File size: 114,776 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T04:33:38.182377Z"
},
"title": "A Dataset for Troll Classification of TamilMemes",
"authors": [
{
"first": "Shardul",
"middle": [],
"last": "Suryawanshi",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
},
{
"first": "Bharathi",
"middle": [
"Raja"
],
"last": "Chakravarthi",
"suffix": "",
"affiliation": {},
"email": "[email protected]"
},
{
"first": "",
"middle": [],
"last": "Pranav Varma",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "National University of Ireland",
"location": {
"settlement": "Galway"
}
},
"email": ""
},
{
"first": "Mihael",
"middle": [],
"last": "Arcan",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "John",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Paul",
"middle": [],
"last": "Buitelaar",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Social media are interactive platforms that facilitate the creation or sharing of information, ideas or other forms of expression among people. This exchange is not free from offensive, trolling or malicious contents targeting users or communities. One way of trolling is by making memes, which in most cases combines an image with a concept or catchphrase. The challenge of dealing with memes is that they are region-specific and their meaning is often obscured in humour or sarcasm. To facilitate the computational modelling of trolling in the memes for Indian languages, we created a meme dataset for Tamil (TamilMemes). We annotated and released the dataset containing suspected trolls and not-troll memes. In this paper, we use the a image classification to address the difficulties involved in the classification of troll memes with the existing methods. We found that the identification of a troll meme with such an image classifier is not feasible which has been corroborated with precision, recall and F1-score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Traditional media content distribution channels such as television, radio or newspapers are monitored and scrutinized for their content. Nevertheless, social media platforms on the Internet opened the door for people to contribute, leave a comment on existing content without any moderation. Although most of the time, the internet users are harmless, some produce offensive content due to anonymity and freedom provided by social networks. Due to this freedom, people are becoming creative in their jokes by making memes. Although memes are meant to be humorous, sometimes it becomes threatening and offensive to specific people or community. On the Internet, a troll is a person who upsets or starts a hatred towards people or community. Trolling is the activity of posting a message via social media that is intended to be offensive, provocative, or menacing to distract which often has a digressive or off-topic content with the intent of provoking the audience (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018; Suryawanshi et al., 2020) . Despite this growing body of research in natural language processing, identifying trolling in memes has yet to be investigated. One way to understand how meme varies from other image posts was studied by Wang and Wen (2015) . According to the authors, memes combine two images or are a combination of an image and a witty, catchy or sarcastic text. In this work, we treat this task as an image classification problem. Due to the large population in India, the issue has emerged in the context of recent events. There have been several threats towards people or communities from memes. This is a serious threat which shames people or spreads hatred towards people or a particular community (Kumar et al., 2018; Rani et al., 2020; Suryawanshi et al., 2020) . There have been several studies on moderating trolling, however, for a social media administrator memes are hard to monitor as they are region-specific. Furthermore, their meaning is often obscure due to fused image-text representation. The content in Indian memes might be written in English, in a native language (native or foreign script), or in a mixture of languages and scripts (Ranjan et al., 2016; Chakravarthi et al., 2018; Jose et al., 2020; Priyadharshini et al., 2020; Chakravarthi et al., 2020a; Chakravarthi et al., 2020b) . This adds another challenge to the meme classification problem. In Figure 1 , Example 1 is written in Tamil with two images and Example 2 is written in English and Tamil (Roman Script) with two images. In the first example, the meme is trolling about the \"Vim dis-washer\" soap. The information in Example 1 can be translated into English as \"the price of a lemon is five Rupees\", whereby the image below shows a crying person. Just after the crying person the text says \"The price of a Vim bar with the power of 100 Lemon is just 10 Rupees\". This is an example of opinion manipulation with trolling as it influences the user opinion about products, companies and politics. This kind of memes might be effective in two ways. On the one hand, it is easy for companies and political parties to gain popularity. On the other hand, the trolls can damage the reputation of the company name or political party name. Example 2 shows a funny meme; it shows that a guy is talking to a poor lady while the girl in the car is looking at them. The image below includes a popular Tamil comedy actor with a short text written beneath \"We also talk nicely to ladies to get into a relationship\". Even though there is a widespread culture of memes on the Internet, the research on the classification of memes is not studied well. There are no systematic studies on classifying memes in a troll or not-troll category. In this work, we describe a dataset for classifying memes in such categories. To do this, we have collected a set of original memes from volunteers. We present baseline results using convolutional neural network (CNN) approaches for image classification. We report our findings in precision, recall and F-score and publish the code for this work at https: //github.com/sharduls007/TamilMemes.",
