File size: 114,776 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:33:38.182377Z"
    },
    "title": "A Dataset for Troll Classification of TamilMemes",
    "authors": [
        {
            "first": "Shardul",
            "middle": [],
            "last": "Suryawanshi",
            "suffix": "",
            "affiliation": {},
            "email": "[email protected]"
        },
        {
            "first": "Bharathi",
            "middle": [
                "Raja"
            ],
            "last": "Chakravarthi",
            "suffix": "",
            "affiliation": {},
            "email": "[email protected]"
        },
        {
            "first": "",
            "middle": [],
            "last": "Pranav Varma",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Ireland",
                "location": {
                    "settlement": "Galway"
                }
            },
            "email": ""
        },
        {
            "first": "Mihael",
            "middle": [],
            "last": "Arcan",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "John",
            "middle": [
                "P"
            ],
            "last": "Mccrae",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Paul",
            "middle": [],
            "last": "Buitelaar",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Traditional media content distribution channels such as television, radio or newspapers are monitored and scrutinized for their content. Nevertheless, social media platforms on the Internet opened the door for people to contribute, leave a comment on existing content without any moderation. Although most of the time, the internet users are harmless, some produce offensive content due to anonymity and freedom provided by social networks. Due to this freedom, people are becoming creative in their jokes by making memes. Although memes are meant to be humorous, sometimes it becomes threatening and offensive to specific people or community. On the Internet, a troll is a person who upsets or starts a hatred towards people or community. Trolling is the activity of posting a message via social media that is intended to be offensive, provocative, or menacing to distract which often has a digressive or off-topic content with the intent of provoking the audience (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018; Suryawanshi et al., 2020) . Despite this growing body of research in natural language processing, identifying trolling in memes has yet to be investigated. One way to understand how meme varies from other image posts was studied by Wang and Wen (2015) . According to the authors, memes combine two images or are a combination of an image and a witty, catchy or sarcastic text. In this work, we treat this task as an image classification problem. Due to the large population in India, the issue has emerged in the context of recent events. There have been several threats towards people or communities from memes. This is a serious threat which shames people or spreads hatred towards people or a particular community (Kumar et al., 2018; Rani et al., 2020; Suryawanshi et al., 2020) . There have been several studies on moderating trolling, however, for a social media administrator memes are hard to monitor as they are region-specific. Furthermore, their meaning is often obscure due to fused image-text representation. The content in Indian memes might be written in English, in a native language (native or foreign script), or in a mixture of languages and scripts (Ranjan et al., 2016; Chakravarthi et al., 2018; Jose et al., 2020; Priyadharshini et al., 2020; Chakravarthi et al., 2020a; Chakravarthi et al., 2020b) . This adds another challenge to the meme classification problem. In Figure 1 , Example 1 is written in Tamil with two images and Example 2 is written in English and Tamil (Roman Script) with two images. In the first example, the meme is trolling about the \"Vim dis-washer\" soap. The information in Example 1 can be translated into English as \"the price of a lemon is five Rupees\", whereby the image below shows a crying person. Just after the crying person the text says \"The price of a Vim bar with the power of 100 Lemon is just 10 Rupees\". This is an example of opinion manipulation with trolling as it influences the user opinion about products, companies and politics. This kind of memes might be effective in two ways. On the one hand, it is easy for companies and political parties to gain popularity. On the other hand, the trolls can damage the reputation of the company name or political party name. Example 2 shows a funny meme; it shows that a guy is talking to a poor lady while the girl in the car is looking at them. The image below includes a popular Tamil comedy actor with a short text written beneath \"We also talk nicely to ladies to get into a relationship\". Even though there is a widespread culture of memes on the Internet, the research on the classification of memes is not studied well. There are no systematic studies on classifying memes in a troll or not-troll category. In this work, we describe a dataset for classifying memes in such categories. To do this, we have collected a set of original memes from volunteers. We present baseline results using convolutional neural network (CNN) approaches for image classification. We report our findings in precision, recall and F-score and publish the code for this work at https: //github.com/sharduls007/TamilMemes.",
                "cite_spans": [
                    {
                        "start": 966,
                        "end": 980,
                        "text": "(Bishop, 2013;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 981,
                        "end": 993,
                        "text": "Bishop, 2014",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1009,
                        "end": 1027,
                        "text": "Vega and Ng, 2018;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 1028,
                        "end": 1053,
                        "text": "Suryawanshi et al., 2020)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 1260,
                        "end": 1279,
                        "text": "Wang and Wen (2015)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1745,
                        "end": 1765,
                        "text": "(Kumar et al., 2018;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1766,
                        "end": 1784,
                        "text": "Rani et al., 2020;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1785,
                        "end": 1810,
                        "text": "Suryawanshi et al., 2020)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 2197,
                        "end": 2218,
                        "text": "(Ranjan et al., 2016;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 2219,
                        "end": 2245,
                        "text": "Chakravarthi et al., 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 2246,
                        "end": 2264,
                        "text": "Jose et al., 2020;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 2265,
                        "end": 2293,
                        "text": "Priyadharshini et al., 2020;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 2294,
                        "end": 2321,
                        "text": "Chakravarthi et al., 2020a;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 2322,
                        "end": 2349,
                        "text": "Chakravarthi et al., 2020b)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2419,
