File size: 169,597 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 |
{
"paper_id": "2022",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:02:56.788318Z"
},
"title": "Uncovering Surprising Event Boundaries in Narratives",
"authors": [
{
"first": "Zhilin",
"middle": [],
"last": "Wang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Washington",
"location": {}
},
"email": "[email protected]"
},
{
"first": "Anna",
"middle": [],
"last": "Jafarpour",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Washington",
"location": {}
},
"email": "[email protected]"
},
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Washington",
"location": {}
},
"email": "[email protected]"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.",
"pdf_parse": {
"paper_id": "2022",
"_pdf_hash": "",
"abstract": [
{
"text": "When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "When people read stories, they can easily detect the start of new events through changes in circumstances or in narrative development, i.e., event boundaries (Zacks et al., 2007; Bruni et al., 2014; Foster and Keane, 2015; Jafarpour et al., 2019b) . These event boundaries can be expected or surprising. For example, in the story in Figure 1 based on crowdsourced annotation, \"getting along with a dog who does not generally like new people\" marks a surprising new event, while \"their playing fetch together for a long time\" is an expected new event.",
"cite_spans": [
{
"start": 158,
"end": 178,
"text": "(Zacks et al., 2007;",
"ref_id": "BIBREF52"
},
{
"start": 179,
"end": 198,
"text": "Bruni et al., 2014;",
"ref_id": "BIBREF4"
},
{
"start": 199,
"end": 222,
"text": "Foster and Keane, 2015;",
"ref_id": "BIBREF9"
},
{
"start": 223,
"end": 247,
"text": "Jafarpour et al., 2019b)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [
{
"start": 333,
"end": 341,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We aim to study whether machines can detect these surprising or expected event boundaries, using commonsense knowledge and narrative flow features. Characterizing features that are informative in detecting event boundaries can help determine how humans apply expectations on event relationships (Schank and Abelson, 1977; Kurby and Zacks, 2009; Radvansky et al., 2014; \u00dcnal Figure 1: Example story with sentences that contain either a surprising event boundary, no event boundary or an expected event boundary respectively. The annotations of reader perception are from the Hippocorpus dataset (Sap et al., 2022) . Zacks, 2020) . Furthermore, detection of sentences with event boundaries can also be useful when generating engaging stories with a good amount of surprises. (Yao et al., 2019; Rashkin et al., 2020; Ghazarian et al., 2021) .",
"cite_spans": [
{
"start": 295,
"end": 321,
"text": "(Schank and Abelson, 1977;",
"ref_id": "BIBREF40"
},
{
"start": 322,
"end": 344,
"text": "Kurby and Zacks, 2009;",
"ref_id": "BIBREF16"
},
{
"start": 345,
"end": 368,
"text": "Radvansky et al., 2014;",
"ref_id": "BIBREF30"
},
{
"start": 369,
"end": 373,
"text": "\u00dcnal",
"ref_id": "BIBREF45"
},
{
"start": 594,
"end": 612,
"text": "(Sap et al., 2022)",
"ref_id": "BIBREF37"
},
{
"start": 615,
"end": 627,
"text": "Zacks, 2020)",
"ref_id": "BIBREF51"
},
{
"start": 773,
"end": 791,
"text": "(Yao et al., 2019;",
"ref_id": "BIBREF50"
},
{
"start": 792,
"end": 813,
"text": "Rashkin et al., 2020;",
"ref_id": "BIBREF31"
},
{
"start": 814,
"end": 837,
"text": "Ghazarian et al., 2021)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To differentiate sentences with surprising event boundaries, expected event boundaries, and no event boundaries, we train a classifier using 3925 story sentences with human annotation of event boundaries from diary-like stories about people's everyday lives (Sap et al., 2022) . We extract various commonsense and narrative features on relationships between sentences of a story, which can predict the type of event boundaries. Commonsense features include the likelihood that adjacent sentences are linked by commonsense relations from the knowledge graphs Atomic (Sap et al., 2019a) and Glucose (Mostafazadeh et al., 2020) . Narrative features include Realis (Sims et al., 2019) that identifies the number of event-related words in a sentence, Sequentiality (Radford et al., 2019; Sap et al., 2022) based on the probability of generating a sentence with varying context and SimGen (Rosset, 2020), which measures the similarity between a sentence and the sentence that is most likely to 1 be generated given the previous sentence. We then combine the prediction based on these features with the prediction from a RoBERTa classifier (Liu et al., 2019) , to form overall predictions.",
"cite_spans": [
{
"start": 258,
"end": 276,
"text": "(Sap et al., 2022)",
"ref_id": "BIBREF37"
},
{
"start": 565,
"end": 584,
"text": "(Sap et al., 2019a)",
"ref_id": "BIBREF38"
},
{
"start": 597,
"end": 624,
"text": "(Mostafazadeh et al., 2020)",
"ref_id": "BIBREF23"
},
{
"start": 661,
"end": 680,
"text": "(Sims et al., 2019)",
"ref_id": "BIBREF42"
},
{
"start": 760,
"end": 782,
"text": "(Radford et al., 2019;",
"ref_id": "BIBREF29"
},
{
"start": 783,
"end": 800,
"text": "Sap et al., 2022)",
"ref_id": "BIBREF37"
},
{
"start": 1133,
"end": 1151,
"text": "(Liu et al., 2019)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We evaluate the performance of the classification model by measuring F1 of the predictions and compare various configurations of the model to a baseline RoBERTa model. We find that integrating narrative and commonsense features with RoBERTa leads to a significant improvement (+2.2% F1) over a simple RoBERTa classifier. There are also individual differences on the subjective judgment of which sentences contain a surprising or an expected event boundary, that is reflected in the detection model's performance. The performance of our model increases with increasing agreement across the human annotators. Additionally, by interpreting the trained parameters of our model, we find that the absence of causal links between sentences is a strong predictor of surprising event boundaries.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To further analyze how surprising event boundaries relate to deviation from commonsense understanding, we compare the performance of the classification model on the related task of ROC Story Cloze Test (Mostafazadeh et al., 2016) . This task concerns whether the ending sentence of a story follows/violates commonsense based on earlier sentences, which can be linked to whether sentences are expected or surprising. Our model performs significantly higher on the ROC Story Cloze Test (87.9% F1 vs 78.0% F1 on our task), showing that surprising event boundaries go beyond merely violating commonsense and therefore can be seen as more challenging to detect. Together, our results suggests that while detecting surprising event boundaries remains a challenging task for machines, a promising direction lies in utilizing commonsense knowledge and narrative features to augment language models.",
"cite_spans": [
{
"start": 202,
"end": 229,
"text": "(Mostafazadeh et al., 2016)",
"ref_id": "BIBREF22"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Events have been widely studied in Natural Language Processing. They have often been represented in highly structured formats with wordspecific triggers and arguments (Walker et al., 2006; Li et al., 2013; Chen et al., 2017; Sims et al., 2019; Mostafazadeh et al., 2020; Ahmad et al., 2021) or as Subject-Verb-Object-style (SVO) tuples extracted from syntactic parses (Chambers and Jurafsky, 2008; Martin et al., 2018; Rashkin et al., 2018; Sap et al., 2019a) . In narratives, events are represented as a continuous flow with multiple boundaries marking new events (Zacks et al., 2007; Graesser et al., 1981; Kurby and Zacks, 2008; Zacks, 2020) ; however, we lack a model to detect the boundary events that mark the meaningful segmentation of a continuous story into discrete events.",
"cite_spans": [
{
"start": 167,
"end": 188,
"text": "(Walker et al., 2006;",
"ref_id": null
},
{
"start": 189,
"end": 205,
"text": "Li et al., 2013;",
"ref_id": "BIBREF18"
},
{
"start": 206,
"end": 224,
"text": "Chen et al., 2017;",
"ref_id": "BIBREF6"
},
{
"start": 225,
"end": 243,
"text": "Sims et al., 2019;",
"ref_id": "BIBREF42"
},
{
"start": 244,
"end": 270,
"text": "Mostafazadeh et al., 2020;",
"ref_id": "BIBREF23"
},
{
"start": 271,
"end": 290,
"text": "Ahmad et al., 2021)",
"ref_id": "BIBREF0"
},
{
"start": 368,
"end": 397,
"text": "(Chambers and Jurafsky, 2008;",
"ref_id": "BIBREF5"
},
{
"start": 398,
"end": 418,
"text": "Martin et al., 2018;",
"ref_id": "BIBREF20"
},
{
"start": 419,
"end": 440,
"text": "Rashkin et al., 2018;",
"ref_id": "BIBREF32"
},
{
"start": 441,
"end": 459,
"text": "Sap et al., 2019a)",
"ref_id": "BIBREF38"
},
{
"start": 565,
"end": 585,
"text": "(Zacks et al., 2007;",
"ref_id": "BIBREF52"
},
{
"start": 586,
"end": 608,
"text": "Graesser et al., 1981;",
"ref_id": "BIBREF13"
},
{
"start": 609,
"end": 631,
"text": "Kurby and Zacks, 2008;",
"ref_id": "BIBREF17"
},
{
"start": 632,
"end": 644,
"text": "Zacks, 2020)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Event Boundary Detection Task",
"sec_num": "2"
},
{
"text": "In this work, we study stories from a cognitive angle to detect event boundaries. Such event boundaries relate to our narrative schema understanding (Schank and Abelson, 1977; Chambers and Jurafsky, 2008; Ryan, 2010) , commonsense knowledge (Sap et al., 2019a; Mostafazadeh et al., 2020) and world knowledge (Nematzadeh et al., 2018; Bisk et al., 2020) . Existing work has studied on salient (i.e. important/most report-able ) event boundaries within a story (Ouyang and McKeown, 2015; Otake et al., 2020; Wilmot and Keller, 2021) . However, missing from literature is how salient event boundary can either be surprising or expected based on the knowledge of how a flow of events should unfold. For example, events can be surprising when they deviate from commonsense in terms of what people would predict (e.g., if someone won something, they should not be sad; Sap et al., 2019a) . Surprising events can also be low likelihood events (Foster and Keane, 2015) such as seeing someone wear shorts outside in winter, or due to a rapid shift in emotional valence between events (Wilson and Gilbert, 2008 ) such as seeing a protagonist being defeated. Importantly, there are individual differences in how humans segment narratives into events (Jafarpour et al., 2019a) .",