"cite_spans": [
{
"start": 966,
"end": 980,
"text": "(Bishop, 2013;",
"ref_id": "BIBREF1"
},
{
"start": 981,
"end": 993,
"text": "Bishop, 2014",
"ref_id": "BIBREF2"
},
{
"start": 1009,
"end": 1027,
"text": "Vega and Ng, 2018;",
"ref_id": "BIBREF29"
},
{
"start": 1028,
"end": 1053,
"text": "Suryawanshi et al., 2020)",
"ref_id": "BIBREF37"
},
{
"start": 1260,
"end": 1279,
"text": "Wang and Wen (2015)",
"ref_id": "BIBREF38"
},
{
"start": 1745,
"end": 1765,
"text": "(Kumar et al., 2018;",
"ref_id": "BIBREF21"
},
{
"start": 1766,
"end": 1784,
"text": "Rani et al., 2020;",
"ref_id": "BIBREF33"
},
{
"start": 1785,
"end": 1810,
"text": "Suryawanshi et al., 2020)",
"ref_id": "BIBREF37"
},
{
"start": 2197,
"end": 2218,
"text": "(Ranjan et al., 2016;",
"ref_id": "BIBREF34"
},
{
"start": 2219,
"end": 2245,
"text": "Chakravarthi et al., 2018;",
"ref_id": "BIBREF4"
},
{
"start": 2246,
"end": 2264,
"text": "Jose et al., 2020;",
"ref_id": "BIBREF20"
},
{
"start": 2265,
"end": 2293,
"text": "Priyadharshini et al., 2020;",
"ref_id": "BIBREF32"
},
{
"start": 2294,
"end": 2321,
"text": "Chakravarthi et al., 2020a;",
"ref_id": "BIBREF9"
},
{
"start": 2322,
"end": 2349,
"text": "Chakravarthi et al., 2020b)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 2419,
"end": 2427,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "A troll meme is an implicit image that intents to demean or offend an individual on the Internet. Based on the definition \"Trolling is the activity of posting a message via social media that tend to be offensive, provocative, or menacing (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018)\". Their main function is to distract the audience with the intent of provoking them. We define troll memes as a meme, which contains offensive text and non-offensive images, offensive images with non-offensive text, sarcastically offensive text with non-offensive images, or sarcastic images with offensive text to provoke, distract, and has a digressive or off-topic content with intend to demean or offend particular people, group or race. Figure 2 shows examples of trolling memes, Example 3 is trolling the potato chip brand called Lays. The translation of the text is \"If you buy one packet of air, then 5 chips free\", with its intention to damage the company's reputation. Figure 2 illustrates examples of not-troll memes. The translation of Example 4 would be \"Sorry my friend (girl)\". As this example does not contain any provoking or offensive content and is even funny, it should be listed in the not-troll category. As a troll meme is directed towards someone, it is easy to find such content in the comments section or group chat of social media. For our work, we collected memes from volunteers who sent them through WhatsApp, a social media for chatting and creating a group chat. The suspected troll memes then have been verified and annotated manually by the annotators. As the users who sent these troll memes belong to the Tamil speaking population, all the troll memes are in Tamil. The general format of the meme is the image and Tamil text embedded within the image. Most of the troll memes comes from the state of Tamil Nadu, in India. The Tamil language, which has 75 million speakers, 1 belongs to the Dravidian language family (Rao and Lalitha Devi, 2013; Chakravarthi et al., 2019a; Chakravarthi et al., 2019b; Chakravarthi et al., 2019c) and is one of the 22 scheduled languages of India (Dash et al., 2015) . As these troll memes can have a negative psychological effect on an individual, a constraint has to be in place for such a conversation. In this work, we are attempting to identify such troll memes by providing a dataset and image classifier to identify these memes.",
"cite_spans": [
{
"start": 238,
"end": 252,
"text": "(Bishop, 2013;",
"ref_id": "BIBREF1"
},
{
"start": 253,
"end": 265,
"text": "Bishop, 2014",
"ref_id": "BIBREF2"
},
{
"start": 1952,
"end": 1980,
"text": "(Rao and Lalitha Devi, 2013;",
"ref_id": "BIBREF35"
},
{
"start": 1981,
"end": 2008,
"text": "Chakravarthi et al., 2019a;",
"ref_id": "BIBREF6"
},
{
"start": 2009,
"end": 2036,
"text": "Chakravarthi et al., 2019b;",
"ref_id": "BIBREF7"
},
{
"start": 2037,
"end": 2064,
"text": "Chakravarthi et al., 2019c)",
"ref_id": "BIBREF8"
},
{
"start": 2115,
"end": 2134,
"text": "(Dash et al., 2015)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 742,
"end": 750,
"text": "Figure 2",
"ref_id": "FIGREF1"
},
{
"start": 979,
"end": 987,
"text": "Figure 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Troll Meme",
"sec_num": "2."
},
{
"text": "Trolling in social media for text has been studied extensively (Bishop, 2013; Bishop, 2014 ; Mojica de la Vega and Ng, 2018; Malmasi and Zampieri, 2017; Kumar et al., 2018; Kumar, 2019) . Opinion manipulation trolling (Mihaylov et al., 2015b; Mihaylov et al., 2015a) , troll comments in News Community (Mihaylov and Nakov, 2016) , and the role of political trolls (Atanasov et al., 2019) have been studied. All these considered the trolling on text-only media. However, meme consist of images or images with text.",
"cite_spans": [
{
"start": 63,
"end": 77,
"text": "(Bishop, 2013;",
"ref_id": "BIBREF1"
},
{
"start": 78,
"end": 90,
"text": "Bishop, 2014",
"ref_id": "BIBREF2"
},
{
"start": 125,
"end": 152,
"text": "Malmasi and Zampieri, 2017;",
"ref_id": "BIBREF24"
},
{
"start": 153,
"end": 172,
"text": "Kumar et al., 2018;",
"ref_id": "BIBREF21"
},
{
"start": 173,
"end": 185,
"text": "Kumar, 2019)",
"ref_id": "BIBREF22"
},
{
"start": 218,
"end": 242,
"text": "(Mihaylov et al., 2015b;",
"ref_id": "BIBREF28"
},
{
"start": 243,
"end": 266,
"text": "Mihaylov et al., 2015a)",
"ref_id": "BIBREF27"
},
{
"start": 302,
"end": 328,
"text": "(Mihaylov and Nakov, 2016)",
"ref_id": "BIBREF26"
},
{
"start": 364,
"end": 387,
"text": "(Atanasov et al., 2019)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3."