                        "end": 2427,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "A troll meme is an implicit image that intents to demean or offend an individual on the Internet. Based on the definition \"Trolling is the activity of posting a message via social media that tend to be offensive, provocative, or menacing (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018)\". Their main function is to distract the audience with the intent of provoking them. We define troll memes as a meme, which contains offensive text and non-offensive images, offensive images with non-offensive text, sarcastically offensive text with non-offensive images, or sarcastic images with offensive text to provoke, distract, and has a digressive or off-topic content with intend to demean or offend particular people, group or race. Figure 2 shows examples of trolling memes, Example 3 is trolling the potato chip brand called Lays. The translation of the text is \"If you buy one packet of air, then 5 chips free\", with its intention to damage the company's reputation. Figure 2 illustrates examples of not-troll memes. The translation of Example 4 would be \"Sorry my friend (girl)\". As this example does not contain any provoking or offensive content and is even funny, it should be listed in the not-troll category. As a troll meme is directed towards someone, it is easy to find such content in the comments section or group chat of social media. For our work, we collected memes from volunteers who sent them through WhatsApp, a social media for chatting and creating a group chat. The suspected troll memes then have been verified and annotated manually by the annotators. As the users who sent these troll memes belong to the Tamil speaking population, all the troll memes are in Tamil. The general format of the meme is the image and Tamil text embedded within the image. Most of the troll memes comes from the state of Tamil Nadu, in India. The Tamil language, which has 75 million speakers, 1 belongs to the Dravidian language family (Rao and Lalitha Devi, 2013; Chakravarthi et al., 2019a; Chakravarthi et al., 2019b; Chakravarthi et al., 2019c) and is one of the 22 scheduled languages of India (Dash et al., 2015) . As these troll memes can have a negative psychological effect on an individual, a constraint has to be in place for such a conversation. In this work, we are attempting to identify such troll memes by providing a dataset and image classifier to identify these memes.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 252,
                        "text": "(Bishop, 2013;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 253,
                        "end": 265,
                        "text": "Bishop, 2014",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1952,
                        "end": 1980,
                        "text": "(Rao and Lalitha Devi, 2013;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 1981,
                        "end": 2008,
                        "text": "Chakravarthi et al., 2019a;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 2009,
                        "end": 2036,
                        "text": "Chakravarthi et al., 2019b;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 2037,
                        "end": 2064,
                        "text": "Chakravarthi et al., 2019c)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2115,
                        "end": 2134,
                        "text": "(Dash et al., 2015)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 742,
                        "end": 750,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 979,
                        "end": 987,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Troll Meme",
                "sec_num": "2."
            },
            {
                "text": "Trolling in social media for text has been studied extensively (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018; Malmasi and Zampieri, 2017; Kumar et al., 2018; Kumar, 2019) . Opinion manipulation trolling (Mihaylov et al., 2015b; Mihaylov et al., 2015a) , troll comments in News Community (Mihaylov and Nakov, 2016) , and the role of political trolls (Atanasov et al., 2019) have been studied. All these considered the trolling on text-only media. However, meme consist of images or images with text.",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 77,
                        "text": "(Bishop, 2013;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 78,
                        "end": 90,
                        "text": "Bishop, 2014",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 125,
                        "end": 152,
                        "text": "Malmasi and Zampieri, 2017;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 153,
                        "end": 172,
                        "text": "Kumar et al., 2018;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 173,
                        "end": 185,
                        "text": "Kumar, 2019)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 218,
                        "end": 242,
                        "text": "(Mihaylov et al., 2015b;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 243,
                        "end": 266,
                        "text": "Mihaylov et al., 2015a)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 302,
                        "end": 328,
                        "text": "(Mihaylov and Nakov, 2016)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 364,
                        "end": 387,
                        "text": "(Atanasov et al., 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3."
            },
            {
                "text": "A related research area is on offensive content detection. Various works in the recent years have investigated Offensive and Aggression content in text (Clarke and Grieve, 2017; Mathur et al., 2018; Nogueira dos Santos et al., 2018; Galery et al., 2018) . For images, Gandhi et al. (2019) deals with offensive images and non-compliant logos. They have developed a computer-vision driven offensive and non-compliant image detection algorithm that identifies the offensive content in the image. They have categorized images as offensive if it has nudity, sexually explicit content, abusive text, objects used to promote violence or racially inappropriate content. The classifier takes advantage of a pre-trained object detector to identify the type of object in the image and then sends the image to the unit which specializes in detecting objects in the image. The majority of memes do not contain nudity or explicit sexual content due to the moderation of social media on nudity. Hence unlike their research, we are trying to identify troll memes by using image features derived by use of a convolutional neural network. Hate speech is a subset of offensive language and datasets associated with hate speech have been collected from social media such as Twitter (Xiang et al., 2012) , Instagram (Hosseinmardi et al., 2015) , Yahoo (Nobata et al., 2016) , YouTube (Dinakar et al., 2012) . In all of these works, only text corpora have been used to detect trolling, offensive, aggression and hate speech. Nevertheless, for memes, there is no such dataset. For Indian language memes, it is not available as to our knowledge. We are the first to develop a meme dataset for Tamil, with troll or not-troll annotation.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 177,
                        "text": "(Clarke and Grieve, 2017;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 178,
                        "end": 198,
                        "text": "Mathur et al., 2018;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 199,
                        "end": 232,
                        "text": "Nogueira dos Santos et al., 2018;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 233,
                        "end": 253,
                        "text": "Galery et al., 2018)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 268,
                        "end": 288,
                        "text": "Gandhi et al. (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1262,
                        "end": 1282,
                        "text": "(Xiang et al., 2012)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 1295,
                        "end": 1322,
                        "text": "(Hosseinmardi et al., 2015)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1331,
                        "end": 1352,
                        "text": "(Nobata et al., 2016)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1363,
                        "end": 1385,
                        "text": "(Dinakar et al., 2012)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "3."
