ref_id": null
                    },
                    {
                        "start": 520,
                        "end": 542,
                        "text": "(Manning et al., 2014)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus Statistics",
                "sec_num": "3."
            },
            {
                "text": "The part of speech patterns frequently occurred in the context of named entities are analyzed for each language and the results are discussed in this section. We analyze the corpus to arrive at the most suitable word level features for identifying the NE which can be used for machine learning purposes. We have taken a window of three words and identified the most frequent grammatical and typographical feature that occurs. The distribution of each feature in each language is given in detail below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features used for Named Entity Recognition",
                "sec_num": "4."
            },
            {
                "text": "In Tamil corpus, the named entities occurred at the beginning of the sentence in 3,776 instances and in 2,056 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 6,222 times and 4,596 times punctuations succeed the NE, common nouns preceded the NE in 6,274 times and succeeded the NE in 9,038 times, proper nouns occurred before NE in 2,250 instances and after NE in 2,868 instances. The postpositions occurred before NE in 999 instances, adjectives occurred before NE in 1418 instances and conjunction occurred before NE in 384 times. The verbal participle preceding the named entities in 716 instances and the relative participle verbs preceded the NE in 1,007 times. The finite verbs succeed the NE in 998 instances, postpositions, adverb, and adjectives occurred at 1131, 980 and 878 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The Malayalam corpus has the following distribution. The named entities occurred at the beginning of the sentence in 1,062 instances and in 72 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 818 times and 751 times punctuations succeed the NE, common nouns preceded the NE in 1,281 times and succeeded the NE in 1,794 times, proper nouns occurred before NE in 774 instances and after NE in 939 instances. The postpositions occurred before NE in 209 instances, adjectives occurred before NE in 201 instances and conjunction occurred before NE in 85 times. The verbal participle preceding the named entities in 82 instances and the relative participle verbs preceded the NE in 238 times. The finite verbs succeed the NE in 628 instances, postpositions, adverb, and adjectives occurred at 192, 173 and 273 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In Telugu corpus, the named entities occurred at the beginning of the sentence in 776 instances and in 17 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 588 times and 610 times punctuations succeed the NE, common nouns preceded the NE in 3722 times and succeeded the NE in 4641 times, proper nouns occurred before NE in 540 instances and after NE in 615 instances. The postpositions occurred before NE in 450 instances, adjectives occurred before NE in 315 instances and conjunction occurred before NE in 153 times. The verbs preceding the named entities in 1541 instances and the relative participle verbs preceded the NE in 78 times. The verbs succeed the NE in 1307 instances, postpositions, adverb and adjectives occurred at 665, 263 and 256 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The Hindi corpus has the following distribution. The named entities occurred at the beginning of the sentence in 5,290 instances and in 1,201 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 2281 times and 2070 times punctuations succeed the NE, common nouns preceded the NE in 1862 times and succeeded the NE in 1307 times, proper nouns occurred before NE in 1055 instances and after NE in 753 instances. The postpositions occurred before NE in 3536 instances, adjectives occurred before NE in 611 instances and conjunction occurred before NE in 1844 times. The verbs preceding the named entities in 349 instances and the relative participle verbs preceded the NE in 412 times. The verbs succeed the NE in 876 instances, postpositions, adverb and adjectives occurred at 915, 536 and 436 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In Punjabi corpus, the named entities occurred at the beginning of the sentence in 1267 instances and in 831 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 499 times and 475 times punctuations succeed the NE, common nouns preceded the NE in 1,119 times and succeeded the NE in 684 times, proper nouns occurred before NE in 304 instances and after NE in 304 instances. The postpositions occurred before NE in 1363 instances, adjectives occurred before NE in 553 instances and conjunction occurred before NE in 227 times. The verbs preceding the named entities in 99 instances and the relative participle verbs preceded the NE in 176 times. The verbs succeed the NE in 361 instances, postpositions, adverb and adjectives occurred at 3,211, 136 and 158 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In Bengali corpus, the NE distribution is as discussed here. The named entities occurred at the beginning of the sentence in 630 instances and in 312 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 288 times and 204 times punctuations succeed the NE, common nouns preceded the NE in 561 times and succeeded the NE in 908 times, proper nouns occurred