"cite_spans": [
{
"start": 149,
"end": 175,
"text": "(Schank and Abelson, 1977;",
"ref_id": "BIBREF40"
},
{
"start": 176,
"end": 204,
"text": "Chambers and Jurafsky, 2008;",
"ref_id": "BIBREF5"
},
{
"start": 205,
"end": 216,
"text": "Ryan, 2010)",
"ref_id": "BIBREF35"
},
{
"start": 241,
"end": 260,
"text": "(Sap et al., 2019a;",
"ref_id": "BIBREF38"
},
{
"start": 261,
"end": 287,
"text": "Mostafazadeh et al., 2020)",
"ref_id": "BIBREF23"
},
{
"start": 308,
"end": 333,
"text": "(Nematzadeh et al., 2018;",
"ref_id": "BIBREF24"
},
{
"start": 334,
"end": 352,
"text": "Bisk et al., 2020)",
"ref_id": "BIBREF2"
},
{
"start": 459,
"end": 485,
"text": "(Ouyang and McKeown, 2015;",
"ref_id": "BIBREF26"
},
{
"start": 486,
"end": 505,
"text": "Otake et al., 2020;",
"ref_id": "BIBREF25"
},
{
"start": 506,
"end": 530,
"text": "Wilmot and Keller, 2021)",
"ref_id": "BIBREF47"
},
{
"start": 863,
"end": 881,
"text": "Sap et al., 2019a)",
"ref_id": "BIBREF38"
},
{
"start": 1075,
"end": 1100,
"text": "(Wilson and Gilbert, 2008",
"ref_id": "BIBREF48"
},
{
"start": 1239,
"end": 1264,
"text": "(Jafarpour et al., 2019a)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Event Boundary Detection Task",
"sec_num": "2"
},
{
"text": "We tackle event boundary detection as a threeway classification task that involves distinguishing surprising but plausible event boundaries in story sentences from expected event boundaries and no event boundaries. To mirror how humans read stories, we predict the event boundary label for a sentence using all of its preceding sentences in the story, as well as the general story topic as context. Surprising event boundaries are novel events that are unexpected given their context, such as a dog getting along with someone despite not typically liking new people. Expected event boundaries are novel events that are not surprising, such as a person playing a new game with a dog for a long time given that they like each other. In contrast, sentences with no event boundary typically continue or elaborate on the preceding event, such as a person liking a dog given that they get along with the dog (Figure 1 ). 3 Event-annotated Data",
"cite_spans": [],
"ref_spans": [
{
"start": 902,
"end": 911,
"text": "(Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Event Boundary Detection Task",
"sec_num": "2"
},
{
"text": "We use the English-based Event-annotated sentences from stories in the Hippocorpus dataset to study event boundaries. This dataset contains 240 diary-like crowdsourced stories about everyday life experiences, each containing an average of 16.4 sentences and are annotated at the sentence level (Sap et al., 2022) . Stories were inspected for the absence of offensive or person-identifying content. For the annotation, eight crowdworkers were shown a story sentence by sentence and were asked to mark whether each sentence contained a new surprising or expected event boundary, or no event boundary at all, based on their subjective judgment (Sap et al., 2022) . Summarized in Table 1 , based on the majoritarian vote, most sentences (57.5%) contain no event boundaries while 16.6% and 13.0% of sentences contains expected and surprising event boundaries, respectively.",
"cite_spans": [
{
"start": 294,
"end": 312,
"text": "(Sap et al., 2022)",
"ref_id": "BIBREF37"
},
{
"start": 641,
"end": 659,
"text": "(Sap et al., 2022)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [
{
"start": 676,
"end": 683,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Event Boundary Detection Task",
"sec_num": "2"
},
{
"text": "Due to the inherent subjectivity of the task, aggregating labels into a majority label yields low agreement (e.g., 61.7% for surprising event boundaries; Table 1 ). Therefore, at training time, we use the proportion of annotations for each event boundary type as the label instead of the majority vote, because such distributional information is a better reflection of the inherent disagreement among human judgements (Pavlick and Kwiatkowski, 2019) . At test time, we use the majority vote as a gold label, since measuring performance on distribution modelling is less intuitive to interpret, and subsequently break down performance by agreement level to take disagreements into account.",
"cite_spans": [
{
"start": 418,
"end": 449,
"text": "(Pavlick and Kwiatkowski, 2019)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [
{
"start": 154,
"end": 161,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Event Boundary Detection Task",
"sec_num": "2"
},
{
"text": "We first describe informative commonsense and narrative features that we extract for the event boundary detection model. Then, we describe how we integrate these features with a RoBERTa classifier in our model before detailing our experimental setup. Figure 2 depicts an overview of our model.",
"cite_spans": [],
"ref_spans": [
{
"start": 251,
"end": 259,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Event Boundary Detection Model",
"sec_num": "4"
},
{
"text": "We select a collection of commonsense features (Atomic and Glucose relations) and narrative flow features (Realis, Sequentiality and SimGen). A model is trained separately from our main model for Atomic relations, Glucose relations and Realis while models for Sequentiality and SimGen are used without further training. Features of story sentences are extracted as input into the main model. Because language modelling alone might not be sufficient to learn such features (Gordon and Van Durme, 2013; Sap et al., 2019a) , we provide the extracted features to the model instead of relying on the language models to learn them implicitly.",
"cite_spans": [
{
"start": 472,
"end": 500,
"text": "(Gordon and Van Durme, 2013;",
"ref_id": "BIBREF12"
},
{
"start": 501,
"end": 519,
"text": "Sap et al., 2019a)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Atomic relations are event relations from a social commonsense knowledge graph containing numerous events that can be related to one another (Sap et al., 2019a) . The event relations in this graph consists of:",
"cite_spans": [
{
"start": 141,
"end": 160,
"text": "(Sap et al., 2019a)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Emotional Reaction, The Effect of an event, Want to do after the event, What Needs to be done before an event, The Intention to do a certain event, What Attributes an event expresses. When an event affects the subject, the feature name is preceded by an x, while if it affects others, it has an o. o only applies to React, Effect and Want. For example, an xWant of a sentence PersonX pays PersonY a compliment is that PersonX will want to chat with PersonY, and an oWant is that PersonY will compliment PersonX back. We use Atomic relations because surprising event boundaries can involve breaches of commonsense understanding (Bosselut et al., 2019; Sap et al., 2019a; Mostafazadeh et al., 2020; Gabriel et al., 2021) . Furthermore, some Atomic relations (xReact and oReact) concern emotional affect and therefore can be used to capture changes in emotional valence, which can cause events to be seen as surprising (Wilson and Gilbert, 2008) . (Left) Our model involves a GRU to combine features from sentence pairs with three feature encoding modes, RoBERTa to consider story sentences and Event Boundary Detector to combine predictions made by the two components. S n and F n refer to sentence n and features n respectively, while P G and P R are predictions made by the GRU and RoBERTa. The output is a probability distribution over no event boundary, expected event boundary and surprising event boundary, which is used to update model parameters together with the label using the Kullback-Leibler Divergence loss function. (Right) Features (Atomic, Glucose, Realis, Sequentiality and SimGen) can be extracted as input into the GRU in three feature encoding modes: SEQUENTIAL (shown in Model Overview), ALLTOCURRENT and PREVIOUSONLY.",
"cite_spans": [
{
"start": 627,
"end": 650,
"text": "(Bosselut et al., 2019;",
"ref_id": "BIBREF3"
},
{
"start": 651,
"end": 669,
"text": "Sap et al., 2019a;",
"ref_id": "BIBREF38"
},
{
"start": 670,
"end": 696,
"text": "Mostafazadeh et al., 2020;",
"ref_id": "BIBREF23"
},
{
"start": 697,
"end": 718,
"text": "Gabriel et al., 2021)",
"ref_id": "BIBREF10"
},
{
"start": 916,
"end": 942,
"text": "(Wilson and Gilbert, 2008)",
"ref_id": "BIBREF48"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "We train an Atomic relation classifier using a RoBERTa-base model (Liu et al., 2019) and the Atomic dataset to classify event-pairs into one of the nine possible relationship labels as well as a None label (to introduce negative samples). We achieved a validation F1 of 77.15%, which is high for a 10-way classification task. We describe training and other experimental details in the Appendix. When making inferences on the Event-annotated dataset, we predict the likelihood that a preceding sentence in a story will be related to the current sentence via each of the nine relationship labels. Because Atomic relations are directed relations (e.g., I ate some cake xEffect I am full is different from I am full xEffect I ate some cake), we also made the reverse inference in case commonsense relations between sentences exist in the reverse direction. Together, 9 forward atomic relation features and 9 reverse features (marked with'-r') are used.",
"cite_spans": [
{
"start": 66,
"end": 84,
"text": "(Liu et al., 2019)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Glucose relations are event relations from another commonsense knowledge dataset containing relations between event-pairs in 10 dimensions (Mostafazadeh et al., 2020) . Glucose relation features are used to complement Atomic relation features in its coverage of commonsense relations. Dim-1 to 5 are described below while Dim-6 to 10 are the reverse/passive form of Dim-1 to 5 respectively.",
"cite_spans": [
{
"start": 139,
"end": 166,