            },
            {
                "text": "For our study, people provided memes voluntarily for our research. Additionally, all personal identifiable information such as usernames are deleted from this dataset. The annotators were warned about the trolling content before viewing the meme, and our instructions informed them that they could quit the annotation campaign anytime if they felt uncomfortable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ethics",
                "sec_num": "4.1."
            },
            {
                "text": "To retrieve high-quality meme data that would likely to include trolling, we asked the volunteers to provide us with memes that they get in their social media platforms, like WhatsApp, Facebook, Instagram, and Pinterest. The data was collected between November 1, 2019, until January 15, 2019, from sixteen volunteers. We are not disclosing any personal information of the volunteers such as gender as per their will. Figure 3 shows an example of the collected memes. We removed duplicate memes, however, we kept memes that uses the same image but different text. This was a challenging task since the same meme could have different file names. Hence the same meme could be annotated by different annotators. Due to this, we checked manually and removed such duplicates before sending them to annotators. An example is shown in Figure 3 , where the same image with different text is used. Example 5 describes the image as \"can not understand what you are saying\", whereby Example 6 describes image as \"I am confused\". ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 418,
                        "end": 426,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 828,
                        "end": 836,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Data collection",
                "sec_num": "4.2."
            },
            {
                "text": "After we obtained the memes, we presented this data to the annotators using Google Forms. To not over-burden the annotators, we provided ten memes per page and hundred memes per form. For each form, the annotators are asked to decide if a given meme is of category troll or not-troll. As a part of annotation guidelines, we gave multiple examples of troll memes and not-troll memes to the annotators. The annotation for these examples has been done by the an annotator who is considered as a expert as well as a native Tamil speaker. Each meme is assigned to two different annotators, a male and a female annotator. To ensure the quality of the annotations and due to the region-specific nature of the annotation task, only native speakers from Tamil Nadu, India were recruited as annotators. Although we are not disclosing the gender demographics of volunteers who provided memes, we have gender-balanced annotation since each meme has been annotated by a male and a female.A meme is considered as troll only when both of the annotators label it as a troll.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "4.3."
            },
            {
                "text": "In order to evaluate the reliability of the annotation and their robustness across experiments, we analyzed the interannotator agreement using Cohen's kappa (Cohen, 1960) . It compares the probability of two annotators agreeing by chance with the observed agreement. It measures agreement expected by chance by modelling each annotator with separate distribution governing their likelihood of assigning a particular category. Mathematically,",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 170,
                        "text": "(Cohen, 1960)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inter-Annotator Agreement",
                "sec_num": "4.4."
            },
            {
                "text": "K = p(A) \u2212 p(E) 1 \u2212 p(E) (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inter-Annotator Agreement",
                "sec_num": "4.4."
            },
            {
                "text": "where K is the kappa value, p(A) is the probability of the actual outcome and p(E) is the probability of the expected outcome as predicted by chance (Bloodgood and Grothendieck, 2013) . We got a kappa value of 0.62 between two annotators (gender balance male and female annotators). Based on Landis and Koch (1977) and given the inherent obscure nature of memes, we got fair agreement amongst the annotators.",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 183,
                        "text": "(Bloodgood and Grothendieck, 2013)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 292,
                        "end": 314,
                        "text": "Landis and Koch (1977)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inter-Annotator Agreement",
                "sec_num": "4.4."
            },
            {
                "text": "We collected 2,969 memes, of which most are images with text embedded on them. After the annotation, we learned that the majority (1,951) of these were annotated as troll memes, and 1,018 as not-troll memes. Furthermore, we observed that memes, which have more than one image have a high probability of being a troll, whereas those with only one image are likely to be not-troll. We included Flickr30K 2 images (Young et al., 2014) to the not-troll category to address the class imbalance. Flickr30K is only added to training, while the test set is randomly chosen from our dataset. In all our experiments the test set remains the same.",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 431,
                        "text": "(Young et al., 2014)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Statistics",
                "sec_num": "4.5."