before NE in 197 instances and after NE in 199 instances. The postpositions occurred before NE in 120 instances, adjectives occurred before NE in 148 instances and conjunction occurred before NE in 239 times. The verbs preceding the named entities in 208 instances and the relative participle verbs preceded the NE in 25 times. The verbs succeed the NE in 290 instances, postpositions, adverb and adjectives occurred at 159, 280 and 238 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The Marathi corpus has the following distribution. The named entities occurred at the beginning of the sentence is 967 instances and in 488 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 609 times and 566 times punctuations succeed the NE, common nouns preceded the NE in 1956 times and succeeded the NE in 1879 times, proper nouns occurred before NE in 348 instances and after NE in 219 instances. The postpositions occurred before NE in 14 instances, adjectives occurred before NE in 114 instances and conjunction occurred before NE in 466 times. The verbs preceding the named entities in 475 instances and the relative participle verbs preceded the NE in 38 times. The verbs succeed the NE in 419 instances, postpositions, adverb and adjectives occurred at 212, 253 and 392 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In English corpus, the NE distribution is as discussed here. The named entities occurred at the beginning of the sentence in 1,014 instances and in 2,078 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 1549 times and 2078 times punctuations succeed the NE, common nouns preceded the NE in 1239 times and succeeded the NE in 1289 times, proper nouns occurred before NE in 745 instances and after NE in 823 instances. The prepositions occurred before NE in 2794 instances. The determiners preceding the named entities in 1425 instances. The verbal participle preceding the named entities in 156 instances. The finite verbs succeed the NE in 680 instances, prepositions and conjunctions occurred at 1195 and 774 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The Spanish corpus has the following distribution. The named entities occurred at the beginning of the sentence in 2046 instances and in 2,131 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 2404 times and 7010 times punctuations succeed the NE, nouns preceded the NE in 1123 times and succeeded the NE in 204 times. The prepositions occurred before NE in 7231 instances. The determiners preceding the named entities in 3993 instances. The verbs succeed the NE in 2060 instances, prepositions and conjunctions occurred at 2116 and 1648 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In Dutch corpus, the NE distribution is as discussed here. The named entities occurred at the beginning of the sentence in 5605 instances and in 2787 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 4142 times and 10321 times punctuations succeed the NE, nouns preceded the NE in 2627 times and succeeded the NE in 3174 times. The prepositions occurred before NE in 5146 instances. The determiners preceding the named entities in 4142 instances. The verbs succeed the NE in 4657 instances, prepositions and conjunctions occurred at 2062 and 1411 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The German corpus has the following distribution. The named entities occurred at the beginning of the sentence in 2033 instances and in 128 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 966 times and 2535 times punctuations succeed the NE, common nouns preceded the NE in 5012 times and succeeded the NE in 3886 times, proper nouns occurred before NE in 321 instances and after NE in 608 instances. The prepositions occurred before NE in 5869 instances. The determiners preceding the named entities in 7166 instances. The finite verbs succeed the NE in 3140 instances, prepositions and conjunctions occurred at 3075 and 2059 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "In Hungarian corpus, the NE distribution is as discussed here. The named entities occurred at the beginning of the sentence is 2175 instances and in 26 instances named entities occurred at the end of the sentence, punctuations preceded the NE in 878 times and 1861 times punctuations succeed the NE, nouns preceded the NE in 845 times and succeeded the NE in 2053 times. The postpositions occurred before NE in 148 instances. The determiners preceding the named entities in 1788 instances. The finite verbs succeed the NE in 751 instances, prepositions and conjunctions occurred at 220 and 439 instances respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "We have analysed the corpus for the various part of speech which is associated with the named entities. In the window of three, the following are the grammatical features that occurred. Also, the Typographical features also arrive through the analysis. From the above analysis, we arrived at the following points The results obtained Indo-Aryan languages using linguistic feature are discussed in this section. The precision and recall achieved for Hindi is 80.12% and 83.1% respectively. Bengali has obtained the f-score of 85%. Punjabi scored the precision of 80.54% and recall of 83.45%. Marathi has achieved the f-measure of 82.57%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The results obtained European languages using linguistic feature are discussed in this section. The precision and recall achieved for English is 84% and 80% respectively. Spanish has obtained the f-score of 85%. Dutch scored