"text": "(Mostafazadeh et al., 2020)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Dim-1: Event that causes/enables Dim-2: Emotion/human drive that motivates Dim-3: Change in location that enables Dim-4: State of possession that enables Dim-5: Other attribute that enables Glucose relation classifier was trained on a RoBERTa-base model to classify event-pairs from the Glucose dataset into one of ten possible relation labels as well as a None label. We used the specific version of Glucose events represented in natural language. As a result, we achieved a validation F1 of 80.94%. Training and other experimental details are in the Appendix. During inference on the Event-annotated dataset, we predict and use as features the likelihood that the current sentence will be related to a preceding sentence via each relation label.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Realis events are words that serve as triggers (i.e., head words) for structured event representations (Sims et al., 2019) . Realis event words denote concrete events that actually happened, meaning that a higher number of Realis event words suggests greater likelihood of the sentence containing a new event boundary (expected or surprising). We trained a BERT-base model (Devlin et al., 2019) on an annotated corpus of literary novel extracts (Sims et al., 2019) . We achieved a validation F1 of 81.85%, inspired by and on par with Sap et al. (2020) . Then, we use the trained model to make inference on story sentences in the Event-annotated dataset. Finally, we used the number of Realis words in each sentence as a feature. Training and other experimental details are in the Appendix.",
"cite_spans": [
{
"start": 103,
"end": 122,
"text": "(Sims et al., 2019)",
"ref_id": "BIBREF42"
},
{
"start": 373,
"end": 394,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF7"
},
{
"start": 445,
"end": 464,
"text": "(Sims et al., 2019)",
"ref_id": "BIBREF42"
},
{
"start": 534,
"end": 551,
"text": "Sap et al. (2020)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "Sequentiality is a measure of the difference in conditional negative log-likelihood of generating a sentence given the previous sentence or otherwise (Sap et al., 2020 (Sap et al., , 2022 . Sequentiality can be a predictor for unlikely events, which can cause surprise (Foster and Keane, 2015). We use GPT-2 (Radford et al., 2019) to measure this negative loglikelihood since it is a Left-to-Right model, which matches the order in which annotators were shown sentences in a story. NLL of each sentence was obtained in two different contexts. NLL_topic is based on the sentence alone with only the topic as prior context, while NLL_topic+prev uses the previous sentence as additional context to study the link between adjacent sentences. Finally, Sequentiality is obtained by taking their difference. Experimental details are in the Appendix.",
"cite_spans": [
{
"start": 150,
"end": 167,
"text": "(Sap et al., 2020",
"ref_id": "BIBREF36"
},
{
"start": 168,
"end": 187,
"text": "(Sap et al., , 2022",
"ref_id": "BIBREF37"
},
{
"start": 308,
"end": 330,
"text": "(Radford et al., 2019)",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "N LL topic = \u2212 1 |s i | log p LM (s i | T opic) N LL topic+prev = \u2212 1 |s i | log p LM (s i | T opic, s i\u22121 )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "SimGen is computed as the cosine similarity between each sentence and the most likely generated sentence given the previous sentence, under a large Left-to-Right language model (specifically, Turing-NLG; Rosset, 2020). Then, we separately converted the original sentence and generated sentence into sentence embeddings using a pre-trained MPnet-base model (Song et al., 2020) . Finally, the generated embeddings and the original embeddings are compared for cosine similarity, which is used as a feature. Experimental details are in the Appendix.",
"cite_spans": [
{
"start": 356,
"end": 375,
"text": "(Song et al., 2020)",
"ref_id": "BIBREF43"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Features",
"sec_num": "4.1"
},
{
"text": "We propose a model to integrate feature-based prediction with language-based prediction of event boundaries, illustrated in Figure 2 (left) . The predictions are independently made with extracted features using a gated recurrent unit (GRU) and with language (i.e., story sentences) using RoBERTa. Then these predictions are combined into a final predicted distribution for the three types of event boundaries. Our model is then trained using the Kullback-Leibler Divergence loss.",
"cite_spans": [],
"ref_spans": [
{
"start": 124,
"end": 139,
"text": "Figure 2 (left)",
"ref_id": null
}
],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "GRU is used to combine features relating the current sentence i to prior sentences in a story. It sequentially considers information concerning prior sentences, which mimics the annotator's procedure of identifying event boundaries as they read one sentence at the time. As seen in Figure 2 (right), we use three feature encoding modes to determine the features that are used as input into the GRU, as inspired by literature on event segmentation (Pettijohn and Radvansky, 2016; Baldassano et al., 2018; Zacks, 2020) . These three modes represent different ways of facilitating information flow between sentences, which can have distinct effects on identifying event boundaries. The first mode, SEQUENTIAL, encodes features from all previous sentences in the story in a recurrent way (1 to 2, 2 to 3 ... i \u2212 1 to i) up until the current sentence i. The second mode, ALL-TOCURRENT, uses features from each of the previous sentences to the current sentence i (1 to i, 2 to i ... i \u2212 1 to i). The third mode, PREVIOUSONLY, (i \u2212 1 to i) only feeds into the GRU the features relating to the previous sentence. For all modes, the dimension of each time step input is K G , representing the total number of distinct features. We then project the final output of the GRU, h G \u2208 R K G , into a 3-dimensional vector space representing the unnormalized probability distribution over event boundary types.",
"cite_spans": [
{
"start": 479,
"end": 503,
"text": "Baldassano et al., 2018;",
"ref_id": "BIBREF1"
},
{
"start": 504,
"end": 516,
"text": "Zacks, 2020)",
"ref_id": "BIBREF51"
}
],
"ref_spans": [
{
"start": 282,
"end": 290,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "RoBERTa is used to make predictions based on text in story sentences. We use all story sentences up to sentence i inclusive. We then project the hidden state of the first token (also known as CLS token), h R \u2208 R K R , into a 3-dimensional space representing the unnormalized probability distribution over event boundary types.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "Combining predictions We combine predictions made by the GRU (P G ) and RoBERTa (P R ) by concatenating their predictions and multiplying it with a linear classifier of size (6, 3) to output logits of size (3). The logits are then normalized using Softmax to give a distribution of the three types of event boundaries (P ). The weights of the linear classifier are initialized by concatenating two identity matrix of size 3 (I 3 ), which serves to perform elementwise addition between the predictions of the GRU and RoBERTa at early stages of the training process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "W := [I 3 ; I 3 ]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "(1)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "P := Sof tmax(W ([P G ; P R ]))",
"eq_num": "(2)"
}
],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "Loss function We use the Kullback-Leibler Divergence loss function to train the model. We use it over the standard Cross Entropy loss function because our training targets are in the form: proportion of annotations for each type of event boundary (e.g., 0.75, 0.125, 0.125 for no event, expected and surprising respectively). Including such distributional information in our training targets over using the majority annotation only can reflect the inherent disagreement among human judgements (Pavlick and Kwiatkowski, 2019) , which is important to capture for event boundaries given that they are subjective judgements.",
"cite_spans": [
{
"start": 493,
"end": 524,
"text": "(Pavlick and Kwiatkowski, 2019)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "4.2"
},
{
"text": "We seek to predict the event-boundary annotation for each Hippocorpus story sentence, using preceding sentences in the story as context, as shown in Figure 2 . Additional training and experimental details are available in the Appendix.",
"cite_spans": [],
"ref_spans": [
{
"start": 149,
"end": 157,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental setup",
"sec_num": "4.3"
},
{
"text": "K-fold Cross-validation Because of the limited size of the dataset (n=3925), we split the dataset in k-folds (k=10), using one fold (n=392) for validation and nine other folds combined for training. From each of the 10 models, we obtained the prediction for the validation set. Together, the validation sets for the 10 models combine to form predictions for the entire dataset, which we use to conduct significance testing in order to compare the performance of models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental setup",
"sec_num": "4.3"
},
{
"text": "GRU was accessed from PyTorch, with K G set to 33 and a hidden dimension of 33.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental setup",
"sec_num": "4.3"
},
{
"text": "RoBERTa RoBERTa-base-uncased with 12layer, 768-hidden (K R ), 12-heads, 110M parameters, 0.1 dropout was used, accessed from Hug-gingFace Transformers library (Wolf et al., 2020) . When more than 10 prior sentences are available in a story, we use only the most recent 10 sentences due to RoBERTa input sequence length limitations.",
"cite_spans": [
{
"start": 159,
"end": 178,
"text": "(Wolf et al., 2020)",
"ref_id": "BIBREF49"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental setup",
"sec_num": "4.3"
},
{
"text": "Evaluation Metrics While capturing distributional information of subjective judgement labels (Pavlick and Kwiatkowski, 2019) is important for training, it can also be difficult to interpret for evaluation. Therefore, we decided to predict for the most likely label during evaluation and compare it against the majority label for each sample. Some 511 (13.0%) samples do not have a single majority label (e.g., equal number of expected and surprising annotations) and these samples were excluded. We use micro-averaged F1 as the metric. ",