            },
            {
                "text": "To demonstrate how the given dataset can be used to classify troll memes, we defined two experiments with four variations of each. We measured the performance of the proposed baselines by using precision, recall and F1-score for each class, i.e. \"troll and not-troll\". We used ResNet (He et al., 2016) and MobileNet (Howard et al., 2017) as a baseline to perform the experiments. We give insights into their architecture and design choices in the sections below.",
                "cite_spans": [
                    {
                        "start": 284,
                        "end": 301,
                        "text": "(He et al., 2016)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 316,
                        "end": 337,
                        "text": "(Howard et al., 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "5."
            },
            {
                "text": "ResNet has won the ImageNet ILSVRC 2015 (Russakovsky et al., 2015) classification task. It is still a popular method for classifying images and uses residual learning which connects low-level and high-level representation directly by skipping the connections in-between. This improves the performance of ResNet by diminishing the problem of vanishing gradient descent. It assumes that a deeper network should not produce higher training error than a shallow network. In this experiment, we used the ResNet architecture with 176 layers. As it was trained on the ImageNet task, we removed the classification (last) layer and used GlobalAveragePooling in place of fully connected layer to save the computational cost. Later, we added four fully connected layers with the classification layer which has a sigmoid activation function.This architecture is trained with or without pre-trained ImageNet weights.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ResNet",
                "sec_num": null
            },
            {
                "text": "We trained MobileNet with and without ImageNet weights. The model has a depth multiplier of 1.4, and an input dimension of 224\u00d7224 pixels. This provides a 1, 280\u00d71.4 = 1, 792 -dimensional representation of an image, which is then passed through a single hidden layer of a dimensionality of 1, 024 with ReLU activation, before being passed to a hidden layer with input dimension of (512,None) without any activation to provide the final representation h p . The main purpose of MobileNet is to optimize convolutional neural networks for mobile and embedded vision applications. It is less complex than ResNet in terms of number of hyperparameters and operations. It uses a different convolutional layer for each channel, this allows parallel computation on each channel which is Depthwise Separable Convolution. Later on the features extracted from these layers have been combined using the pointwise convolution layer. We used MobileNet to reduce the computational cost and compare it with the computationally intensive ResNet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MobileNet",
                "sec_num": null
            },
            {
                "text": "We experimented with ResNet and MobileNet. The variation in experiments comes in terms of the data on which the models have been trained on, while the test set (300 memes) remained the same for all experiments. In the first variation, TamilMemes in Table 1 , we trained the ResNet and Mo-bileNet models on our Tamil meme dataset(2,669 memes).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 249,
                        "end": 256,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6."
            },
            {
                "text": "The second variation, i.e. TamilMemes + ImageNet uses pre-trained ImageNet weights on the Tamil memes dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6."
            },
            {
                "text": "To address the class imbalance, we added 1,000 images from the Flickr30k dataset to the training set in the third variation i.e. TamilMemes + ImageNet + Flickr1k. As a result, the third variation has 3,969 images (1,951 trolls and 2,018 not-trolls). In the last variation, TamilMemes + ImageNet + Flickr30k, we added 30,000 images from the Flickr30k dataset to not-troll category. Flickr dataset has images and the captions which describes the image. We used these images as a not-troll category because they do not convey trollings without the context of the text. Except for the TamilMemes baseline, we are using pre-trained Im-ageNet weights for all other variations. Images from the Flickr30k dataset are used to balance the not-troll class in the TamilMemes + ImageNet + Flickr1k variation. On the one hand, the use of all the samples from the Flickr30k dataset as not-troll in the fourth variation introduces the class imbalance by significantly increasing the number of not-troll samples compared to the troll one. On the other hand, in the first variation, a higher number of troll meme samples again introduces a class imbalance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6."
            },
            {
                "text": "In the ResNet variations, we observed that there is no change in the macro averaged precision, recall and F1-score except for TamilMemes + ImageNet + Flickr1k variation. This variation has relatively poor results when compared with the other three variations in ResNet. While precision at identifying the troll class for the ResNet baseline does not vary much, we get better precision at classifying troll memes in the TamilMemes variation. This shows that the ResNet model trained on just Tamil memes has a better chance at identifying troll memes. The scenario is different in the case of the MobileNet variations. On the one hand, we observed less precision at identifying the troll class for the TamilMemes variation. On the other hand, we see improvement in precision at detecting trolls in the TamilMeme + ImageNet variation. This shows that MobileNet can leverage transfer learning to improve results. The relatively poor performance of MobileNet on the TamilMeme variation shows that it can not learn complex features like ResNet does to identify troll memes. For ResNet, the trend in the macro averaged score can be seen increasing in TamilMemes + ImageNet and TamilMemes + ImageNet + Flickr1k variations when compared to the TamilMemes variation. The TamilMemes + ImageNet + Flickr30k variation shows a lower macro averaged score than that of the TamilMemes + ImageNet + Flickr1k variation in both MobileNet and ResNet. Overall the precision for troll class identification lies in the range of 0.28 and 0.37, which is rather less than that of the not-troll class which lies in the range of 0.64 and 0.68. When we train ResNet in class imbalanced data in TamilMemes and TamilMemes + ImageNet + Flickr30k variations, results shows that the macro-averaged score of these variations are not hampered by the class imbalance issue. While for same variations MobileNet shows poor macro-averaged precision and recall score when compared with other variations. This shows that MobileNet is more susceptible to class imbalance issue than ResNet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Result and Discussion",
                "sec_num": "7."