the precision of 90.3% and recall of 92.23%. Hungarian has achieved the f-measure of 84.57%. German has obtained the precision of 81%, recall of 72% and f-measure of 76% respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The different feature combinations shown in Gayen et al. (2014) has participated in ICON NER shared task and built a named entity system for English and 6 Indian languages using HMM. In comparison with the performance reported by Gayen et al. (2014) , except Bengali we have achieved the highest f-score for all the Indian languages. Abinaya et al. (2014) has participated in FIRE 2014 shared task and developed a NE system for English and 3 Indian Languages. As reported in FIRE 2014 NER task overview paper (Pattabhi et al., 2014) , the results given in table 6 are obtained by Abinaya et al. for maximal entities. They have implemented CRFs for English and SVM for other languages. The present system achieved the better scores than Abinaya et al. The language Independent (LI) NE system has developed for Hindi and Bengali using CRFs by Ekbal et al. (2009) . The results attained by the present work in Bengali and Hindi languages are higher than Ekbal et al. (2009) . But the NE system developed using language specific features by Ekbal et al. (2009) are performing better than the present system. Florian et al. (2003) participated in CONLL 2002 NER shared task and obtained 79.05% for Spanish and 74.99% for Dutch. The present system obtained 85% and 91% f-measure for Spanish and Dutch respectively.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 63,
                        "text": "Gayen et al. (2014)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 230,
                        "end": 249,
                        "text": "Gayen et al. (2014)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 509,
                        "end": 532,
                        "text": "(Pattabhi et al., 2014)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 841,
                        "end": 860,
                        "text": "Ekbal et al. (2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 951,
                        "end": 970,
                        "text": "Ekbal et al. (2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1037,
                        "end": 1056,
                        "text": "Ekbal et al. (2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1104,
                        "end": 1125,
                        "text": "Florian et al. (2003)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis of common Linguistic features",
                "sec_num": "4.1"
            },
            {
                "text": "The different kinds of features used for the named entity recognition are discussed in this work. The linguistic analysis of POS patterns precedes and following the named entities are analyzed for each language and from the observation linguistic features for the POS patterns are identified in the proximity of NE. This helps the system to learn the structure of named entities by providing the linguistic information. The experiments are conducted for both Indian and European languages. The results shown that the linguistic features obtained state-of-art results for both Indian and European languages. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Overview of MUC -7",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Chinchor",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of the Seventh Message Understanding Conference (MUC-7)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chinchor, N. (1998). Overview of MUC -7. In Proceedings of the Seventh Message Understanding Conference (MUC-7), Fairfax, Virginia.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Bengali named entity recognition using support vector machine",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ekbal",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bandyopadhyay",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South and South East Asian Languages",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ekbal, A. & Bandyopadhyay, S. (2008). Bengali named entity recognition using support vector machine. In Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South and South East Asian Languages.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A Conditional Random Field Approach for Named Entity Recognition in Bengali and Hindi",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ekbal",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bandyopadhyay",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Linguistic Issues in Language Technology",
                "volume": "2",
                "issue": "1",
                "pages": "1--44",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ekbal, A. & Bandyopadhyay, S. (2009). A Conditional Random Field Approach for Named Entity Recognition in Bengali and Hindi. Linguistic Issues in Language Technology, Vol. 2, no. 1, 1-44.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Named entity recognition using neural networks for clinical notes",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Florez",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Precioso",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Riveill",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Pighetti",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Workshop on Medication and Adverse Drug Event Detection",
                "volume": "",
                "issue": "",