"cite_spans": [
{
"start": 93,
"end": 124,
"text": "(Pavlick and Kwiatkowski, 2019)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental setup",
"sec_num": "4.3"
},
{
"text": "We first quantify the performance of our model in detecting event boundaries, using a coarse-grained performance measure on F1 with respect to majority vote. Then, we investigate how the performance varies based on annotation subjectivity. Finally, we inspect the model parameters to identify commonsense and narrative features that are most informative in detecting event boundaries.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Improving prediction of event boundaries As seen in Table 2 , RoBERTa alone performs fairly well in predicting event boundaries (F1 = 75.8%, within 2.2% F1 of our best performing model), but can be further supported by our commonsense and narrative features to improve its performance. In contrast, the commonsense and narrative features alone do not perform as well. 1 Overall, our best performing set-up is the Event Detector (PREVIOUSONLY) with F1 = 78.0%, which is significantly different from RoBERTa alone based on McNemar's test (p <0.05). 2 Its overall strong performance is largely contributed by its strong performance in detecting no event boundaries and expected event boundaries. F1 for no event boundary is higher than both surprising and expected event boundaries, likely because there are more sentences with no event boundaries as seen in Table 1 . The PREVIOUSONLY configuration performs best for 1 We also increased learning rate to 1e-3 for better performance given the absence of RoBERTa predictions in this ablation set-up.",
"cite_spans": [
{
"start": 915,
"end": 916,
"text": "1",
"ref_id": null
}
],
"ref_spans": [
{
"start": 52,
"end": 59,
"text": "Table 2",
"ref_id": "TABREF3"
},
{
"start": 856,
"end": 863,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "2 McNemar's test is used to determine whether samples that have been predicted accurately (or not) by one model overlap with those that have predicted accurately (or not) by another model. no event boundaries and expected event boundaries likely because determining whether the current sentence continues an expected event (or not) requires retaining the latest information in working memory (Jafarpour et al., 2019a) . However, the SEQUEN-TIAL configuration seems to perform the best in predicting surprising event boundaries. Compared to no/expected event boundaries, we hypothesize that predicting surprising event boundaries requires taking into account how the story developed prior to the previous sentence in setting up the context for the current sentence. This finding echoes results by Townsend (2018) that showed that surprising sentences take a long time to read because it requires changing our mental model formed from previous sentences.",
"cite_spans": [
{
"start": 392,
"end": 417,
"text": "(Jafarpour et al., 2019a)",
"ref_id": "BIBREF14"
},
{
"start": 796,
"end": 811,
"text": "Townsend (2018)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "F1 varies with majority agreement Since the annotations were subjective and did not always agree, we further examine our best model's performance (PREVIOUSONLY) with respect to annotation agreement. As shown in Figure 3 , F1 increases with majority label agreement (Pearson's r = 0.953, p < 0.05). Such positive correlations are observed across all event boundary labels (Pearson's r = 0.869-0.994) and is especially strong for surprising event boundaries (Pearson's r = 0.994, p < 0.001). This means that most errors are made on samples that have low agreement among annotators. For example to show this contrast, after \"She and I are very close so it was great to see her marrying someone she loves,\" 7 out of 8 annotators indicated that \"The most memorable moment was when I spilled champagne on my dress before the wedding\" was surprising. On the other hand, after \"It was a hot day in July that our community decided to paint a mural on an intersection for public art,\" only 4 out of 8 annotators indicated that \"I had decided to volunteer to help paint.\" was surprising. The results suggest that our model performance reflects the variability and agreements in human annotations of event boundaries. We hypothesize that the event boundaries with more agreement are based on features that are shared across the annotators, such as commonsense knowledge; therefore, the model performs well in detecting those. Whereas, our model struggles with detecting event boundaries that are more subjective.",
"cite_spans": [],
"ref_spans": [
{
"start": 211,
"end": 219,
"text": "Figure 3",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Predictive features By integrating a separate feature-based classifier, the Event Boudary Detector model allows us to examine the model parameters and determine features that are associated with surprising, expected or no event boundaries. First, we take the average of the GRU classifier weights for each of the 10 cross-validated models. Then, we plot these weights for each label in Figure 4 , and summarize the findings below.",
"cite_spans": [],
"ref_spans": [
{
"start": 386,
"end": 394,
"text": "Figure 4",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Features that relate to commonsense relations: oEffect, xEffect and Glucose Dim-6 (caused by) are most predictive of expected event boundaries. This can indicate that events that are an effect of/caused by a prior event can be expected by annotators, as also noted by Graesser et al. (1981) . An example of an expected event boundary is \"I told her we could go for coffee sometime.\", as an effect of \"We had a good time together.\" xNeed is least indicative of surprising event boundaries. This is likely because xNeed refers to what the subject needs to do before an activity, which is procedural and unlikely to cause surprise. An example is \"I was grocery shopping a few weeks ago.\" which is needed before \"I had purchased my items and was leaving the store.\"",
"cite_spans": [
{
"start": 268,
"end": 290,
"text": "Graesser et al. (1981)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Features that explain unlikely events Realis is highest for surprising event boundaries, suggesting that surprising event boundaries tend to contain the most concrete event-words. Surprising event boundaries also have the highest likelihood when conditioned on the story topic (NLL_topic) while expected events are highest when conditioned based on the topic and the previous sentence (NLL_topic+prev). This suggests that surprising events are often inline with the story topic but not with the previous sentence. Therefore, the low likelihood of transitioning between the previous and current sentence is a strong predictor of surprising event boundaries, in line with findings by Foster and Keane (2015) on how the difficulty of linking two adjacent events is an important factor in causing surprise.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Features that explain changes in emotional valence Compared to sentences that contain no event boundaries, sentences that contain either expected or surprising event boundaries have higher xReact and oReact, which are emotional responses either by the subject or by others to an event. For example, this is the case for the surprising and emotional event boundary \"I remember it was like the 3rd or 4th game when something bad happened..\" This suggests that event boundaries are more likely when a sentence is more emotionally charged, echoing work by Dunsmoor et al. (2018) on how event segmentation is particularly frequent when the emotion of fear is triggered.",
"cite_spans": [
{
"start": 552,
"end": 574,
"text": "Dunsmoor et al. (2018)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "To better understand how surprising event boundaries relate to deviation from commonsense reasoning, we compare our Event Boundary Detection Task to the ROC Story Cloze Test (Mostafazadeh et al., 2016) . This test involves identifying whether a candidate ending sentence follows commonsense (commonsense ending) or deviates from commonsense (nonsense ending) given the first four sentences of a English short story. The ROC Story Cloze Test dataset contains 3142 samples with 1571 commonsense endings and 1571 nonsense endings. 3 We train a separate Event Boundary De-tector model on the ROC Story Cloze Test, using the same experimental setup as for event boundary detection, except the loss function; we use the cross-entropy loss since only one label is available for each sample. 4 overall nonsense commonsense F1 ending F1 ending F1 Table 3 . This indicates that detecting whether a story ending follows commonsense can be effectively approached using RoBERTa alone, setting this task might not be closely related to the Event Boundary Detection Task.",
"cite_spans": [
{
"start": 174,
"end": 201,
"text": "(Mostafazadeh et al., 2016)",
"ref_id": "BIBREF22"
},
{
"start": 528,
"end": 529,
"text": "3",
"ref_id": null
},
{
"start": 784,
"end": 785,
"text": "4",
"ref_id": null
}
],
"ref_spans": [
{
"start": 838,
"end": 845,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Comparison with Story Cloze Test",
"sec_num": "6"
},
{