            },
            {
                "text": "As shown in the Table 1 the classification model performs poorly at identifying of troll memes. We observed that this stems from the problem characteristics of memes. The meme dataset is unbalanced and memes have both image and text embedded to it with code-mixing in different forms. Therefore, it is inherently more challenging to train a classifier using just images. Further, the same image can be used with different text to mean different things, potentially making the task more complicated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 16,
                        "end": 23,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusions and Future work",
                "sec_num": "8."
            },
            {
                "text": "To reduce the burden placed on annotators, we plan to use a semi-supervised approach to the size of the dataset. Semisupervised approaches have been proven to be of good use to increase the size of the datasets for under-resourced scenarios. We plan to use optical character recognizer (OCR) followed by a manual evaluation to obtain the text in the images. Since Tamil memes have code-mixing phenomenon, we plan to tackle the problem accordingly. With text identification using OCR, we will be able to approach the problem in a multi-modal way. We have created a meme dataset only for Tamil, but we plan to extend this to other languages as well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future work",
                "sec_num": "8."
            },
            {
                "text": "https://www.ethnologue.com/language/tam",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/BryanPlummer/flickr30k entities",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 P2, co-funded by the European Regional Development Fund, as well as by the H2020 project Pr\u00eat-\u00e0-LLOD under Grant Agreement number 825182.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Predicting the role of political trolls in social media",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Atanasov",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "De Francisci Morales",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nakov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "1023--1034",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Atanasov, A., De Francisci Morales, G., and Nakov, P. (2019). Predicting the role of political trolls in social media. In Proceedings of the 23rd Conference on Com- putational Natural Language Learning (CoNLL), pages 1023-1034, Hong Kong, China, November. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "The effect of de-individuation of the internet troller on criminal procedure implementation: An interview with a hater -proquest",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bishop",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "International journal of cyber criminology",
                "volume": "",
                "issue": "",
                "pages": "28--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bishop, J. (2013). The effect of de-individuation of the in- ternet troller on criminal procedure implementation: An interview with a hater -proquest. International journal of cyber criminology, page 28-48.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Dealing with internet trolling in political online communities: Towards the this is why we can't have nice things scale",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bishop",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Int. J. E-Polit",
                "volume": "5",
                "issue": "4",
                "pages": "1--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bishop, J. (2014). Dealing with internet trolling in politi- cal online communities: Towards the this is why we can't have nice things scale. Int. J. E-Polit., 5(4):1-20, Octo- ber.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Analysis of stopping active learning based on stabilizing predictions",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Bloodgood",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Grothendieck",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "10--19",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bloodgood, M. and Grothendieck, J. (2013). Analysis of stopping active learning based on stabilizing predictions. In Proceedings of the Seventeenth Conference on Com- putational Natural Language Learning, pages 10-19, Sofia, Bulgaria, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Improving Wordnets for Under-Resourced Languages Using Machine Translation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Arcan",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 9th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2018). Improving Wordnets for Under-Resourced Languages Using Machine Translation. In Proceedings of the 9th",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Global WordNet Conference. The Global WordNet Conference",
                "authors": [],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Global WordNet Conference. The Global WordNet Con- ference 2018 Committee.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Comparison of Different Orthographies for Machine Translation of Under-Resourced Dravidian Languages",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Arcan",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2nd Conference on Language, Data and Knowledge (LDK 2019)",
                "volume": "6",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2019a). Comparison of Different Orthographies for Machine Translation of Under-Resourced Dravidian Languages. In Maria Eskevich, et al., editors, 2nd Conference on Language, Data and Knowledge (LDK 2019), vol- ume 70 of OpenAccess Series in Informatics (OASIcs), pages 6:1-6:14, Dagstuhl, Germany. Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "WordNet gloss translation for under-resourced languages using multilingual neural machine translation",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Arcan",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Second Workshop on Multilingualism at the Intersection of Knowledge Bases and Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2019b). WordNet gloss translation for under-resourced languages using multilingual neural machine translation. In Pro- ceedings of the Second Workshop on Multilingualism at the Intersection of Knowledge Bases and Machine Trans- lation, pages 1-7, Dublin, Ireland, August. European As- sociation for Machine Translation.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Multilingual multimodal machine translation for Dravidian languages utilizing phonetic transcription",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Priyadharshini",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Stearns",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Jayapal",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Arcan",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zarrouk",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Mccrae",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages",
                "volume": "",
                "issue": "",
