File size: 36,842 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T04:33:40.326994Z"
    },
    "title": "Malayalam Speech Corpus: Design and Development for Dravidian Language",
    "authors": [
        {
            "first": "Elizabeth",
            "middle": [],
            "last": "Sherly",
            "suffix": "",
            "affiliation": {},
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "To overpass the disparity between theory and applications in language-related technology in the text as well as speech and several other areas, a well-designed and well-developed corpus is essential. Several problems and issues encountered while developing a corpus, especially for low resource languages. The Malayalam Speech Corpus (MSC) is one of the first open speech corpora for Automatic Speech Recognition (ASR) research to the best of our knowledge. It consists of 250 hours of Agricultural speech data. We are providing a transcription file, lexicon and annotated speech along with the audio segment. It is available in future for public use upon request at \"www.iiitmk.ac.in/vrclc/utilities/ml speechcorpus\". This paper details the development and collection process in the domain of agricultural speech corpora in the Malayalam Language.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "To overpass the disparity between theory and applications in language-related technology in the text as well as speech and several other areas, a well-designed and well-developed corpus is essential. Several problems and issues encountered while developing a corpus, especially for low resource languages. The Malayalam Speech Corpus (MSC) is one of the first open speech corpora for Automatic Speech Recognition (ASR) research to the best of our knowledge. It consists of 250 hours of Agricultural speech data. We are providing a transcription file, lexicon and annotated speech along with the audio segment. It is available in future for public use upon request at \"www.iiitmk.ac.in/vrclc/utilities/ml speechcorpus\". This paper details the development and collection process in the domain of agricultural speech corpora in the Malayalam Language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Malayalam is the official language of Kerala, Lakshadweep, and Mahe. From 1330 million people in India, 37 million people speak Malayalam ie; 2.88% of Indians. (Wikipedia contributors, 2020) . Malayalam is the youngest of all languages in the Dravidian family. Four or five decades were taken for Malayalam to emerge from Tamil. The development of Malayalam is greatly influenced by Sanskrit also.",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 190,
                        "text": "(Wikipedia contributors, 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In the Automatic Speech Recognition (ASR) area many works are progressing in highly and low-resourced languages. The present speech recognition system has achieved a 'Natural' degree of accuracy mainly in Standard American English (Xiong et al., 2016) . The accurate recognition of speech exists only for highly resourced languages. But it is still lagging for \"non-native\" speakers. To increase the accuracy of such an ASR system the speech data for low-resource language like Malayalam is to be increased.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 251,
                        "text": "(Xiong et al., 2016)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "To encourage the research on speech technology and its related applications in Malayalam, a collection of speech corpus is commissioned and named as Malayalam Speech Corpus (MSC). The corpus consists of the following parts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "\u2022 200 hours of Narrational Speech named NS and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "\u2022 50 hours of Interview Speech named IS The raw speech data is collected from \"Kissan Krishideepam\" an agriculture-based program in Malayalam by the Department of Agriculture, Government of Kerala. The NS is created by making a script during the postproduction stage and dubbed with the help of people in different age groups and gender but they are amateur dubbing artists. The speech data is thoughtfully designed -for various applications like code mixed language analysis, Automatic Speech Recognition (ASR) related research, speaker recognition -by considering sociolinguistic variables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Interview Speech corpora (NS and IS) collected from native Malayalam speakers. The literature survey of different speech corpora creation is detailed in section 2. Section 3 describes the design and demographics of speech data. The section 4 continues with transcription and section 5 deals with lexicon of the speech data and paper concludes with section 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "This paper represents the development of Narrational and",
                "sec_num": null
            },
            {
                "text": "Many languages have developed speech corpus and they are open source too. The English read speech corpus is freely available to download for research purposes (Koh et al., 2019) (Panayotov et al., 2015) . Similarly, a database is made available with the collection of TED talks in the English language (Hernandez et al., 2018) . Databases are available for Indian languages on free download and a payment basis also. For the Malayalam language-based emotion recognition, a database is available (Rajan et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 177,
                        "text": "(Koh et al., 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 178,
                        "end": 202,
                        "text": "(Panayotov et al., 2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 302,
                        "end": 326,
                        "text": "(Hernandez et al., 2018)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 495,
                        "end": 515,
                        "text": "(Rajan et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literature Survey",
                "sec_num": "2."