"text": "We tackle the task of identifying event boundaries in stories. We propose a model that combines predictions made using commonsense and narrative features with a RoBERTa classifier. We found that integrating commonsense and narrative features can significantly improve the prediction of surprising event boundaries through detecting violations to commonsense relations (especially relating to the absence of causality), low likelihood events, and changes in emotional valence. Our model is capable in detecting event boundaries with high annotator agreement but limited in detecting those with lower agreement. Compared to identifying commonsense and nonsense story endings in Story Cloze Test, our task is found to be only tagentially related. Our results suggest that considering commonsense knowledge and narrative features can be a promising direction towards characterizing and detecting event boundaries in stories.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "train our model on the dev portion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "We use the Winter 2018 version, which contains a dev and a test set. As in previous work(Schwartz et al., 2017), we",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Training takes 20 minutes on an Nvidia P100 GPU.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We used the train/dev/test splits from the original Atomic dataset (Sap et al., 2019a) . Negative samples are created by matching a Atomic event node to a corresponding tail event node from another sample based on the relationship involved. Sepcifically, negative sampling was performed on groups (['xWant', 'oWant', 'xNeed', ' xIntent'], ['xReact', 'oReact', ' xAttr'], ['xEffect', 'oEffect']) given that the tail event nodes in each group are more similar, creating more discriminating negative samples, as inspired by Sap et al. (2019b) . One negative sample is introduced every nine positive samples, since there are nine labels. We used a learning rate of 1e-4, batch size of 64, 8 epochs and AdamW optimizer. Training took 18 hours on a Nvidia P100 GPU.",
"cite_spans": [
{
"start": 67,
"end": 86,
"text": "(Sap et al., 2019a)",
"ref_id": "BIBREF38"
},
{
"start": 297,
"end": 327,
"text": "(['xWant', 'oWant', 'xNeed', '",
"ref_id": null
},
{
"start": 339,
"end": 361,
"text": "['xReact', 'oReact', '",
"ref_id": null
},
{
"start": 371,
"end": 394,
"text": "['xEffect', 'oEffect'])",
"ref_id": null
},
{
"start": 521,
"end": 539,
"text": "Sap et al. (2019b)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.1 Atomic relations training details",
"sec_num": null
},
{
"text": "Because the Glucose dataset (Mostafazadeh et al., 2020) was not split initially, we randomly split the dataset into train/dev/test splits based on a 80/10/10 ratio. For each sample in Glucose, annotations share similar head event nodes in Dim-1 to 5 and similar tail event nodes in Dim-6 to 10. Therefore, our negative sampling strategy for Dim-1 to 5 involves randomly choosing a tail node from Dim-6 to 10 and vice-versa. As a result, one negative sample is introduced every five samples. During training, we used a learning rate of 1e-4, batch size of 64, 8 epochs and AdamW optimizer. Training took 15 hours on a Nvidia P100 GPU.",
"cite_spans": [
{
"start": 28,
"end": 55,
"text": "(Mostafazadeh et al., 2020)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.2 Glucose relations training details",
"sec_num": null
},
{
"text": "We used the train/dev/test split from the Realis dataset (Sims et al., 2019) . During training, we used the AdamW optimizer, a learning rate of 2e-5, 3 epochs and batch size of 4, as inspired by (Sap et al., 2020) . Training took 1 hour on a Nvidia P100 GPU.",
"cite_spans": [
{
"start": 57,
"end": 76,
"text": "(Sims et al., 2019)",
"ref_id": "BIBREF42"
},
{
"start": 195,
"end": 213,
"text": "(Sap et al., 2020)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.3 Realis training details",
"sec_num": null
},
{
"text": "GPT2-small was accessed from HuggingFace Transformers library and used without further finetuning. It has 125M parameters, a context window of 1024, hidden state dimension of 768, 12 heads and dropout of 0.1.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.4 Sequentiality experimental details",
"sec_num": null
},
{
"text": "We used the Turing-NLG model without further fine-tuning. The model has 17B and we used it with top-p sampling (top-p=0.85), temperature=1.0 and max sequence length of 64 tokens. MPnetbase model was accessed from the Sentence-BERT library (Reimers and Gurevych, 2019) and used without further fine-tuning.",
"cite_spans": [
{
"start": 239,
"end": 267,
"text": "(Reimers and Gurevych, 2019)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.5 SimGen experimental details",
"sec_num": null
},
{
"text": "AdamW optimizer was used with \u03b1 = 5 * 10 \u22126 , following a uniform search using F1 as the criterion at intervals of {2.5, 5, 7.5, 10} * 10 n ; \u22126 \u2264 n \u2264 \u22123.Learning rate was linearly decayed (8 epochs) with 100 warm-up steps. Batch size of 16 was used. Validation was done every 0.25 epochs during training.Training each model took around 30 minutes on an Nvidia P100 GPU.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.6 Event Boundary Detection Model training details",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Gate: Graph attention transformer encoder for cross-lingual relation and event extraction",
"authors": [
{
"first": "Nanyun",
"middle": [],
"last": "Wasi Uddin Ahmad",
"suffix": ""
},
{
"first": "Kai-Wei",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 2021,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang. 2021. Gate: Graph attention transformer en- coder for cross-lingual relation and event extraction.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Representation of real-world event schemas during narrative perception",
"authors": [
{
"first": "Christopher",
"middle": [],
"last": "Baldassano",
"suffix": ""
},
{
"first": "Uri",
"middle": [],
"last": "Hasson",
"suffix": ""
},
{
"first": "Kenneth",
"middle": [
"A"
],
"last": "Norman",
"suffix": ""
}
],
"year": 2018,
"venue": "The Journal of Neuroscience",
"volume": "38",
"issue": "45",
"pages": "9689--9699",
"other_ids": {
"DOI": [
"10.1523/jneurosci.0251-18.2018"
]
},
"num": null,
"urls": [],
"raw_text": "Christopher Baldassano, Uri Hasson, and Kenneth A. Norman. 2018. Representation of real-world event schemas during narrative perception. The Journal of Neuroscience, 38(45):9689-9699.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Experience grounds language",
"authors": [
{
"first": "Yonatan",
"middle": [],
"last": "Bisk",
"suffix": ""
},
{
"first": "Ari",
"middle": [],
"last": "Holtzman",
"suffix": ""
},
{
"first": "Jesse",
"middle": [],
"last": "Thomason",
"suffix": ""
},
{
"first": "Jacob",
"middle": [],
"last": "Andreas",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
},
{
"first": "Joyce",
"middle": [],
"last": "Chai",
"suffix": ""
},
{
"first": "Mirella",
"middle": [],
"last": "Lapata",
"suffix": ""
},
{
"first": "Angeliki",
"middle": [],
"last": "Lazaridou",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "May",
"suffix": ""
},
{
"first": "Aleksandr",
"middle": [],
"last": "Nisnevich",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Pinto",
"suffix": ""
},
{
"first": "Joseph",
"middle": [],
"last": "Turian",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "8718--8735",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.703"
]
},
"num": null,
"urls": [],
"raw_text": "Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap- ata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph Turian. 2020. Experience grounds language. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8718-8735, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Comet: Commonsense transformers for automatic knowledge graph construction",
"authors": [
{
"first": "Antoine",
"middle": [],
"last": "Bosselut",
"suffix": ""
},
{
"first": "Hannah",
"middle": [],
"last": "Rashkin",
"suffix": ""
},
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Chaitanya",
"middle": [],
"last": "Malaviya",
"suffix": ""
},
{
"first": "Asli",
"middle": [],
"last": "\u00c7elikyilmaz",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai- tanya Malaviya, Asli \u00c7elikyilmaz, and Yejin Choi. 2019. Comet: Commonsense transformers for au- tomatic knowledge graph construction. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Narrative cognition in interactive systems: Suspense-surprise and the p300 erp component",
"authors": [
{
"first": "Luis",
"middle": [
"Emilio"
],
"last": "Bruni",
"suffix": ""
},
{
"first": "Sarune",
"middle": [],
"last": "Baceviciute",
"suffix": ""
},
{
"first": "Mohammed",
"middle": [],
"last": "Arief",
"suffix": ""
}
],
"year": 2014,
"venue": "Interactive Storytelling",
"volume": "",
"issue": "",
"pages": "164--175",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Luis Emilio Bruni, Sarune Baceviciute, and Mo- hammed Arief. 2014. Narrative cognition in inter- active systems: Suspense-surprise and the p300 erp component. In Interactive Storytelling, pages 164- 175, Cham. Springer International Publishing.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Unsupervised learning of narrative event chains",
"authors": [
{
"first": "Nathanael",
"middle": [],
"last": "Chambers",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Jurafsky",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL-08: HLT",
"volume": "",
"issue": "",
"pages": "789--797",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nathanael Chambers and Dan Jurafsky. 2008. Unsuper- vised learning of narrative event chains. In Proceed- ings of ACL-08: HLT, pages 789-797, Columbus, Ohio. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Automatically labeled data generation for large scale event extraction",
"authors": [
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Shulin",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "409--419",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1038"
]
},
"num": null,
"urls": [],
"raw_text": "Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao. 2017. Automatically labeled data genera- tion for large scale event extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 409-419, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Event segmentation protects emotional memories from competing experiences encoded close in time",
"authors": [
{
"first": "Joseph",
"middle": [
"E"
],
"last": "Dunsmoor",
"suffix": ""
},
{
"first": "C",
"middle": [
"W"
],
"last": "Marijn",
"suffix": ""
},
{
"first": "Caroline",
"middle": [
"M"
],
"last": "Kroes",
"suffix": ""
},
{
"first": "Michael",
"middle": [
"D"
],
"last": "Moscatelli",
"suffix": ""
},
{
"first": "Lila",
"middle": [],
"last": "Evans",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [
"A"
],
"last": "Davachi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Phelps",
"suffix": ""
}
],
"year": 2018,
"venue": "Nature Human Behaviour",
"volume": "2",