},
{
"text": "A related research area is on offensive content detection. Various works in the recent years have investigated Offensive and Aggression content in text (Clarke and Grieve, 2017; Mathur et al., 2018; Nogueira dos Santos et al., 2018; Galery et al., 2018) . For images, Gandhi et al. (2019) deals with offensive images and non-compliant logos. They have developed a computer-vision driven offensive and non-compliant image detection algorithm that identifies the offensive content in the image. They have categorized images as offensive if it has nudity, sexually explicit content, abusive text, objects used to promote violence or racially inappropriate content. The classifier takes advantage of a pre-trained object detector to identify the type of object in the image and then sends the image to the unit which specializes in detecting objects in the image. The majority of memes do not contain nudity or explicit sexual content due to the moderation of social media on nudity. Hence unlike their research, we are trying to identify troll memes by using image features derived by use of a convolutional neural network. Hate speech is a subset of offensive language and datasets associated with hate speech have been collected from social media such as Twitter (Xiang et al., 2012) , Instagram (Hosseinmardi et al., 2015) , Yahoo (Nobata et al., 2016) , YouTube (Dinakar et al., 2012) . In all of these works, only text corpora have been used to detect trolling, offensive, aggression and hate speech. Nevertheless, for memes, there is no such dataset. For Indian language memes, it is not available as to our knowledge. We are the first to develop a meme dataset for Tamil, with troll or not-troll annotation.",
"cite_spans": [
{
"start": 152,
"end": 177,
"text": "(Clarke and Grieve, 2017;",
"ref_id": "BIBREF11"
},
{
"start": 178,
"end": 198,
"text": "Mathur et al., 2018;",
"ref_id": "BIBREF25"
},
{
"start": 199,
"end": 232,
"text": "Nogueira dos Santos et al., 2018;",
"ref_id": "BIBREF31"
},
{
"start": 233,
"end": 253,
"text": "Galery et al., 2018)",
"ref_id": "BIBREF15"
},
{
"start": 268,
"end": 288,
"text": "Gandhi et al. (2019)",
"ref_id": "BIBREF16"
},
{
"start": 1262,
"end": 1282,
"text": "(Xiang et al., 2012)",
"ref_id": "BIBREF39"
},
{
"start": 1295,
"end": 1322,
"text": "(Hosseinmardi et al., 2015)",
"ref_id": "BIBREF18"
},
{
"start": 1331,
"end": 1352,
"text": "(Nobata et al., 2016)",
"ref_id": "BIBREF30"
},
{
"start": 1363,
"end": 1385,
"text": "(Dinakar et al., 2012)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3."
},
{
"text": "For our study, people provided memes voluntarily for our research. Additionally, all personal identifiable information such as usernames are deleted from this dataset. The annotators were warned about the trolling content before viewing the meme, and our instructions informed them that they could quit the annotation campaign anytime if they felt uncomfortable.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ethics",
"sec_num": "4.1."
},
{
"text": "To retrieve high-quality meme data that would likely to include trolling, we asked the volunteers to provide us with memes that they get in their social media platforms, like WhatsApp, Facebook, Instagram, and Pinterest. The data was collected between November 1, 2019, until January 15, 2019, from sixteen volunteers. We are not disclosing any personal information of the volunteers such as gender as per their will. Figure 3 shows an example of the collected memes. We removed duplicate memes, however, we kept memes that uses the same image but different text. This was a challenging task since the same meme could have different file names. Hence the same meme could be annotated by different annotators. Due to this, we checked manually and removed such duplicates before sending them to annotators. An example is shown in Figure 3 , where the same image with different text is used. Example 5 describes the image as \"can not understand what you are saying\", whereby Example 6 describes image as \"I am confused\". ",
"cite_spans": [],
"ref_spans": [
{
"start": 418,
"end": 426,
"text": "Figure 3",
"ref_id": "FIGREF2"
},
{
"start": 828,
"end": 836,
"text": "Figure 3",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Data collection",
"sec_num": "4.2."
},
{
"text": "After we obtained the memes, we presented this data to the annotators using Google Forms. To not over-burden the annotators, we provided ten memes per page and hundred memes per form. For each form, the annotators are asked to decide if a given meme is of category troll or not-troll. As a part of annotation guidelines, we gave multiple examples of troll memes and not-troll memes to the annotators. The annotation for these examples has been done by the an annotator who is considered as a expert as well as a native Tamil speaker. Each meme is assigned to two different annotators, a male and a female annotator. To ensure the quality of the annotations and due to the region-specific nature of the annotation task, only native speakers from Tamil Nadu, India were recruited as annotators. Although we are not disclosing the gender demographics of volunteers who provided memes, we have gender-balanced annotation since each meme has been annotated by a male and a female.A meme is considered as troll only when both of the annotators label it as a troll.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Annotation",
"sec_num": "4.3."
},
{
"text": "In order to evaluate the reliability of the annotation and their robustness across experiments, we analyzed the interannotator agreement using Cohen's kappa (Cohen, 1960) . It compares the probability of two annotators agreeing by chance with the observed agreement. It measures agreement expected by chance by modelling each annotator with separate distribution governing their likelihood of assigning a particular category. Mathematically,",
"cite_spans": [
{
"start": 157,
"end": 170,
"text": "(Cohen, 1960)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Inter-Annotator Agreement",
"sec_num": "4.4."
},
{
"text": "K = p(A) \u2212 p(E) 1 \u2212 p(E) (1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Inter-Annotator Agreement",
"sec_num": "4.4."
},
{
"text": "where K is the kappa value, p(A) is the probability of the actual outcome and p(E) is the probability of the expected outcome as predicted by chance (Bloodgood and Grothendieck, 2013) . We got a kappa value of 0.62 between two annotators (gender balance male and female annotators). Based on Landis and Koch (1977) and given the inherent obscure nature of memes, we got fair agreement amongst the annotators.",
"cite_spans": [
{
"start": 149,
"end": 183,
"text": "(Bloodgood and Grothendieck, 2013)",
"ref_id": "BIBREF3"
},
{
"start": 292,
"end": 314,
"text": "Landis and Koch (1977)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Inter-Annotator Agreement",
"sec_num": "4.4."
},
{
"text": "We collected 2,969 memes, of which most are images with text embedded on them. After the annotation, we learned that the majority (1,951) of these were annotated as troll memes, and 1,018 as not-troll memes. Furthermore, we observed that memes, which have more than one image have a high probability of being a troll, whereas those with only one image are likely to be not-troll. We included Flickr30K 2 images (Young et al., 2014) to the not-troll category to address the class imbalance. Flickr30K is only added to training, while the test set is randomly chosen from our dataset. In all our experiments the test set remains the same.",
"cite_spans": [
{
"start": 411,
"end": 431,
"text": "(Young et al., 2014)",
"ref_id": "BIBREF40"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Statistics",
"sec_num": "4.5."
},
{
"text": "To demonstrate how the given dataset can be used to classify troll memes, we defined two experiments with four variations of each. We measured the performance of the proposed baselines by using precision, recall and F1-score for each class, i.e. \"troll and not-troll\". We used ResNet (He et al., 2016) and MobileNet (Howard et al., 2017) as a baseline to perform the experiments. We give insights into their architecture and design choices in the sections below.",
"cite_spans": [
{
"start": 284,
"end": 301,
"text": "(He et al., 2016)",
"ref_id": "BIBREF17"
},
{
"start": 316,
"end": 337,
"text": "(Howard et al., 2017)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "5."