            },
            {
                "text": "The corpus collection of low resourced languages is a good initiative in the area of ASR. One of such work is done on Latvian language (Pinnis et al., 2014) . They created 100 hours of orthographically transcribed audio data and annotated corpus also. In addition to that a four hours of phonetically transcribed audio data is also available. The authors presented the statistics of speech corpus along with criteria for design of speech corpus.",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 156,
                        "text": "(Pinnis et al., 2014)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literature Survey",
                "sec_num": "2."
            },
            {
                "text": "South Africa has eleven official languages. An attempt is made for the creation of speech corpora on these under resourced languages (Barnard et al., 2014) . A collection of more than 50 hours of speech in each language is made available. They validated the corpora by building acoustic and language model using KALDI.",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 155,
                        "text": "(Barnard et al., 2014)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literature Survey",
                "sec_num": "2."
            },
            {
                "text": "Similarly speech corpora for North-East Indian lowresourced languages is also created (Hernandez et al., 2018) . The authors collected speech and text corpora on Assamese, Bengali and Nepali. They conducted a statisti-cal study of the corpora also.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 110,
                        "text": "(Hernandez et al., 2018)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literature Survey",
                "sec_num": "2."
            },
            {
                "text": "A recording studio is setup at our visual media lab with a quiet and sound proof room. A standing microphone is used for recording NS corpora. IS corpora is collected directly from the farmers using recording portable Mic at their place. Hundred speakers are involved in the recording of NS and IS corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Speech Corpora",
                "sec_num": "3."
            },
            {
                "text": "The written agricultural script, which is phonetically balanced and phonetically rich (up to triphone model), was given to the speakers to record the Narrational Speech. Scripts were different in content. An example script is provided in Fig:1 . They were given enough time to record the data. If any recording issues happened, after rectification by the recording assistant it was rerecorded. The Narrational Speech is less expensive than Interview Speech because it is difficult to get data for the ASR system. The IS data is collected in a face-to-face interview style. The literacy and the way to communicate information fluently have given less focus. The interviewee with enough experience in his field of cultivation is asked to speak about his cultivation and its features. The interviewer should be preferably a subject expert in the area of cultivation. Both of them are given separate microphones for this purpose.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 238,
                        "end": 243,
                        "text": "Fig:1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Narrational and Interview Speech Corpora",
                "sec_num": "3.1."
            },
            {
                "text": "Few challenges were faced during the recording of the speech corpus. There were lot of background noise like sounds of vehicles, animals, birds, irrigation motor and wind. Another main issue that happened during post production is the difference in pronunciation styles in the Interview Speech corpora collection. This caused difficulty during validation of the corpus. The recording used to extend up to 5-6 hours depending on speakers. The recorded data is then given for post-production to clean unwanted information from that.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Narrational and Interview Speech Corpora",
                "sec_num": "3.1."
            },
            {
                "text": "We have set a few criteria for recording the Narrational Speech data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Criteria",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 The speakers are at minimum age of 18",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Criteria",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 They are citizens of India",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Criteria",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 Speakers are residents of Kerala",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Criteria",
                "sec_num": "3.2."
            },
            {
                "text": "\u2022 The mother tongue of the speaker should be Malayalam without any specific accents",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speaker Criteria",
                "sec_num": "3.2."
            },
            {
                "text": "Speech data is collected with two different microphones for NS and IS. For Narrational Speech, Shure SM58-LC cardioid vocal microphone without cable is used. For IS, we utilized Sennheiser XSW 1-ME2-wireless presentation microphone of range 548-572 MHz Steinberg Nuendo and Pro Tools are used for the audio post-production process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recording Specifications",
                "sec_num": "3.3."