"issue": "4",
"pages": "291--299",
"other_ids": {
"DOI": [
"10.1038/s41562-018-0317-4"
]
},
"num": null,
"urls": [],
"raw_text": "Joseph E. Dunsmoor, Marijn C. W. Kroes, Caroline M. Moscatelli, Michael D. Evans, Lila Davachi, and Elizabeth A. Phelps. 2018. Event segmentation pro- tects emotional memories from competing experi- ences encoded close in time. Nature Human Be- haviour, 2(4):291-299.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Predicting surprise judgments from explanation graphs",
"authors": [
{
"first": "I",
"middle": [],
"last": "Meadhbh",
"suffix": ""
},
{
"first": "Mark",
"middle": [
"T"
],
"last": "Foster",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Keane",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Meadhbh I. Foster and Mark T. Keane. 2015. Predict- ing surprise judgments from explanation graphs.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Paragraph-level commonsense transformers with recurrent memory",
"authors": [
{
"first": "Saadia",
"middle": [],
"last": "Gabriel",
"suffix": ""
},
{
"first": "Chandra",
"middle": [],
"last": "Bhagavatula",
"suffix": ""
},
{
"first": "Vered",
"middle": [],
"last": "Shwartz",
"suffix": ""
},
{
"first": "Le",
"middle": [],
"last": "Ronan",
"suffix": ""
},
{
"first": "Maxwell",
"middle": [],
"last": "Bras",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Forbes",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "35",
"issue": "",
"pages": "12857--12865",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell Forbes, and Yejin Choi. 2021. Paragraph-level commonsense transformers with recurrent memory. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12857- 12865.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Plot-guided adversarial example construction for evaluating open-domain story generation",
"authors": [
{
"first": "Zixi",
"middle": [],
"last": "Sarik Ghazarian",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "S M",
"middle": [],
"last": "Akash",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Weischedel",
"suffix": ""
},
{
"first": "Aram",
"middle": [],
"last": "Galstyan",
"suffix": ""
},
{
"first": "Nanyun",
"middle": [],
"last": "Peng",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "4334--4344",
"other_ids": {
"DOI": [
"10.18653/v1/2021.naacl-main.343"
]
},
"num": null,
"urls": [],
"raw_text": "Sarik Ghazarian, Zixi Liu, Akash S M, Ralph Weischedel, Aram Galstyan, and Nanyun Peng. 2021. Plot-guided adversarial example construction for evaluating open-domain story generation. In Pro- ceedings of the 2021 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4334-4344, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Reporting bias and knowledge acquisition",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "Gordon",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Van Durme",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC '13",
"volume": "",
"issue": "",
"pages": "25--30",
"other_ids": {
"DOI": [
"10.1145/2509558.2509563"
]
},
"num": null,
"urls": [],
"raw_text": "Jonathan Gordon and Benjamin Van Durme. 2013. Re- porting bias and knowledge acquisition. In Proceed- ings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC '13, page 25-30, New York, NY, USA. Association for Computing Machin- ery.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Incorporating inferences in narrative representations: A study of how and why. Cognitive Psychology",
"authors": [
{
"first": "C",
"middle": [],
"last": "Arthur",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Graesser",
"suffix": ""
},
{
"first": "Patricia",
"middle": [
"A"
],
"last": "Scott P Robertson",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Anderson",
"suffix": ""
}
],
"year": 1981,
"venue": "",
"volume": "13",
"issue": "",
"pages": "1--26",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Arthur C Graesser, Scott P Robertson, and Patricia A Anderson. 1981. Incorporating inferences in narra- tive representations: A study of how and why. Cog- nitive Psychology, 13(1):1-26.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Event segmentation reveals working memory forgetting rate",
"authors": [
{
"first": "Anna",
"middle": [],
"last": "Jafarpour",
"suffix": ""
},
{
"first": "Elizabeth",
"middle": [
"A"
],
"last": "Buffalo",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "Anne Ge",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Anna Jafarpour, Elizabeth A Buffalo, Robert T Knight, and Anne GE Collins. 2019a. Event segmentation reveals working memory forgetting rate. Available at SSRN 3614120.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Medial orbitofrontal cortex, dorsolateral prefrontal cortex, and hippocampus differentially represent the event saliency",
"authors": [
{
"first": "Anna",
"middle": [],
"last": "Jafarpour",
"suffix": ""
},
{
"first": "Sandon",
"middle": [],
"last": "Griffin",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Jack",
"suffix": ""
},
{
"first": "Robert T",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2019,
"venue": "Journal of cognitive neuroscience",
"volume": "31",
"issue": "6",
"pages": "874--884",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Anna Jafarpour, Sandon Griffin, Jack J Lin, and Robert T Knight. 2019b. Medial orbitofrontal cor- tex, dorsolateral prefrontal cortex, and hippocampus differentially represent the event saliency. Journal of cognitive neuroscience, 31(6):874-884.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Segmentation in the perception and memory of events",
"authors": [
{
"first": "C",
"middle": [
"A"
],
"last": "Kurby",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zacks",
"suffix": ""
}
],
"year": 2009,
"venue": "Trends in cognitive sciences",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "CA Kurby and JM Zacks. 2009. Segmentation in the perception and memory of events. Trends in cogni- tive sciences.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Segmentation in the perception and memory of events",
"authors": [
{
"first": "A",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [
"M"
],
"last": "Kurby",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Zacks",
"suffix": ""
}
],
"year": 2008,
"venue": "Trends in cognitive sciences",
"volume": "12",
"issue": "2",
"pages": "72--79",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher A Kurby and Jeffrey M Zacks. 2008. Seg- mentation in the perception and memory of events. Trends in cognitive sciences, 12(2):72-79.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Joint event extraction via structured prediction with global features",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ji",
"middle": [],
"last": "Heng",
"suffix": ""
},
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "73--82",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global fea- tures. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 73-82, Sofia, Bulgaria. Association for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Event representations for automated story generation with deep neural nets",
"authors": [
{
"first": "Lara",
"middle": [],
"last": "Martin",
"suffix": ""
},
{
"first": "Prithviraj",
"middle": [],
"last": "Ammanabrolu",
"suffix": ""
},
{
"first": "Xinyu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Hancock",
"suffix": ""
},
{
"first": "Shruti",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Brent",
"middle": [],
"last": "Harrison",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Riedl",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "32",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti Singh, Brent Harrison, and Mark Riedl. 2018. Event representations for auto- mated story generation with deep neural nets. Pro- ceedings of the AAAI Conference on Artificial Intel- ligence, 32(1).",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Note on the sampling error of the difference between correlated proportions or percentages",
"authors": [
{
"first": "Quinn",
"middle": [],
"last": "Mcnemar",
"suffix": ""
}
],
"year": 1947,
"venue": "Psychometrika",
"volume": "12",
"issue": "2",
"pages": "153--157",
"other_ids": {
"DOI": [
"10.1007/bf02295996"
]
},
"num": null,
"urls": [],
"raw_text": "Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A corpus and cloze evaluation for deeper understanding of commonsense stories",
"authors": [
{
"first": "Nasrin",
"middle": [],
"last": "Mostafazadeh",
"suffix": ""
},
{
"first": "Nathanael",
"middle": [],
"last": "Chambers",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Devi",
"middle": [],
"last": "Parikh",
"suffix": ""
},
{
"first": "Dhruv",
"middle": [],
"last": "Batra",
"suffix": ""
},
{
"first": "Lucy",
"middle": [],
"last": "Vanderwende",
"suffix": ""
},
{
"first": "Pushmeet",
"middle": [],
"last": "Kohli",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Allen",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "",
"issue": "",
"pages": "839--849",
"other_ids": {
"DOI": [
"10.18653/v1/N16-1098"
]
},
"num": null,
"urls": [],
"raw_text": "Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A cor- pus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 839-849, San Diego, California. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "GLUCOSE: GeneraLized and COntextualized story explanations",
"authors": [
{
"first": "Nasrin",
"middle": [],
"last": "Mostafazadeh",
"suffix": ""
},
{
"first": "Aditya",
"middle": [],
"last": "Kalyanpur",
"suffix": ""
},
{
"first": "Lori",
"middle": [],
"last": "Moon",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Buchanan",
"suffix": ""
},
{
"first": "Lauren",
"middle": [],
"last": "Berkowitz",
"suffix": ""
},
{
"first": "Or",
"middle": [],
"last": "Biran",
"suffix": ""
},
{
"first": "Jennifer",
"middle": [],
"last": "Chu-Carroll",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4569--4586",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.370"
]
},
"num": null,
"urls": [],
"raw_text": "Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon, David Buchanan, Lauren Berkowitz, Or Biran, and Jennifer Chu-Carroll. 2020. GLUCOSE: GeneraL- ized and COntextualized story explanations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4569-4586, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Evaluating theory of mind in question answering",