},
{
"text": "ResNet has won the ImageNet ILSVRC 2015 (Russakovsky et al., 2015) classification task. It is still a popular method for classifying images and uses residual learning which connects low-level and high-level representation directly by skipping the connections in-between. This improves the performance of ResNet by diminishing the problem of vanishing gradient descent. It assumes that a deeper network should not produce higher training error than a shallow network. In this experiment, we used the ResNet architecture with 176 layers. As it was trained on the ImageNet task, we removed the classification (last) layer and used GlobalAveragePooling in place of fully connected layer to save the computational cost. Later, we added four fully connected layers with the classification layer which has a sigmoid activation function.This architecture is trained with or without pre-trained ImageNet weights.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "ResNet",
"sec_num": null
},
{
"text": "We trained MobileNet with and without ImageNet weights. The model has a depth multiplier of 1.4, and an input dimension of 224\u00d7224 pixels. This provides a 1, 280\u00d71.4 = 1, 792 -dimensional representation of an image, which is then passed through a single hidden layer of a dimensionality of 1, 024 with ReLU activation, before being passed to a hidden layer with input dimension of (512,None) without any activation to provide the final representation h p . The main purpose of MobileNet is to optimize convolutional neural networks for mobile and embedded vision applications. It is less complex than ResNet in terms of number of hyperparameters and operations. It uses a different convolutional layer for each channel, this allows parallel computation on each channel which is Depthwise Separable Convolution. Later on the features extracted from these layers have been combined using the pointwise convolution layer. We used MobileNet to reduce the computational cost and compare it with the computationally intensive ResNet.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "MobileNet",
"sec_num": null
},
{
"text": "We experimented with ResNet and MobileNet. The variation in experiments comes in terms of the data on which the models have been trained on, while the test set (300 memes) remained the same for all experiments. In the first variation, TamilMemes in Table 1 , we trained the ResNet and Mo-bileNet models on our Tamil meme dataset(2,669 memes).",
"cite_spans": [],
"ref_spans": [
{
"start": 249,
"end": 256,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6."
},
{
"text": "The second variation, i.e. TamilMemes + ImageNet uses pre-trained ImageNet weights on the Tamil memes dataset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6."
},
{
"text": "To address the class imbalance, we added 1,000 images from the Flickr30k dataset to the training set in the third variation i.e. TamilMemes + ImageNet + Flickr1k. As a result, the third variation has 3,969 images (1,951 trolls and 2,018 not-trolls). In the last variation, TamilMemes + ImageNet + Flickr30k, we added 30,000 images from the Flickr30k dataset to not-troll category. Flickr dataset has images and the captions which describes the image. We used these images as a not-troll category because they do not convey trollings without the context of the text. Except for the TamilMemes baseline, we are using pre-trained Im-ageNet weights for all other variations. Images from the Flickr30k dataset are used to balance the not-troll class in the TamilMemes + ImageNet + Flickr1k variation. On the one hand, the use of all the samples from the Flickr30k dataset as not-troll in the fourth variation introduces the class imbalance by significantly increasing the number of not-troll samples compared to the troll one. On the other hand, in the first variation, a higher number of troll meme samples again introduces a class imbalance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "6."
},
{
"text": "In the ResNet variations, we observed that there is no change in the macro averaged precision, recall and F1-score except for TamilMemes + ImageNet + Flickr1k variation. This variation has relatively poor results when compared with the other three variations in ResNet. While precision at identifying the troll class for the ResNet baseline does not vary much, we get better precision at classifying troll memes in the TamilMemes variation. This shows that the ResNet model trained on just Tamil memes has a better chance at identifying troll memes. The scenario is different in the case of the MobileNet variations. On the one hand, we observed less precision at identifying the troll class for the TamilMemes variation. On the other hand, we see improvement in precision at detecting trolls in the TamilMeme + ImageNet variation. This shows that MobileNet can leverage transfer learning to improve results. The relatively poor performance of MobileNet on the TamilMeme variation shows that it can not learn complex features like ResNet does to identify troll memes. For ResNet, the trend in the macro averaged score can be seen increasing in TamilMemes + ImageNet and TamilMemes + ImageNet + Flickr1k variations when compared to the TamilMemes variation. The TamilMemes + ImageNet + Flickr30k variation shows a lower macro averaged score than that of the TamilMemes + ImageNet + Flickr1k variation in both MobileNet and ResNet. Overall the precision for troll class identification lies in the range of 0.28 and 0.37, which is rather less than that of the not-troll class which lies in the range of 0.64 and 0.68. When we train ResNet in class imbalanced data in TamilMemes and TamilMemes + ImageNet + Flickr30k variations, results shows that the macro-averaged score of these variations are not hampered by the class imbalance issue. While for same variations MobileNet shows poor macro-averaged precision and recall score when compared with other variations. This shows that MobileNet is more susceptible to class imbalance issue than ResNet.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Result and Discussion",
"sec_num": "7."
},
{
"text": "As shown in the Table 1 the classification model performs poorly at identifying of troll memes. We observed that this stems from the problem characteristics of memes. The meme dataset is unbalanced and memes have both image and text embedded to it with code-mixing in different forms. Therefore, it is inherently more challenging to train a classifier using just images. Further, the same image can be used with different text to mean different things, potentially making the task more complicated.",
"cite_spans": [],
"ref_spans": [
{
"start": 16,
"end": 23,
"text": "Table 1",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Conclusions and Future work",
"sec_num": "8."
},
{
"text": "To reduce the burden placed on annotators, we plan to use a semi-supervised approach to the size of the dataset. Semisupervised approaches have been proven to be of good use to increase the size of the datasets for under-resourced scenarios. We plan to use optical character recognizer (OCR) followed by a manual evaluation to obtain the text in the images. Since Tamil memes have code-mixing phenomenon, we plan to tackle the problem accordingly. With text identification using OCR, we will be able to approach the problem in a multi-modal way. We have created a meme dataset only for Tamil, but we plan to extend this to other languages as well.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future work",
"sec_num": "8."