                "pages": "7--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florez, E., Precioso, F., Riveill, M. & Pighetti, R. (2018). Named entity recognition using neural networks for clinical notes. International Workshop on Medication and Adverse Drug Event Detection, pp. 7-15.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Named entity recognition through classifier combination",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Florian",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ittycheriah",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Jing",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003",
                "volume": "4",
                "issue": "",
                "pages": "168--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Florian, R. Ittycheriah, A. Jing, H. & Zhang, T. (2003). Named entity recognition through classifier combination. In Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003. Association for Computational Linguistics, vol. 4, pp. 168-171",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "An HMM based named entity recognition system for Indian languages: the JU system at ICON 2013. ICON NLP Tool Contest arXiv preprint",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Gayen",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1405.7397"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Gayen, V. & Sarkar, K. (2014). An HMM based named entity recognition system for Indian languages: the JU system at ICON 2013. ICON NLP Tool Contest arXiv preprint arXiv:1405.7397",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Message understandi ng conference-6: A brief history",
                "authors": [
                    {
                        "first": "R &",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Beth",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the16th International Conference on Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grishman, R & Beth, S. (1996). Message understandi ng conference-6: A brief history. In Proceedings of the16th International Conference on Computational Linguistics, Vol. 1",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Named Entity Recognition for Spanish language and applications in technology forecasting Reconocimiento de entidades nombradas para el idioma Espa\u00f1ol y su aplicaci\u00f3n en la vigilancia tecnol\u00f3gica",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Guti\u00e9rrez",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Castillo",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Bucheli",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Solarte",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Rev. Antioque\u00f1a las Ciencias Comput. y la Ing Softw",
                "volume": "5",
                "issue": "",
                "pages": "43--47",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guti\u00e9rrez, R., Castillo, A., Bucheli, V., & Solarte, O. (2015). Named Entity Recognition for Spanish language and applications in technology forecasting Reconocimiento de entidades nombradas para el idioma Espa\u00f1ol y su aplicaci\u00f3n en la vigilancia tecnol\u00f3gica. Rev. Antioque\u00f1a las Ciencias Comput. y la Ing Softw, 5, 43-47.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Named entity recognition for Punjabi language using Hmm and Memm",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Jaspreet",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "L"
                        ],
                        "last": "Gurpreet",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the IRF International Conference",
                "volume": "",
                "issue": "",
                "pages": "4--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jaspreet, S. & Gurpreet, S.L. (2015). Named entity recognition for Punjabi language using Hmm and Memm. In Proceedings of the IRF International Conference, Pune, India, pp. 4-7.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A study on named entity recognition for malayalam language using tnt tagger & maximum entropy markov model",
                "authors": [
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Jiljo",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "V"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "International Journal of Applied Engineering Research",
                "volume": "11",
                "issue": "8",
                "pages": "5425--5429",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jiljo, Pranav, P.V. (2016). A study on named entity recognition for malayalam language using tnt tagger & maximum entropy markov model. International Journal of Applied Engineering Research, 11(8), pp. 5425-5429.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Evaluation of Named Entity Features for Punjabi Language",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Kaur",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "S"
                        ],
                        "last": "Josan",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Procedia Computer Science",
                "volume": "46",
                "issue": "",
                "pages": "159--166",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kaur, A. & Josan, G.S. (2015). Evaluation of Named Entity Features for Punjabi Language. Procedia Computer Science 46, 159-166.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Named entity identifier for malayalam using linguistic principles employing statistical methods",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "S"