"authors": [
{
"first": "Aida",
"middle": [],
"last": "Nematzadeh",
"suffix": ""
},
{
"first": "Kaylee",
"middle": [],
"last": "Burns",
"suffix": ""
},
{
"first": "Erin",
"middle": [],
"last": "Grant",
"suffix": ""
},
{
"first": "Alison",
"middle": [],
"last": "Gopnik",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Griffiths",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2392--2400",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1261"
]
},
"num": null,
"urls": [],
"raw_text": "Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison Gopnik, and Tom Griffiths. 2018. Evaluating theory of mind in question answering. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 2392-2400, Brus- sels, Belgium. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Modeling event salience in narratives via barthes' cardinal functions",
"authors": [
{
"first": "Takaki",
"middle": [],
"last": "Otake",
"suffix": ""
},
{
"first": "Sho",
"middle": [],
"last": "Yokoi",
"suffix": ""
},
{
"first": "Naoya",
"middle": [],
"last": "Inoue",
"suffix": ""
},
{
"first": "Ryo",
"middle": [],
"last": "Takahashi",
"suffix": ""
},
{
"first": "Tatsuki",
"middle": [],
"last": "Kuribayashi",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 28th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1784--1794",
"other_ids": {
"DOI": [
"10.18653/v1/2020.coling-main.160"
]
},
"num": null,
"urls": [],
"raw_text": "Takaki Otake, Sho Yokoi, Naoya Inoue, Ryo Takahashi, Tatsuki Kuribayashi, and Kentaro Inui. 2020. Mod- eling event salience in narratives via barthes' car- dinal functions. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 1784-1794, Barcelona, Spain (Online). Inter- national Committee on Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Modeling reportable events as turning points in narrative",
"authors": [
{
"first": "Jessica",
"middle": [],
"last": "Ouyang",
"suffix": ""
},
{
"first": "Kathleen",
"middle": [],
"last": "Mckeown",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "2149--2158",
"other_ids": {
"DOI": [
"10.18653/v1/D15-1257"
]
},
"num": null,
"urls": [],
"raw_text": "Jessica Ouyang and Kathleen McKeown. 2015. Mod- eling reportable events as turning points in narrative. In Proceedings of the 2015 Conference on Empiri- cal Methods in Natural Language Processing, pages 2149-2158, Lisbon, Portugal. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Inherent disagreements in human textual inferences",
"authors": [
{
"first": "Ellie",
"middle": [],
"last": "Pavlick",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Kwiatkowski",
"suffix": ""
}
],
"year": 2019,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "7",
"issue": "",
"pages": "677--694",
"other_ids": {
"DOI": [
"10.1162/tacl_a_00293"
]
},
"num": null,
"urls": [],
"raw_text": "Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent disagreements in human textual inferences. Transac- tions of the Association for Computational Linguis- tics, 7:677-694.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Narrative event boundaries, reading times, and expectation",
"authors": [
{
"first": "A",
"middle": [],
"last": "Kyle",
"suffix": ""
},
{
"first": "Gabriel",
"middle": [
"A"
],
"last": "Pettijohn",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Radvansky",
"suffix": ""
}
],
"year": 2016,
"venue": "Memory & Cognition",
"volume": "44",
"issue": "7",
"pages": "1064--1075",
"other_ids": {
"DOI": [
"10.3758/s13421-016-0619-6"
]
},
"num": null,
"urls": [],
"raw_text": "Kyle A. Pettijohn and Gabriel A. Radvansky. 2016. Narrative event boundaries, reading times, and ex- pectation. Memory & Cognition, 44(7):1064-1075.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Language models are unsupervised multitask learners",
"authors": [
{
"first": "Alec",
"middle": [],
"last": "Radford",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Rewon",
"middle": [],
"last": "Child",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Luan",
"suffix": ""
},
{
"first": "Dario",
"middle": [],
"last": "Amodei",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Different kinds of causality in event cognition",
"authors": [
{
"first": "A",
"middle": [],
"last": "Gabriel",
"suffix": ""
},
{
"first": "Andrea",
"middle": [
"K"
],
"last": "Radvansky",
"suffix": ""
},
{
"first": "Joseph",
"middle": [],
"last": "Tamplin",
"suffix": ""
},
{
"first": "Alexis",
"middle": [
"N"
],
"last": "Armendarez",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Thompson",
"suffix": ""
}
],
"year": 2014,
"venue": "Discourse Processes",
"volume": "51",
"issue": "7",
"pages": "601--618",
"other_ids": {
"DOI": [
"10.1080/0163853X.2014.903366"
]
},
"num": null,
"urls": [],
"raw_text": "Gabriel A. Radvansky, Andrea K. Tamplin, Joseph Ar- mendarez, and Alexis N. Thompson. 2014. Differ- ent kinds of causality in event cognition. Discourse Processes, 51(7):601-618.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "PlotMachines: Outlineconditioned generation with dynamic plot state tracking",
"authors": [
{
"first": "Asli",
"middle": [],
"last": "Hannah Rashkin",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Celikyilmaz",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gao",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4274--4295",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.349"
]
},
"num": null,
"urls": [],
"raw_text": "Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. 2020. PlotMachines: Outline- conditioned generation with dynamic plot state tracking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 4274-4295, Online. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Event2mind: Commonsense inference on events, intents, and reactions",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Hannah Rashkin",
"suffix": ""
},
{
"first": "Emily",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Allaway",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2018,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A. Smith, and Yejin Choi. 2018. Event2mind: Commonsense inference on events, intents, and re- actions. In ACL.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Sentencebert: Sentence embeddings using siamese bertnetworks",
"authors": [
{
"first": "Nils",
"middle": [],
"last": "Reimers",
"suffix": ""
},
{
"first": "Iryna",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- bert: Sentence embeddings using siamese bert- networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Turing-nlg: A 17-billionparameter language model by microsoft",
"authors": [
{
"first": "Corby",
"middle": [],
"last": "Rosset",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Corby Rosset. 2020. Turing-nlg: A 17-billion- parameter language model by microsoft.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Narratology and cognitive science: A problematic relation",
"authors": [
{
"first": "Marie-Laure",
"middle": [],
"last": "Ryan",
"suffix": ""
}
],
"year": 2010,
"venue": "Style",
"volume": "44",
"issue": "4",
"pages": "469--495",
"other_ids": {
"DOI": [
"http://www.jstor.org/stable/10.5325/style.44.4.469"
]
},
"num": null,
"urls": [],
"raw_text": "Marie-Laure Ryan. 2010. Narratology and cognitive science: A problematic relation. Style, 44(4):469- 495.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Recollection versus imagination: Exploring human memory and cognition via neural language models",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Horvitz",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Noah",
"suffix": ""
},
{
"first": "James",
"middle": [
"W"
],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Pennebaker",
"suffix": ""
}
],
"year": 2020,
"venue": "ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Eric Horvitz, Yejin Choi, Noah A Smith, and James W Pennebaker. 2020. Recollection ver- sus imagination: Exploring human memory and cog- nition via neural language models. In ACL.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Computational lens on cognition: Study of autobiographical versus imagined stories with largescale language models",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Jafarpour",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
},
{
"first": "James",
"middle": [
"W"
],
"last": "Pennebaker",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Horvitz",
"suffix": ""
}
],
"year": 2022,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Anna Jafarpour, Yejin Choi, Noah A. Smith, James W. Pennebaker, and Eric Horvitz. 2022. Computational lens on cognition: Study of autobiographical versus imagined stories with large- scale language models.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Atomic: An atlas of machine commonsense for if-then reasoning",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Emily",
"middle": [],
"last": "Ronan Le Bras",
"suffix": ""
},
{
"first": "Chandra",
"middle": [],
"last": "Allaway",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Bhagavatula",
"suffix": ""
},
{
"first": "Hannah",
"middle": [],
"last": "Lourie",
"suffix": ""
},
{
"first": "Brendan",
"middle": [],
"last": "Rashkin",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Roof",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "33",
"issue": "",
"pages": "3027--3035",
"other_ids": {
"DOI": [
"10.1609/aaai.v33i01.33013027"
]
},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Ronan Le Bras, Emily Allaway, Chan- dra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, and Yejin Choi. 2019a. Atomic: An atlas of machine common- sense for if-then reasoning. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3027- 3035.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Social IQa: Commonsense reasoning about social interactions",
"authors": [
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Hannah",
"middle": [],
"last": "Rashkin",
"suffix": ""
},
{
"first": "Derek",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Ronan Le Bras",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "4463--4473",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1454"
]
},
"num": null,
"urls": [],
"raw_text": "Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. 2019b. Social IQa: Com- monsense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4463- 4473, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Scripts, Plans, Goals, and Understanding",