},
{
"text": "https://www.ethnologue.com/language/tam",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/BryanPlummer/flickr30k entities",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289 P2, co-funded by the European Regional Development Fund, as well as by the H2020 project Pr\u00eat-\u00e0-LLOD under Grant Agreement number 825182.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Predicting the role of political trolls in social media",
"authors": [
{
"first": "A",
"middle": [],
"last": "Atanasov",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "De Francisci Morales",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nakov",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL)",
"volume": "",
"issue": "",
"pages": "1023--1034",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Atanasov, A., De Francisci Morales, G., and Nakov, P. (2019). Predicting the role of political trolls in social media. In Proceedings of the 23rd Conference on Com- putational Natural Language Learning (CoNLL), pages 1023-1034, Hong Kong, China, November. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "The effect of de-individuation of the internet troller on criminal procedure implementation: An interview with a hater -proquest",
"authors": [
{
"first": "J",
"middle": [],
"last": "Bishop",
"suffix": ""
}
],
"year": 2013,
"venue": "International journal of cyber criminology",
"volume": "",
"issue": "",
"pages": "28--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bishop, J. (2013). The effect of de-individuation of the in- ternet troller on criminal procedure implementation: An interview with a hater -proquest. International journal of cyber criminology, page 28-48.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Dealing with internet trolling in political online communities: Towards the this is why we can't have nice things scale",
"authors": [
{
"first": "J",
"middle": [],
"last": "Bishop",
"suffix": ""
}
],
"year": 2014,
"venue": "Int. J. E-Polit",
"volume": "5",
"issue": "4",
"pages": "1--20",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bishop, J. (2014). Dealing with internet trolling in politi- cal online communities: Towards the this is why we can't have nice things scale. Int. J. E-Polit., 5(4):1-20, Octo- ber.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Analysis of stopping active learning based on stabilizing predictions",
"authors": [
{
"first": "M",
"middle": [],
"last": "Bloodgood",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Grothendieck",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "10--19",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bloodgood, M. and Grothendieck, J. (2013). Analysis of stopping active learning based on stabilizing predictions. In Proceedings of the Seventeenth Conference on Com- putational Natural Language Learning, pages 10-19, Sofia, Bulgaria, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Improving Wordnets for Under-Resourced Languages Using Machine Translation",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Arcan",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 9th",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2018). Improving Wordnets for Under-Resourced Languages Using Machine Translation. In Proceedings of the 9th",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Global WordNet Conference. The Global WordNet Conference",
"authors": [],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Global WordNet Conference. The Global WordNet Con- ference 2018 Committee.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Comparison of Different Orthographies for Machine Translation of Under-Resourced Dravidian Languages",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Arcan",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2019,
"venue": "2nd Conference on Language, Data and Knowledge (LDK 2019)",
"volume": "6",
"issue": "",
"pages": "1--6",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2019a). Comparison of Different Orthographies for Machine Translation of Under-Resourced Dravidian Languages. In Maria Eskevich, et al., editors, 2nd Conference on Language, Data and Knowledge (LDK 2019), vol- ume 70 of OpenAccess Series in Informatics (OASIcs), pages 6:1-6:14, Dagstuhl, Germany. Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "WordNet gloss translation for under-resourced languages using multilingual neural machine translation",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Arcan",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Second Workshop on Multilingualism at the Intersection of Knowledge Bases and Machine Translation",
"volume": "",
"issue": "",
"pages": "1--7",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Arcan, M., and McCrae, J. P. (2019b). WordNet gloss translation for under-resourced languages using multilingual neural machine translation. In Pro- ceedings of the Second Workshop on Multilingualism at the Intersection of Knowledge Bases and Machine Trans- lation, pages 1-7, Dublin, Ireland, August. European As- sociation for Machine Translation.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Multilingual multimodal machine translation for Dravidian languages utilizing phonetic transcription",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Priyadharshini",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Stearns",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Jayapal",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Arcan",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zarrouk",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Mccrae",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2nd Workshop on Technologies for MT of Low Resource Languages",
"volume": "",
"issue": "",
"pages": "56--63",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Priyadharshini, R., Stearns, B., Jaya- pal, A., S, S., Arcan, M., Zarrouk, M., and McCrae, J. P. (2019c). Multilingual multimodal machine transla- tion for Dravidian languages utilizing phonetic transcrip- tion. In Proceedings of the 2nd Workshop on Technolo- gies for MT of Low Resource Languages, pages 56-63, Dublin, Ireland, August. European Association for Ma- chine Translation.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A sentiment analysis dataset for code-mixed Malayalam-English",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Jose",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Suryawanshi",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Sherly",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL 2020)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Jose, N., Suryawanshi, S., Sherly, E., and McCrae, J. P. (2020a). A sentiment analy- sis dataset for code-mixed Malayalam-English. In Pro- ceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under- Resourced Languages) (SLTU-CCURL 2020), Marseille, France, May. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Corpus creation for sentiment analysis in code-mixed Tamil-English text",
"authors": [
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Muralidaran",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Priyadharshini",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under-Resourced Languages) (SLTU-CCURL 2020)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chakravarthi, B. R., Muralidaran, V., Priyadharshini, R., and McCrae, J. P. (2020b). Corpus creation for senti- ment analysis in code-mixed Tamil-English text. In Pro- ceedings of the 1st Joint Workshop of SLTU (Spoken Language Technologies for Under-resourced languages) and CCURL (Collaboration and Computing for Under- Resourced Languages) (SLTU-CCURL 2020), Marseille, France, May. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Dimensions of abusive language on Twitter",
"authors": [
{
"first": "I",
"middle": [],
"last": "Clarke",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Grieve",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the First Workshop on Abusive Language Online",