                        ],
                        "last": "Bindu",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "M"
                        ],
                        "last": "Idicula",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "International Journal of Computer Science Issues (IJCSI)",
                "volume": "8",
                "issue": "5",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bindu, M.S. & Idicula, S.M. (2011). Named entity identifier for malayalam using linguistic principles employing statistical methods. International Journal of Computer Science Issues (IJCSI), 8(5), 185.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Named entity recognition using machine learning techniques for Telugu language",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "H"
                        ],
                        "last": "Khanam",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Khudhus",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "P"
                        ],
                        "last": "Babu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)",
                "volume": "",
                "issue": "",
                "pages": "940--944",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Khanam, M.H. Khudhus, M.A. & Babu, M.P. (2016). Named entity recognition using machine learning techniques for Telugu language. In Proceedings of the 7th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 940-944.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Named entity recognition in Malayalam using fuzzy support vector machine",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Lakshmi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "P"
                        ],
                        "last": "Janu",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Meera",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 International Conference on Information Science (ICIS)",
                "volume": "",
                "issue": "",
                "pages": "201--206",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lakshmi, G. Janu, R.P. & Meera, M. (2016). Named entity recognition in Malayalam using fuzzy support vector machine. In Proceedings of the 2016 International Conference on Information Science (ICIS), IEEE, pp. 201- 206.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Tamil NER-Coping with Real Time Challenges",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "S"
                        ],
                        "last": "Malarkodi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "K"
                        ],
                        "last": "Pattabhi",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages(MTPIL-2012), COLING",
                "volume": "",
                "issue": "",
                "pages": "23--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malarkodi, C.S., Pattabhi, R.K. & Sobha L. (2012). Tamil NER-Coping with Real Time Challenges. In Proceedings of the Workshop on Machine Translation and Parsing in Indian Languages(MTPIL-2012), COLING, pp. 23-38.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A Deeper Look into Features for NE Resolution in Indian Languages",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Malarkodi",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Workshop on Indian Language Data: Resources and Evaluation, LREC",
                "volume": "",
                "issue": "",
                "pages": "36--41",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malarkodi, C.S & Sobha L (2012). A Deeper Look into Features for NE Resolution in Indian Languages. In Proceedings of the Workshop on Indian Language Data: Resources and Evaluation, LREC, Istanbul, pp. 36-41.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "The Stanford CoreNLP natural language processing toolkit",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mcclosky",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations",
                "volume": "",
                "issue": "",
                "pages": "55--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Manning, C, Surdeanu, M, Bauer, J, Finkel, J, Bethard, S & McClosky, D 2014, 'The Stanford CoreNLP natural language processing toolkit', Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations, pp. 55-60",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A survey of named entity recognition and classification",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Nadeau",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Linguisticae Investigationes",
                "volume": "30",
                "issue": "1",
                "pages": "3--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nadeau, D. & Sekine, S. (2007). A survey of named entity recognition and classification. Linguisticae Investigationes, Vol. 30, no. 1, pp. 3-26.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Issues and Challenges in Marathi Named Entity Recognition",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Patil",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "S"
                        ],
                        "last": "Patil",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "V"
                        ],
                        "last": "Pawar",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "International Journal on Natural Language Computing (IJNLC)",
                "volume": "5",