                "pages": "56--63",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Priyadharshini, R., Stearns, B., Jaya- pal, A., S, S., Arcan, M., Zarrouk, M., and McCrae, J. P. (2019c). Multilingual multimodal machine transla- tion for Dravidian languages utilizing phonetic transcrip- tion. In Proceedings of the 2nd Workshop on Technolo- gies for MT of Low Resource Languages, pages 56-63, Dublin, Ireland, August. European Association for Ma- chine Translation.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A sentiment analysis dataset for code-mixed Malayalam-English",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Jose",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Suryawanshi",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sherly",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL 2020)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Jose, N., Suryawanshi, S., Sherly, E., and McCrae, J. P. (2020a). A sentiment analy- sis dataset for code-mixed Malayalam-English. In Pro- ceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under- Resourced Languages) (SLTU-CCURL 2020), Marseille, France, May. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Corpus creation for sentiment analysis in code-mixed Tamil-English text",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Muralidaran",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Priyadharshini",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL 2020)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chakravarthi, B. R., Muralidaran, V., Priyadharshini, R., and McCrae, J. P. (2020b). Corpus creation for senti- ment analysis in code-mixed Tamil-English text. In Pro- ceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under- Resourced Languages) (SLTU-CCURL 2020), Marseille, France, May. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Dimensions of abusive language on Twitter",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Clarke",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Grieve",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First Workshop on Abusive Language Online",
                "volume": "",
                "issue": "",
                "pages": "1--10",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Clarke, I. and Grieve, J. (2017). Dimensions of abusive language on Twitter. In Proceedings of the First Work- shop on Abusive Language Online, pages 1-10, Vancou- ver, BC, Canada, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1960,
                "venue": "",
                "volume": "20",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cohen, J. (1960). A Coefficient of Agreement for Nom- inal Scales. Educational and Psychological Measure- ment, 20(1):37.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Generating translation corpora in Indic languages:cultivating bilingual texts for cross lingual fertilization",
                "authors": [
                    {
                        "first": "N",
                        "middle": [
                            "S"
                        ],
                        "last": "Dash",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Selvraj",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hussain",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 12th International Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "333--342",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dash, N. S., Selvraj, A., and Hussain, M. (2015). Gen- erating translation corpora in Indic languages:cultivating bilingual texts for cross lingual fertilization. In Proceed- ings of the 12th International Conference on Natural Language Processing, pages 333-342, Trivandrum, In- dia, December. NLP Association of India.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Common sense reasoning for detection, prevention, and mitigation of cyberbullying",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Dinakar",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Havasi",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Lieberman",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Picard",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "ACM Trans. Interact. Intell. Syst",
                "volume": "2",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dinakar, K., Jones, B., Havasi, C., Lieberman, H., and Pi- card, R. (2012). Common sense reasoning for detection, prevention, and mitigation of cyberbullying. ACM Trans. Interact. Intell. Syst., 2(3), September.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Aggression identification and multi lingual word embeddings",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Galery",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charitos",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Tian",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)",
                "volume": "",
                "issue": "",
                "pages": "74--79",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Galery, T., Charitos, E., and Tian, Y. (2018). Aggres- sion identification and multi lingual word embeddings. In Proceedings of the First Workshop on Trolling, Ag- gression and Cyberbullying (TRAC-2018), pages 74-79, Santa Fe, New Mexico, USA, August. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Image matters: Detecting offensive and non-compliant content/logo in product images",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Gandhi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kokkula",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Chaudhuri",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Magnani",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Stanley",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ahmadi",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Kandaswamy",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Ovenc",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Mannor",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.02234"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Gandhi, S., Kokkula, S., Chaudhuri, A., Magnani, A., Stan- ley, T., Ahmadi, B., Kandaswamy, V., Ovenc, O., and Mannor, S. (2019). Image matters: Detecting offen- sive and non-compliant content/logo in product images. arXiv preprint arXiv:1905.02234.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Deep residual learning for image recognition",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016",
                "volume": "",
                "issue": "",
                "pages": "770--778",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recogni- tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Analyzing labeled cyberbullying incidents on the instagram social network",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hosseinmardi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Mattson",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "I"
                        ],
                        "last": "Rafiq",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Lv",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "International conference on social informatics",
                "volume": "",
                "issue": "",
                "pages": "49--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hosseinmardi, H., Mattson, S. A., Rafiq, R. I., Han, R., Lv, Q., and Mishra, S. (2015). Analyzing labeled cyberbul- lying incidents on the instagram social network. In Inter- national conference on social informatics, pages 49-66. Springer.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Mobilenets: Efficient convolutional neural networks for mobile vision applications",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "G"
                        ],
                        "last": "Howard",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Kalenichenko",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Weyand",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Andreetto",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1704.04861"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural net- works for mobile vision applications. arXiv preprint arXiv:1704.04861.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A survey of current datasets for code-switching research",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Jose",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Suryawanshi",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sherly",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jose, N., Chakravarthi, B. R., Suryawanshi, S., Sherly, E., and McCrae, J. P. (2020). A survey of current datasets for code-switching research. In 2020 6th International Conference on Advanced Computing and Communica- tion Systems (ICACCS).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Benchmarking aggression identification in social media",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "K"