"volume": "",
"issue": "",
"pages": "1--10",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Clarke, I. and Grieve, J. (2017). Dimensions of abusive language on Twitter. In Proceedings of the First Work- shop on Abusive Language Online, pages 1-10, Vancou- ver, BC, Canada, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement",
"authors": [
{
"first": "J",
"middle": [],
"last": "Cohen",
"suffix": ""
}
],
"year": 1960,
"venue": "",
"volume": "20",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cohen, J. (1960). A Coefficient of Agreement for Nom- inal Scales. Educational and Psychological Measure- ment, 20(1):37.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Generating translation corpora in Indic languages:cultivating bilingual texts for cross lingual fertilization",
"authors": [
{
"first": "N",
"middle": [
"S"
],
"last": "Dash",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Selvraj",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Hussain",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 12th International Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "333--342",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dash, N. S., Selvraj, A., and Hussain, M. (2015). Gen- erating translation corpora in Indic languages:cultivating bilingual texts for cross lingual fertilization. In Proceed- ings of the 12th International Conference on Natural Language Processing, pages 333-342, Trivandrum, In- dia, December. NLP Association of India.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Common sense reasoning for detection, prevention, and mitigation of cyberbullying",
"authors": [
{
"first": "K",
"middle": [],
"last": "Dinakar",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Havasi",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Lieberman",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Picard",
"suffix": ""
}
],
"year": 2012,
"venue": "ACM Trans. Interact. Intell. Syst",
"volume": "2",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dinakar, K., Jones, B., Havasi, C., Lieberman, H., and Pi- card, R. (2012). Common sense reasoning for detection, prevention, and mitigation of cyberbullying. ACM Trans. Interact. Intell. Syst., 2(3), September.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Aggression identification and multi lingual word embeddings",
"authors": [
{
"first": "T",
"middle": [],
"last": "Galery",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Charitos",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Tian",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)",
"volume": "",
"issue": "",
"pages": "74--79",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Galery, T., Charitos, E., and Tian, Y. (2018). Aggres- sion identification and multi lingual word embeddings. In Proceedings of the First Workshop on Trolling, Ag- gression and Cyberbullying (TRAC-2018), pages 74-79, Santa Fe, New Mexico, USA, August. Association for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Image matters: Detecting offensive and non-compliant content/logo in product images",
"authors": [
{
"first": "S",
"middle": [],
"last": "Gandhi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Kokkula",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Chaudhuri",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Magnani",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Stanley",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Ahmadi",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Kandaswamy",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Ovenc",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Mannor",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1905.02234"
]
},
"num": null,
"urls": [],
"raw_text": "Gandhi, S., Kokkula, S., Chaudhuri, A., Magnani, A., Stan- ley, T., Ahmadi, B., Kandaswamy, V., Ovenc, O., and Mannor, S. (2019). Image matters: Detecting offen- sive and non-compliant content/logo in product images. arXiv preprint arXiv:1905.02234.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Deep residual learning for image recognition",
"authors": [
{
"first": "K",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2016,
"venue": "2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016",
"volume": "",
"issue": "",
"pages": "770--778",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recogni- tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770-778.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Analyzing labeled cyberbullying incidents on the instagram social network",
"authors": [
{
"first": "H",
"middle": [],
"last": "Hosseinmardi",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Mattson",
"suffix": ""
},
{
"first": "R",
"middle": [
"I"
],
"last": "Rafiq",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Lv",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Mishra",
"suffix": ""
}
],
"year": 2015,
"venue": "International conference on social informatics",
"volume": "",
"issue": "",
"pages": "49--66",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hosseinmardi, H., Mattson, S. A., Rafiq, R. I., Han, R., Lv, Q., and Mishra, S. (2015). Analyzing labeled cyberbul- lying incidents on the instagram social network. In Inter- national conference on social informatics, pages 49-66. Springer.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Mobilenets: Efficient convolutional neural networks for mobile vision applications",
"authors": [
{
"first": "A",
"middle": [
"G"
],
"last": "Howard",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Kalenichenko",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Weyand",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Andreetto",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1704.04861"
]
},
"num": null,
"urls": [],
"raw_text": "Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural net- works for mobile vision applications. arXiv preprint arXiv:1704.04861.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A survey of current datasets for code-switching research",
"authors": [
{
"first": "N",
"middle": [],
"last": "Jose",
"suffix": ""
},
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Suryawanshi",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Sherly",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2020,
"venue": "2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jose, N., Chakravarthi, B. R., Suryawanshi, S., Sherly, E., and McCrae, J. P. (2020). A survey of current datasets for code-switching research. In 2020 6th International Conference on Advanced Computing and Communica- tion Systems (ICACCS).",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Benchmarking aggression identification in social media",
"authors": [
{
"first": "R",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "A",
"middle": [
"K"
],
"last": "Ojha",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Malmasi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zampieri",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)",
"volume": "",
"issue": "",
"pages": "1--11",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kumar, R., Ojha, A. K., Malmasi, S., and Zampieri, M. (2018). Benchmarking aggression identification in so- cial media. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 1-11, Santa Fe, New Mexico, USA, August. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "# shutdownjnu vs# standwithjnu: A study of aggression and conflict in political debates on social media in india",
"authors": [
{
"first": "R",
"middle": [],
"last": "Kumar",
"suffix": ""
}
],
"year": 2019,
"venue": "Journal of Language Aggression and Conflict",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kumar, R. (2019). # shutdownjnu vs# standwithjnu: A study of aggression and conflict in political debates on social media in india. Journal of Language Aggression and Conflict.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "The measurement of observer agreement for categorical data",