                "issue": "",
                "pages": "15--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patil, N., Patil, A.S. & Pawar, B.V. (2016). Issues and Challenges in Marathi Named Entity Recognition. International Journal on Natural Language Computing (IJNLC), Vol. 5, pp. 15-30.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "NERIL: Named Entity Recognition for Indian Languages @ FIRE 2013-An Overview",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "K"
                        ],
                        "last": "Pattabhi",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pattabhi, R.K. & Sobha, L. (2013). NERIL: Named Entity Recognition for Indian Languages @ FIRE 2013-An Overview. FIRE-2013.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "NERIL: Named Entity Recognition for Indian Languages @ FIRE 2014-An Overview",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "K"
                        ],
                        "last": "Pattabhi",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "S"
                        ],
                        "last": "Malarkodi",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "S"
                        ],
                        "last": "Ram",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pattabhi, R.K., Malarkodi C.S., Ram V.S. & Sobha L. (2014). NERIL: Named Entity Recognition for Indian Languages @ FIRE 2014-An Overview. FIRE-2014.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Named Entity Recognition for South and South East Asian Languages: Taking Stock",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the IJCNLP-08",
                "volume": "",
                "issue": "",
                "pages": "5--16",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Singh, A.K. (2008). Named Entity Recognition for South and South East Asian Languages: Taking Stock. In Proceedings of the IJCNLP-08, pp. 5-16.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Named Entity Recognizer for Indian Languages",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "S"
                        ],
                        "last": "Malarkodi",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Marimuthu",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "ICON NLP Tool Contest",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sobha L, Malarkodi, C.S, & Marimuthu, K. (2013). Named Entity Recognizer for Indian Languages. ICON NLP Tool Contest.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "AUKBC Tamil Part-of-Speech Tagger (AUKBC-TamilPoSTagger",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pattabhi Rk Rao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Vijay Sundar Ram",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Web Download. Computational Linguistics Research Group",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sobha, L. Pattabhi RK Rao, & Vijay Sundar Ram, R (2016). AUKBC Tamil Part-of-Speech Tagger (AUKBC- TamilPoSTagger 2016v1). Web Download. Computational Linguistics Research Group, AU-KBC Research Centre, Chennai, India.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition",
                "authors": [
                    {
                        "first": "Tjong",
                        "middle": [],
                        "last": "Kim Sang",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [
                            "F"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the CONLL-2002",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tjong Kim Sang, E.F. (2002). Introduction to the CoNLL- 2002 shared task: Language-independent named entity recognition. In Proceedings of the CONLL-2002, Taipei, Taiwan.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition",
                "authors": [
                    {
                        "first": "Tjong",
                        "middle": [],
                        "last": "Kim Sang",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "F & De Meulder",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003",
                "volume": "4",
                "issue": "",
                "pages": "142--147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tjong Kim Sang, E.F & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. In Proceedings of the seventh conference on Natural language learning at HLT-NAACL 2003, Vol. 4, pp. 142-147.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Domain focused Named Entity for Tamil using Conditional Random Fields",
                "authors": [
                    {
                        "first": "R &",
                        "middle": [],
                        "last": "Vijayakrishna",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Sobha",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the workshop on NER for South and South East Asian Languages",
                "volume": "",
                "issue": "",
                "pages": "59--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vijayakrishna, R & Sobha, L. (2008). Domain focused Named Entity for Tamil using Conditional Random Fields. In Proceedings of the workshop on NER for South and South East Asian Languages, Hyderabad, India, pp. 59-66.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Spanish ner with word representations and conditional random fields",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "L C"
                        ],
                        "last": "Zea",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "E O"