            },
            {
                "text": "The audio is recorded in 48 kHz sampling frequency and 16 bit sampling rate for broadcasting and the same is down sampled to 16 kHz sampling frequency and 16 bit sampling rate for speech-related research purposes. The recordings of speech corpora are saved in WAV files.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recording Specifications",
                "sec_num": "3.3."
            },
            {
                "text": "MSC aims to present a good quality audio recording for speech related research. The NS and IS corpus have both male and female speakers. In NS, the male and female speakers are made up with 75% and 25% respectively. IS have more male speakers than females with 82% and 18% of total speakers. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Demographics",
                "sec_num": "3.4."
            },
            {
                "text": "The NS and IS corpora are transcribed orthographically into Malayalam text. The transcribers are provided with the audio segments that the speaker read. Their task is to transcribe the content of the audio into Malayalam and into phonetic text. A sample of three transcribed data with demographic details is shown below and the annotated speech of first two sentences is depicted in In the first sample a Narrational Speech is detailed. The narrator is about 45 years old and he is describing the details about Palakkad a district in Kerala and a mango estate there. Few sentences are displayed below. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Transcription",
                "sec_num": "4."
            },
            {
                "text": "The pronunciation dictionary, called Lexicon contains a collection of unique 4925 words. The audio collection process is still going on which will increase the lexicon size. The lexicon consists of word and its corresponding phonemic and syllabic representation as in the example shown in ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Lexicon",
                "sec_num": "5."
            },
            {
                "text": "Speech is the primary and natural mode of communication than writing. It is possible to extract more linguistic information from speech than text like emotions and accent. Speech related applications are more useful for illiterate and old people. The articulatory and acoustic information can be obtained from a good audio recording environment. One of the important features of speech data is that, there is less interference from a second party compared to textual data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "To encourage the academic research in speech related applications, a good number of multilingual and multipurpose speech corpora for Indian languages is required. The responsibility to develop such corpora still lies on the shoulder of the concerned researcher. Also the role of language corpora is very significant to preserve and maintain the linguistic heritage of our country.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            },
            {
                "text": "The release of MSC will be one of the first speech corpora of Malayalam, contributing 200 hours of Narrational Speech and 50 hours of Interview Speech data for public use. The lexicon and annotated speech is also made available with the data. Future work includes creation of corpora related to tourism and entertainment domains and enhancement of quality of speech by building an ASR using KALDI toolkit. The updates on corpus will be accessible through \"www.iiitmk.ac.in/vrclc/utilities/ml speechcorpus\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6."
            }
        ],
        "back_matter": [
            {
                "text": "This research is supported by the Kerala State Council for Science, Technology and Environment (KSCSTE). I thank KSCSTE for funding the project under the Back-to-lab scheme. I also thank Agri team, Indian Institute of Information Technology and Management-Kerala, Kissan Project for collecting the audio data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The nchlt speech corpus of the south african languages",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Barnard",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "H"
                        ],
                        "last": "Davel",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Van Heerden",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "De Wet",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Badenhorst",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Workshop Spoken Language Technologies for Under-resourced Languages (SLTU)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barnard, E., Davel, M. H., van Heerden, C., De Wet, F., and Badenhorst, J. (2014). The nchlt speech corpus of the south african languages. In Workshop Spoken Language Technologies for Under-resourced Languages (SLTU).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Ted-lium 3: twice as much data and corpus repartition for experiments on speaker adaptation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Hernandez",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ghannay",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Tomashenko",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Est\u00e8ve",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Conference on Speech and Computer",
                "volume": "",
                "issue": "",
                "pages": "198--208",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hernandez, F., Nguyen, V., Ghannay, S., Tomashenko, N., and Est\u00e8ve, Y. (2018). Ted-lium 3: twice as much data and corpus repartition for experiments on speaker adap- tation. In International Conference on Speech and Com- puter, pages 198-208. Springer.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Building the singapore english national speech corpus",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "X"