"authors": [
{
"first": "J",
"middle": [
"R"
],
"last": "Landis",
"suffix": ""
},
{
"first": "G",
"middle": [
"G"
],
"last": "Koch",
"suffix": ""
}
],
"year": 1977,
"venue": "Biometrics",
"volume": "33",
"issue": "1",
"pages": "159--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Landis, J. R. and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1):159-174.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Detecting hate speech in social media",
"authors": [
{
"first": "S",
"middle": [],
"last": "Malmasi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Zampieri",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "467--472",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Malmasi, S. and Zampieri, M. (2017). Detecting hate speech in social media. In Proceedings of the Interna- tional Conference Recent Advances in Natural Language Processing, RANLP 2017, pages 467-472, Varna, Bul- garia, September. INCOMA Ltd.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Detecting offensive tweets in Hindi-English code-switched language",
"authors": [
{
"first": "P",
"middle": [],
"last": "Mathur",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Shah",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Sawhney",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Mahata",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media",
"volume": "",
"issue": "",
"pages": "18--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mathur, P., Shah, R., Sawhney, R., and Mahata, D. (2018). Detecting offensive tweets in Hindi-English code-switched language. In Proceedings of the Sixth In- ternational Workshop on Natural Language Processing for Social Media, pages 18-26, Melbourne, Australia, July. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Hunting for troll comments in news community forums",
"authors": [
{
"first": "T",
"middle": [],
"last": "Mihaylov",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nakov",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "399--405",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihaylov, T. and Nakov, P. (2016). Hunting for troll com- ments in news community forums. In Proceedings of the 54th Annual Meeting of the Association for Computa- tional Linguistics (Volume 2: Short Papers), pages 399- 405, Berlin, Germany, August. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Finding opinion manipulation trolls in news community forums",
"authors": [
{
"first": "T",
"middle": [],
"last": "Mihaylov",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Georgiev",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nakov",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the Nineteenth Conference on Computational Natural Language Learning",
"volume": "",
"issue": "",
"pages": "310--314",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihaylov, T., Georgiev, G., and Nakov, P. (2015a). Find- ing opinion manipulation trolls in news community fo- rums. In Proceedings of the Nineteenth Conference on Computational Natural Language Learning, pages 310- 314, Beijing, China, July. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Exposing paid opinion manipulation trolls",
"authors": [
{
"first": "T",
"middle": [],
"last": "Mihaylov",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Koychev",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Georgiev",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Nakov",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "443--450",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihaylov, T., Koychev, I., Georgiev, G., and Nakov, P. (2015b). Exposing paid opinion manipulation trolls. In Proceedings of the International Conference Recent Ad- vances in Natural Language Processing, pages 443-450, Hissar, Bulgaria, September. INCOMA Ltd. Shoumen, BULGARIA.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Modeling trolling in social media conversations",
"authors": [
{
"first": "",
"middle": [],
"last": "Mojica De La",
"suffix": ""
},
{
"first": "L",
"middle": [
"G"
],
"last": "Vega",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Ng",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mojica de la Vega, L. G. and Ng, V. (2018). Modeling trolling in social media conversations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May. European Language Resources Association (ELRA).",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Abusive language detection in online user content",
"authors": [
{
"first": "C",
"middle": [],
"last": "Nobata",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tetreault",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Mehdad",
"suffix": ""
},
{
"first": "Chang",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 25th international conference on world wide web",
"volume": "",
"issue": "",
"pages": "145--153",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nobata, C., Tetreault, J., Thomas, A., Mehdad, Y., and Chang, Y. (2016). Abusive language detection in online user content. In Proceedings of the 25th international conference on world wide web, pages 145-153.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Fighting offensive language on social media with unsupervised text style transfer",
"authors": [
{
"first": "C",
"middle": [],
"last": "Nogueira Dos Santos",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Melnyk",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Padhi",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "189--194",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nogueira dos Santos, C., Melnyk, I., and Padhi, I. (2018). Fighting offensive language on social media with unsu- pervised text style transfer. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 189-194, Melbourne, Australia, July. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Named entity recognition for code-mixed Indian corpus using meta embedding",
"authors": [
{
"first": "R",
"middle": [],
"last": "Priyadharshini",
"suffix": ""
},
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Vegupatti",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2020,
"venue": "2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Priyadharshini, R., Chakravarthi, B. R., Vegupatti, M., and McCrae, J. P. (2020). Named entity recognition for code-mixed Indian corpus using meta embedding. In 2020 6th International Conference on Advanced Com- puting and Communication Systems (ICACCS).",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "A comparative study of different state-of-the-art hate speech detection methods for Hindi-English code-mixed data",
"authors": [
{
"first": "P",
"middle": [],
"last": "Rani",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Suryawanshi",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Goswami",
"suffix": ""
},
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Fransen",
"suffix": ""
},
{
"first": "J",
"middle": [
"P"
],
"last": "Mccrae",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rani, P., Suryawanshi, S., Goswami, K., Chakravarthi, B. R., Fransen, T., and McCrae, J. P. (2020). A compar- ative study of different state-of-the-art hate speech de- tection methods for Hindi-English code-mixed data. In Proceedings of the Second Workshop on Trolling, Ag- gression and Cyberbullying, Marseille, France, May. Eu- ropean Language Resources Association (ELRA).",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "A comparative study on code-mixed data of Indian social media vs formal text",
"authors": [
{
"first": "P",
"middle": [],
"last": "Ranjan",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Raja",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Priyadharshini",
"suffix": ""
},
{
"first": "R",
"middle": [
"C"
],
"last": "Balabantaray",
"suffix": ""
}
],
"year": 2016,
"venue": "2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)",
"volume": "",