                        ],
                        "last": "Luna",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Thorne",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Glava\u0161",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the sixth named entity workshop",
                "volume": "",
                "issue": "",
                "pages": "34--40",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zea, J.L.C., Luna, J.E.O., Thorne, C. & Glava\u0161, G. (2016). Spanish ner with word representations and conditional random fields'. In Proceedings of the sixth named entity workshop, pp. 34-40.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Language Families Used in this work",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF2": {
                "content": "<table><tr><td colspan=\"3\">The Hungarian corpus has 400K tokens and 7,068 named</td></tr><tr><td>entities.</td><td/><td/></tr><tr><td colspan=\"3\">Languages Tokens Sentences NEs</td></tr><tr><td>English</td><td>2,56,426 14,002</td><td>25,671</td></tr><tr><td>Dutch</td><td>2,47,820 15,316</td><td>27,390</td></tr><tr><td colspan=\"2\">Hungarian 4,44,661 27,673</td><td>7,068</td></tr><tr><td>German</td><td>5,91,005 31,298</td><td>33,399</td></tr><tr><td>Spanish</td><td>3,17,637 10,238</td><td>23,148</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Corpus statistics (Indian Languages)The NE corpus used for Spanish and Dutch languages is obtained from CONLL 2003 NER shared task. The Spanish and Dutch corpus contains person, location, organization and miscellaneous NE tags. For German language, the GERMEVAL NER shared task data has been utilized. The German NE corpus has 12 NE tags and mainly has four classes. The number of tokens and named entities in the English dataset are 200K and 25K respectively. The Spanish and Dutch corpus consists of 300K and 200K tokens. The numbers of named entities in Spanish and Dutch dataset are 23,148 and 27,390. The German dataset consists of 500K tokens, 31K sentences and 33,399 NEs.",
                "num": null
            },
            "TABREF3": {
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF5": {
                "content": "<table><tr><td colspan=\"4\">: Results for Dravidian Languages</td></tr><tr><td>Languages</td><td>PRE</td><td>REC</td><td>F-M</td></tr><tr><td>Hindi</td><td colspan=\"2\">81.05 83.13</td><td>82.07</td></tr><tr><td>Bengali</td><td colspan=\"2\">82.78 89.31</td><td>85.92</td></tr><tr><td>Punjabi</td><td colspan=\"2\">80.54 83.45</td><td>81.96</td></tr><tr><td>Marathi</td><td colspan=\"2\">78.32 87.32</td><td>82.57</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF6": {
                "content": "<table><tr><td colspan=\"4\">: Results for Indo-Aryan Languages</td></tr><tr><td>Languages</td><td>PRE</td><td>REC</td><td>F-M</td></tr><tr><td>English</td><td colspan=\"3\">84.32 80.35 82.28</td></tr><tr><td>Spanish</td><td colspan=\"3\">86.13 84.37 85.24</td></tr><tr><td>Dutch</td><td>90.3</td><td colspan=\"2\">92.23 91.25</td></tr><tr><td>Hungarian</td><td colspan=\"3\">83.84 85.21 84.51</td></tr><tr><td>German</td><td colspan=\"3\">81.41 72.99 76.97</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF7": {
                "content": "<table><tr><td>: Results for European Languages</td></tr><tr><td>The linguistic feature yielded the precision and recall of</td></tr><tr><td>80.12% and 83.1% for Tamil, 70.63% precision and</td></tr><tr><td>74.82% recall for Malayalam and 69.40% precision score</td></tr><tr><td>and 57.25% recall value for Telugu. The f-score obtained</td></tr><tr><td>by Dravidian languages are 81% for Tamil, 72% for</td></tr><tr><td>Malayalam and 62.74% in Telugu.</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF8": {
                "content": "<table><tr><td>-5</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF9": {
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "Comparison with existing worksThough the present work is about multilingual named entities, we have compared our work with the existing multilingual NER works.",
                "num": null
            },
            "TABREF10": {
                "content": "<table><tr><td colspan=\"5\">Brill, Eric. (1992). A simple rule-based part of speech</td></tr><tr><td colspan=\"5\">tagger. In Proceedings of the third conference on Applied</td></tr><tr><td>natural</td><td>language</td><td>processing.</td><td>Association</td><td>for</td></tr><tr><td colspan=\"3\">Computational Linguistics.</td><td/><td/></tr><tr><td>Boj\u00f3rquez,</td><td/><td/><td/><td/></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Abinaya, N. Neethu, J. Barathi, H.B.G. Anand, M.K. & Soman, K.P. (2014). AMRITA CEN@ FIRE-2014: Named Entity Recognition for Indian Languages using Rich Features. In Proceedings of the Forum for Information Retrieval Evaluation, pp. 103-111 Antony, J.B. & Mahalakshmi, G.S. (2014). Named entity recognition for Tamil biomedical documents. In Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies, ICCPCT-2014, pp. 1571-1577. Athavale, V. Bharadwaj, S., Pamecha, M., Prabhu, A. & Shrivastava, M. (2016). Towards deep learning in hindi ner: An approach to tackle the labelled data scarcity. arXiv preprint arXiv:1610.09756. Salvador, S. & V\u0131ctor, M.G. (2015). Semi-Supervised Approach to Named Entity Recognition in Spanish Applied to a Real-World Conversational System. Pattern Recognition: 7th Mexican Conference, MCPR 2015, Mexico City, Mexico, vol. 9116, pp. 24-27.",
                "num": null
            }
        }
    }
}