                        ],
                        "last": "Ojha",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zampieri",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M. (2018). Benchmarking aggression identification in so- cial media. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 1-11, Santa Fe, New Mexico, USA, August. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "# shutdownjnu vs# standwithjnu: A study of aggression and conflict in political debates on social media in india",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Journal of Language Aggression and Conflict",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kumar, R. (2019). # shutdownjnu vs# standwithjnu: A study of aggression and conflict in political debates on social media in india. Journal of Language Aggression and Conflict.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "The measurement of observer agreement for categorical data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Landis",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "G"
                        ],
                        "last": "Koch",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Biometrics",
                "volume": "33",
                "issue": "1",
                "pages": "159--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1):159-174.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Detecting hate speech in social media",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Zampieri",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "467--472",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malmasi, S. and Zampieri, M. (2017). Detecting hate speech in social media. In Proceedings of the Interna- tional Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 467-472, Varna, Bul- garia, September. INCOMA Ltd.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Detecting offensive tweets in Hindi-English code-switched language",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Mathur",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sawhney",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Mahata",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
                "volume": "",
                "issue": "",
                "pages": "18--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mathur, P., Shah, R., Sawhney, R., and Mahata, D. (2018). Detecting offensive tweets in Hindi-English code-switched language. In Proceedings of the Sixth In- ternational Workshop on Natural Language Processing for Social Media, pages 18-26, Melbourne, Australia, July. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Hunting for troll comments in news community forums",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mihaylov",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nakov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "399--405",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihaylov, T. and Nakov, P. (2016). Hunting for troll com- ments in news community forums. In Proceedings of the 54th Annual Meeting of the Association for Computa- tional Linguistics (Volume 2: Short Papers), pages 399- 405, Berlin, Germany, August. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Finding opinion manipulation trolls in news community forums",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mihaylov",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Georgiev",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nakov",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Nineteenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "310--314",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihaylov, T., Georgiev, G., and Nakov, P. (2015a). Find- ing opinion manipulation trolls in news community fo- rums. In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 310- 314, Beijing, China, July. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Exposing paid opinion manipulation trolls",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mihaylov",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Koychev",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Georgiev",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nakov",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "443--450",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihaylov, T., Koychev, I., Georgiev, G., and Nakov, P. (2015b). Exposing paid opinion manipulation trolls. In Proceedings of the International Conference Recent Ad- vances in Natural Language Processing, pages 443-450, Hissar, Bulgaria, September. INCOMA Ltd. Shoumen, BULGARIA.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Modeling trolling in social media conversations",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mojica De La",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "G"
                        ],
                        "last": "Vega",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mojica de la Vega, L. G. and Ng, V. (2018). Modeling trolling in social media conversations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Abusive language detection in online user content",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Nobata",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tetreault",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Thomas",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Mehdad",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 25th international conference on world wide web",
                "volume": "",
                "issue": "",
                "pages": "145--153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and Chang, Y. (2016). Abusive language detection in online user content. In Proceedings of the 25th international conference on world wide web, pages 145-153.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Fighting offensive language on social media with unsupervised text style transfer",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Nogueira Dos Santos",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Melnyk",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Padhi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "189--194",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nogueira dos Santos, C., Melnyk, I., and Padhi, I. (2018). Fighting offensive language on social media with unsu- pervised text style transfer. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 189-194, Melbourne, Australia, July. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Named entity recognition for code-mixed Indian corpus using meta embedding",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Priyadharshini",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Vegupatti",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Priyadharshini, R., Chakravarthi, B. R., Vegupatti, M., and McCrae, J. P. (2020). Named entity recognition for code-mixed Indian corpus using meta embedding. In 2020 6th International Conference on Advanced Com- puting and Communication Systems (ICACCS).",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "A comparative study of different state-of-the-art hate speech detection methods for Hindi-English code-mixed data",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Rani",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Suryawanshi",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Goswami",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Fransen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Mccrae",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B. R., Fransen, T., and McCrae, J. P. (2020). A compar- ative study of different state-of-the-art hate speech de- tection methods for Hindi-English code-mixed data. In Proceedings of the Second Workshop on Trolling, Ag- gression and Cyberbullying, Marseille, France, May. Eu- ropean Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "A comparative study on code-mixed data of Indian social media vs formal text",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ranjan",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Raja",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Priyadharshini",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Balabantaray",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)",