"issue": "",
"pages": "608--611",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ranjan, P., Raja, B., Priyadharshini, R., and Balabantaray, R. C. (2016). A comparative study on code-mixed data of Indian social media vs formal text. In 2016 2nd Inter- national Conference on Contemporary Computing and Informatics (IC3I), pages 608-611, Dec.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Tamil English cross lingual information retrieval",
"authors": [
{
"first": "T",
"middle": [
"P R K"
],
"last": "Rao",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Devi",
"suffix": ""
}
],
"year": 2013,
"venue": "Multilingual Information Access in South Asian Languages",
"volume": "",
"issue": "",
"pages": "269--279",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rao, T. P. R. K. and Lalitha Devi, S. (2013). Tamil En- glish cross lingual information retrieval. In Prasenjit Ma- jumder, et al., editors, Multilingual Information Access in South Asian Languages, pages 269-279, Berlin, Hei- delberg. Springer Berlin Heidelberg.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV)",
"authors": [
{
"first": "O",
"middle": [],
"last": "Russakovsky",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Deng",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Krause",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Satheesh",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Karpathy",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Khosla",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Bernstein",
"suffix": ""
},
{
"first": "A",
"middle": [
"C"
],
"last": "Berg",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Fei-Fei",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "115",
"issue": "",
"pages": "211--252",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. International Jour- nal of Computer Vision (IJCV), 115(3):211-252.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Multimodal meme dataset (Multi-OFF) for identifying offensive content in image and text",
"authors": [
{
"first": "S",
"middle": [],
"last": "Suryawanshi",
"suffix": ""
},
{
"first": "B",
"middle": [
"R"
],
"last": "Chakravarthi",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Arcan",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Buitelaar",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Second Workshop on Trolling, Aggression and Cyberbullying",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Suryawanshi, S., Chakravarthi, B. R., Arcan, M., and Buitelaar, P. (2020). Multimodal meme dataset (Multi- OFF) for identifying offensive content in image and text. In Proceedings of the Second Workshop on Trolling, Ag- gression and Cyberbullying, Marseille, France, May. Eu- ropean Language Resources Association (ELRA).",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "I can has cheezburger? a nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions",
"authors": [
{
"first": "W",
"middle": [
"Y"
],
"last": "Wang",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Wen",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "355--365",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wang, W. Y. and Wen, M. (2015). I can has cheezburger? a nonparanormal approach to combining textual and visual information for predicting and generating popular meme descriptions. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Com- putational Linguistics: Human Language Technologies, pages 355-365, Denver, Colorado, May-June. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Detecting offensive tweets via topical feature discovery over a large scale twitter corpus",
"authors": [
{
"first": "G",
"middle": [],
"last": "Xiang",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Fan",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Hong",
"suffix": ""
},
{
"first": "Rose",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 21st ACM international conference on Information and knowledge management",
"volume": "",
"issue": "",
"pages": "1980--1984",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiang, G., Fan, B., Wang, L., Hong, J., and Rose, C. (2012). Detecting offensive tweets via topical feature discovery over a large scale twitter corpus. In Proceed- ings of the 21st ACM international conference on Infor- mation and knowledge management, pages 1980-1984.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions",
"authors": [
{
"first": "P",
"middle": [],
"last": "Young",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Lai",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Hodosh",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Hockenmaier",
"suffix": ""
}
],
"year": 2014,
"venue": "TACL",
"volume": "2",
"issue": "",
"pages": "67--78",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2:67-78.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"text": "Examples of Indian memes.",
"type_str": "figure"
},
"FIGREF1": {
"uris": null,
"num": null,
"text": "Examples of troll and not-troll memes.",
"type_str": "figure"
},
"FIGREF2": {
"uris": null,
"num": null,
"text": "Examples on same image with different text.",
"type_str": "figure"
},
"TABREF0": {
"num": null,
"html": null,
"type_str": "table",
"content": "<table><tr><td>Variations</td><td/><td colspan=\"2\">TamilMemes</td><td/><td colspan=\"3\">TamilMemes + ImageNet</td><td/></tr><tr><td/><td colspan=\"7\">Precision Recall f1-score count Precision Recall f1-score</td><td>count</td></tr><tr><td>troll</td><td>0.37</td><td>0.33</td><td>0.35</td><td>100</td><td>0.36</td><td>0.35</td><td>0.35</td><td>100</td></tr><tr><td>not-troll</td><td>0.68</td><td>0.71</td><td>0.70</td><td>200</td><td>0.68</td><td>0.69</td><td>0.68</td><td>200</td></tr><tr><td>macro-avg</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.58</td><td>0.59</td><td>0.58</td><td>300</td><td>0.57</td><td>0.57</td><td>0.57</td><td>300</td></tr><tr><td>Variations</td><td colspan=\"8\">TamilMemes + ImageNet + Flickr1k TamilMemes + ImageNet + Flickr30k</td></tr><tr><td>troll</td><td>0.30</td><td>0.34</td><td>0.32</td><td>100</td><td>0.36</td><td>0.35</td><td>0.35</td><td>100</td></tr><tr><td>not-troll</td><td>0.64</td><td>0.59</td><td>0.62</td><td>200</td><td>0.68</td><td>0.69</td><td>0.68</td><td>200</td></tr><tr><td>macro-avg</td><td>0.47</td><td>0.47</td><td>0.47</td><td>300</td><td>0.52</td><td>0.52</td><td>0.52</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.53</td><td>0.51</td><td>0.52</td><td>300</td><td>0.57</td><td>0.57</td><td>0.57</td><td>300</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">MobileNet</td><td/><td/><td/></tr><tr><td>Variations</td><td/><td colspan=\"2\">TamilMemes</td><td/><td colspan=\"3\">TamilMemes + ImageNet</td><td/></tr><tr><td>troll</td><td>0.28</td><td>0.27</td><td>0.28</td><td>100</td><td>0.34</td><td>0.43</td><td>0.38</td><td>100</td></tr><tr><td>not-troll</td><td>0.64</td><td>0.66</td><td>0.65</td><td>200</td><td>0.67</td><td>0.58</td><td>0.62</td><td>200</td></tr><tr><td>macro-avg</td><td>0.46</td><td>0.46</td><td>0.46</td><td>300</td><td>0.50</td><td>0.51</td><td>0.50</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.52</td><td>0.53</td><td>0.52</td><td>300</td><td>0.56</td><td>0.53</td><td>0.54</td><td>300</td></tr><tr><td>Variations</td><td colspan=\"8\">TamilMemes + ImageNet + Flickr1k TamilMemes + ImageNet + Flickr30k</td></tr><tr><td>troll</td><td>0.33</td><td>0.55</td><td>0.41</td><td>100</td><td>0.31</td><td>0.34</td><td>0.33</td><td>100</td></tr><tr><td>not-troll</td><td>0.66</td><td>0.45</td><td>0.53</td><td>200</td><td>0.65</td><td>0.62</td><td>0.64</td><td>200</td></tr><tr><td>macro-avg</td><td>0.50</td><td>0.50</td><td>0.47</td><td>300</td><td>0.48</td><td>0.48</td><td>0.48</td><td>300</td></tr><tr><td>weighted-avg</td><td>0.55</td><td>0.48</td><td>0.49</td><td>300</td><td>0.54</td><td>0.53</td><td>0.53</td><td>300</td></tr></table>",
"text": "Precision, recall, F1-score and count for ResNet, MobileNet and their variations."
}
}
}
} |