"authors": [
{
"first": "R",
"middle": [
"C"
],
"last": "Schank",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Abelson",
"suffix": ""
}
],
"year": 1977,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R.C. Schank and R. Abelson. 1977. Scripts, Plans, Goals, and Understanding. Hillsdale, NJ: Earlbaum Assoc.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "The effect of different writing tasks on linguistic style: A case study of the roc story cloze task",
"authors": [
{
"first": "Roy",
"middle": [],
"last": "Schwartz",
"suffix": ""
},
{
"first": "Maarten",
"middle": [],
"last": "Sap",
"suffix": ""
},
{
"first": "Ioannis",
"middle": [],
"last": "Konstas",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Zilles",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "Noah A",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2017,
"venue": "CoNLL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Roy Schwartz, Maarten Sap, Ioannis Konstas, Li Zilles, Yejin Choi, and Noah A Smith. 2017. The effect of different writing tasks on linguistic style: A case study of the roc story cloze task. In CoNLL.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Literary event detection",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Sims",
"suffix": ""
},
{
"first": "Jong",
"middle": [
"Ho"
],
"last": "Park",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Bamman",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3623--3634",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1353"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Sims, Jong Ho Park, and David Bamman. 2019. Literary event detection. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 3623-3634, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Mpnet: Masked and permuted pretraining for language understanding",
"authors": [
{
"first": "Kaitao",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Xu",
"middle": [],
"last": "Tan",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Tie-Yan",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2004.09297"
]
},
"num": null,
"urls": [],
"raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2020. Mpnet: Masked and permuted pre- training for language understanding. arXiv preprint arXiv:2004.09297.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Stage salience and situational likelihood in the formation of situation models during sentence comprehension",
"authors": [
{
"first": "David",
"middle": [
"J"
],
"last": "Townsend",
"suffix": ""
}
],
"year": 2018,
"venue": "Lingua",
"volume": "206",
"issue": "",
"pages": "1--20",
"other_ids": {
"DOI": [
"10.1016/j.lingua.2018.01.002"
]
},
"num": null,
"urls": [],
"raw_text": "David J. Townsend. 2018. Stage salience and situa- tional likelihood in the formation of situation models during sentence comprehension. Lingua, 206:1-20.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "From event representation to linguistic meaning",
"authors": [
{
"first": "Ercenur",
"middle": [],
"last": "\u00dcnal",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Anna",
"middle": [],
"last": "Papafragou",
"suffix": ""
}
],
"year": 2019,
"venue": "Topics in Cognitive Science",
"volume": "13",
"issue": "1",
"pages": "224--242",
"other_ids": {
"DOI": [
"10.1111/tops.12475"
]
},
"num": null,
"urls": [],
"raw_text": "Ercenur \u00dcnal, Yue Ji, and Anna Papafragou. 2019. From event representation to linguistic meaning. Topics in Cognitive Science, 13(1):224-242.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "Memory and knowledge augmented language models for inferring salience in long-form stories",
"authors": [
{
"first": "David",
"middle": [],
"last": "Wilmot",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Keller",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "851--865",
"other_ids": {
"DOI": [
"10.18653/v1/2021.emnlp-main.65"
]
},
"num": null,
"urls": [],
"raw_text": "David Wilmot and Frank Keller. 2021. Memory and knowledge augmented language models for infer- ring salience in long-form stories. In Proceedings of the 2021 Conference on Empirical Methods in Nat- ural Language Processing, pages 851-865, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Explaining away: A model of affective adaptation",
"authors": [
{
"first": "Timothy",
"middle": [
"D"
],
"last": "Wilson",
"suffix": ""
},
{
"first": "Daniel",
"middle": [
"T"
],
"last": "Gilbert",
"suffix": ""
}
],
"year": 2008,
"venue": "Perspectives on Psychological Science",
"volume": "3",
"issue": "5",
"pages": "370--386",
"other_ids": {
"DOI": [
"10.1111/j.1745-6924.2008.00085.x"
],
"PMID": [
"26158955"
]
},
"num": null,
"urls": [],
"raw_text": "Timothy D. Wilson and Daniel T. Gilbert. 2008. Ex- plaining away: A model of affective adaptation. Per- spectives on Psychological Science, 3(5):370-386. PMID: 26158955.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "R\u00e9mi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Joe",
"middle": [],
"last": "Davison",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Shleifer",
"suffix": ""
},
{
"first": "Clara",
"middle": [],
"last": "Patrick Von Platen",
"suffix": ""
},
{
"first": "Yacine",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Jernite",
"suffix": ""
},
{
"first": "Canwen",
"middle": [],
"last": "Plu",
"suffix": ""
},
{
"first": "Teven",
"middle": [
"Le"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Scao",
"suffix": ""
},
{
"first": "Mariama",
"middle": [],
"last": "Gugger",
"suffix": ""
},
{
"first": "Quentin",
"middle": [],
"last": "Drame",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"M"
],
"last": "Lhoest",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rush",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"volume": "",
"issue": "",
"pages": "38--45",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language pro- cessing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Planand-write: Towards better automatic storytelling",
"authors": [
{
"first": "Lili",
"middle": [],
"last": "Yao",
"suffix": ""
},
{
"first": "Nanyun",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Weischedel",
"middle": [],
"last": "Ralph",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Dongyan",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Rui",
"middle": [],
"last": "Yan",
"suffix": ""
}
],
"year": 2019,
"venue": "The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin Knight, Dongyan Zhao, and Rui Yan. 2019. Plan- and-write: Towards better automatic storytelling. In The Thirty-Third AAAI Conference on Artificial In- telligence (AAAI-19).",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Event perception and memory",
"authors": [
{
"first": "Jeffrey",
"middle": [
"M"
],
"last": "Zacks",
"suffix": ""
}
],
"year": 2020,
"venue": "Annual Review of Psychology",
"volume": "71",
"issue": "1",
"pages": "165--191",
"other_ids": {
"DOI": [
"10.1146/annurev-psych-010419-051101"
],
"PMID": [
"31905113"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey M. Zacks. 2020. Event perception and mem- ory. Annual Review of Psychology, 71(1):165-191. PMID: 31905113.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Event perception: a mind-brain perspective",
"authors": [
{
"first": "Nicole",
"middle": [
"K"
],
"last": "Jeffrey M Zacks",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Speer",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Khena",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Swallow",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Todd",
"suffix": ""
},
{
"first": "Jeremy",
"middle": [
"R"
],
"last": "Braver",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Reynolds",
"suffix": ""
}
],
"year": 2007,
"venue": "Psychological bulletin",
"volume": "133",
"issue": "2",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. 2007. Event perception: a mind-brain perspective. Psychologi- cal bulletin, 133(2):273.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"num": null,
"text": "Figure 2: (Left) Our model involves a GRU to combine features from sentence pairs with three feature encoding modes, RoBERTa to consider story sentences and Event Boundary Detector to combine predictions made by the two components. S n and F n refer to sentence n and features n respectively, while P G and P R are predictions made by the GRU and RoBERTa. The output is a probability distribution over no event boundary, expected event boundary and surprising event boundary, which is used to update model parameters together with the label using the Kullback-Leibler Divergence loss function. (Right) Features (Atomic, Glucose, Realis, Sequentiality and SimGen) can be extracted as input into the GRU in three feature encoding modes: SEQUENTIAL (shown in Model Overview), ALLTOCURRENT and PREVIOUSONLY.",
"type_str": "figure"
},
"FIGREF1": {
"uris": null,
"num": null,
"text": "F1 by Event Detector (PREVIOUSONLY) against majority agreement, on all 10 folds. * means that Pearson's r is significant at p < 0.05 and ** at p < 0.001.",
"type_str": "figure"
},
"FIGREF2": {
"uris": null,
"num": null,
"text": "Feature weights towards each label in GRU component of Event Detector (PREVIOUSONLY)",
"type_str": "figure"
},
"TABREF1": {
"type_str": "table",
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>: Descriptive Statistics for Event-annotated sen-tences. Majority label refers to the most common an-notation of a sample from 8 independent annotators. If there is a tie between 2 labels, it is categorized as tied. Majority agreement is the proportion of sample annota-tions for the majority label.</td></tr></table>"
},
"TABREF3": {
"type_str": "table",
"num": null,
"text": "",
"html": null,
"content": "<table><tr><td>: Event detection task: Performance of Event Detector compared to baseline model. *: overall F1 sig-nificant different from RoBERTa based on McNemar's test (p <0.05) (McNemar, 1947)</td></tr></table>"
},
"TABREF5": {
"type_str": "table",
"num": null,
"text": "ROC Story Cloze Test Performance of Event Detector on ROC Story Cloze Test Our commonsense and narrative features do not seem to significantly improve upon RoBERTa's performance in the ROC Story Cloze Test (+0.2% F1), as observed in",
"html": null,
"content": "<table/>"
}
}
}
} |