                "volume": "",
                "issue": "",
                "pages": "608--611",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ranjan, P., Raja, B., Priyadharshini, R., and Balabantaray, R. C. (2016). A comparative study on code-mixed data of Indian social media vs formal text. In 2016 2nd Inter- national Conference on Contemporary Computing and Informatics (IC3I), pages 608-611, Dec.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Tamil English cross lingual information retrieval",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "P R K"
                        ],
                        "last": "Rao",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Devi",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Multilingual Information Access in South Asian Languages",
                "volume": "",
                "issue": "",
                "pages": "269--279",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rao, T. P. R. K. and Lalitha Devi, S. (2013). Tamil En- glish cross lingual information retrieval. In Prasenjit Ma- jumder, et al., editors, Multilingual Information Access in South Asian Languages, pages 269-279, Berlin, Hei- delberg. Springer Berlin Heidelberg.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV)",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Russakovsky",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Krause",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Satheesh",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Karpathy",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Khosla",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Bernstein",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "C"
                        ],
                        "last": "Berg",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Fei-Fei",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "115",
                "issue": "",
                "pages": "211--252",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Jour- nal of Computer Vision (IJCV), 115(3):211-252.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Multimodal meme dataset (Multi-OFF) for identifying offensive content in image and text",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Suryawanshi",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Chakravarthi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Arcan",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Buitelaar",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Suryawanshi, S., Chakravarthi, B. R., Arcan, M., and Buitelaar, P. (2020). Multimodal meme dataset (Multi- OFF) for identifying offensive content in image and text. In Proceedings of the Second Workshop on Trolling, Ag- gression and Cyberbullying, Marseille, France, May. Eu- ropean Language Resources Association (ELRA).",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "I can has cheezburger? a nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "Y"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "355--365",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wang, W. Y. and Wen, M. (2015). I can has cheezburger? a nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technologies, pages 355-365, Denver, Colorado, May-June. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Detecting offensive tweets via topical feature discovery over a large scale twitter corpus",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Xiang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    },
                    {
                        "first": "Rose",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 21st ACM international conference on Information and knowledge management",
                "volume": "",
                "issue": "",
                "pages": "1980--1984",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiang, G., Fan, B., Wang, L., Hong, J., and Rose, C. (2012). Detecting offensive tweets via topical feature discovery over a large scale twitter corpus. In Proceed- ings of the 21st ACM international conference on Infor- mation and knowledge management, pages 1980-1984.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hodosh",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "TACL",
                "volume": "2",
                "issue": "",
                "pages": "67--78",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2:67-78.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "Examples of Indian memes.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "Examples of troll and not-troll memes.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "Examples on same image with different text.",
                "type_str": "figure"
            },
            "TABREF0": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Variations</td><td/><td colspan=\"2\">TamilMemes</td><td/><td colspan=\"3\">TamilMemes + ImageNet</td><td/></tr><tr><td/><td colspan=\"7\">Precision Recall f1-score count Precision Recall f1-score</td><td>count</td></tr><tr><td>troll</td><td>0.37</td><td>0.33</td><td>0.35</td><td>100</td><td>0.36</td><td>0.35</td><td>0.35</td><td>100</td></tr><tr><td>not-troll</td><td>0.68</td><td>0.71</td><td>0.70</td><td>200</td><td>0.68</td><td>0.69</td><td>0.68</td><td>200</td></tr><tr><td>macro-avg</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.58</td><td>0.59</td><td>0.58</td><td>300</td><td>0.57</td><td>0.57</td><td>0.57</td><td>300</td></tr><tr><td>Variations</td><td colspan=\"8\">TamilMemes + ImageNet + Flickr1k TamilMemes + ImageNet + Flickr30k</td></tr><tr><td>troll</td><td>0.30</td><td>0.34</td><td>0.32</td><td>100</td><td>0.36</td><td>0.35</td><td>0.35</td><td>100</td></tr><tr><td>not-troll</td><td>0.64</td><td>0.59</td><td>0.62</td><td>200</td><td>0.68</td><td>0.69</td><td>0.68</td><td>200</td></tr><tr><td>macro-avg</td><td>0.47</td><td>0.47</td><td>0.47</td><td>300</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.53</td><td>0.51</td><td>0.52</td><td>300</td><td>0.57</td><td>0.57</td><td>0.57</td><td>300</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">MobileNet</td><td/><td/><td/></tr><tr><td>Variations</td><td/><td colspan=\"2\">TamilMemes</td><td/><td colspan=\"3\">TamilMemes + ImageNet</td><td/></tr><tr><td>troll</td><td>0.28</td><td>0.27</td><td>0.28</td><td>100</td><td>0.34</td><td>0.43</td><td>0.38</td><td>100</td></tr><tr><td>not-troll</td><td>0.64</td><td>0.66</td><td>0.65</td><td>200</td><td>0.67</td><td>0.58</td><td>0.62</td><td>200</td></tr><tr><td>macro-avg</td><td>0.46</td><td>0.46</td><td>0.46</td><td>300</td><td>0.50</td><td>0.51</td><td>0.50</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.52</td><td>0.53</td><td>0.52</td><td>300</td><td>0.56</td><td>0.53</td><td>0.54</td><td>300</td></tr><tr><td>Variations</td><td colspan=\"8\">TamilMemes + ImageNet + Flickr1k TamilMemes + ImageNet + Flickr30k</td></tr><tr><td>troll</td><td>0.33</td><td>0.55</td><td>0.41</td><td>100</td><td>0.31</td><td>0.34</td><td>0.33</td><td>100</td></tr><tr><td>not-troll</td><td>0.66</td><td>0.45</td><td>0.53</td><td>200</td><td>0.65</td><td>0.62</td><td>0.64</td><td>200</td></tr><tr><td>macro-avg</td><td>0.50</td><td>0.50</td><td>0.47</td><td>300</td><td>0.48</td><td>0.48</td><td>0.48</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.55</td><td>0.48</td><td>0.49</td><td>300</td><td>0.54</td><td>0.53</td><td>0.53</td><td>300</td></tr></table>",
                "text": "Precision, recall, F1-score and count for ResNet, MobileNet and their variations."
            }
        }
    }
}