                        ],
                        "last": "Koh",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mislan",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Khoo",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Y.-Y",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "19--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koh, J. X., Mislan, A., Khoo, K., Ang, B., Ang, W., Ng, C., and Tan, Y.-Y. (2019). Building the singapore english national speech corpus. Malay, 20(25.0):19-3.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Librispeech: an asr corpus based on public domain audio books",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Panayotov",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Povey",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Khudanpur",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "5206--5210",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: an asr corpus based on public do- main audio books. In 2015 IEEE International Con- ference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206-5210. IEEE.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Designing the latvian speech recognition corpus",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Pinnis",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Auzina",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Goba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "1547--1553",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pinnis, M., Auzina, I., and Goba, K. (2014). Designing the latvian speech recognition corpus. In LREC, pages 1547-1553.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Design and development of a multi-lingual speech corpora (tamar-emodb) for emotion analysis",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rajan",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Haritha",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sujitha",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Rejisha",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. Interspeech 2019",
                "volume": "",
                "issue": "",
                "pages": "3267--3271",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rajan, R., Haritha, U., Sujitha, A., and Rejisha, T. (2019). Design and development of a multi-lingual speech cor- pora (tamar-emodb) for emotion analysis. Proc. Inter- speech 2019, pages 3267-3271.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Malayalam -Wikipedia, the free encyclopedia",
                "authors": [],
                "year": 2020,
                "venue": "Wikipedia contributors",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wikipedia contributors. (2020). Malayalam -Wikipedia, the free encyclopedia. [Online; accessed 21-February- 2020].",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Achieving human parity in conversational speech recognition",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Droppo",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Seide",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Seltzer",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Zweig",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1610.05256"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D., and Zweig, G. (2016). Achiev- ing human parity in conversational speech recognition. arXiv preprint arXiv:1610.05256.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Example of script file for dubbing"
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Fig 2."
            },
            "FIGREF2": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "An example of Annotated Speech Corpora Sample 1: Record Entry No : 180220 01 01"
            },
            "FIGREF4": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Example of the lexicon"
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "content": "<table/>",
                "num": null,
                "text": ""
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Place of Cultivation (District wise)</td><td>IS(%)</td></tr><tr><td>Thiruvananthapuram</td><td>26</td></tr><tr><td>Kollam</td><td>21</td></tr><tr><td>Pathanamthitta</td><td>02</td></tr><tr><td>Ernakulam</td><td>07</td></tr><tr><td>Alappuzha</td><td>08</td></tr><tr><td>Kottayam</td><td>08</td></tr><tr><td>Idukki</td><td>09</td></tr><tr><td>Thrissur</td><td>12</td></tr><tr><td>Wayanad</td><td>03</td></tr><tr><td>Kozhikode</td><td>02</td></tr><tr><td>Kannur</td><td>02</td></tr><tr><td>Total</td><td>100</td></tr></table>",
                "num": null,
                "text": "and 3 contains the details of the place of cultivation and the type of cultivation in Kerala."
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">: Demographic details of speakers by place of culti-</td></tr><tr><td>vation</td><td/></tr><tr><td>Type of Cultivation</td><td>IS (%)</td></tr><tr><td>Animal Husbandry</td><td>10</td></tr><tr><td>Apiculture</td><td>11</td></tr><tr><td>Diary</td><td>16</td></tr><tr><td>Fish and crab farming</td><td>05</td></tr><tr><td>Floriculture</td><td>07</td></tr><tr><td>Fruits and vegetables</td><td>22</td></tr><tr><td>Horticulture</td><td>04</td></tr><tr><td>Mixed farming</td><td>07</td></tr><tr><td>Organic farming</td><td>08</td></tr><tr><td>Poultry</td><td>07</td></tr><tr><td>Terrace farming</td><td>03</td></tr><tr><td>Total</td><td>100</td></tr></table>",
                "num": null,
                "text": ""
            },
            "TABREF4": {
                "html": null,
                "type_str": "table",
                "content": "<table/>",
                "num": null,
                "text": "Demographic details of speakers by type of cultivation"
            }
        }
    }
}