File size: 169,597 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
{
    "paper_id": "2022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:02:56.788318Z"
    },
    "title": "Uncovering Surprising Event Boundaries in Narratives",
    "authors": [
        {
            "first": "Zhilin",
            "middle": [],
            "last": "Wang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Washington",
                "location": {}
            },
            "email": "[email protected]"
        },
        {
            "first": "Anna",
            "middle": [],
            "last": "Jafarpour",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Washington",
                "location": {}
            },
            "email": "[email protected]"
        },
        {
            "first": "Maarten",
            "middle": [],
            "last": "Sap",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Washington",
                "location": {}
            },
            "email": "[email protected]"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.",
    "pdf_parse": {
        "paper_id": "2022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "When reading stories, people can naturally identify sentences in which a new event starts, i.e., event boundaries, using their knowledge of how events typically unfold, but a computational model to detect event boundaries is not yet available. We characterize and detect sentences with expected or surprising event boundaries in an annotated corpus of short diary-like stories, using a model that combines commonsense knowledge and narrative flow features with a RoBERTa classifier. Our results show that, while commonsense and narrative features can help improve performance overall, detecting event boundaries that are more subjective remains challenging for our model. We also find that sentences marking surprising event boundaries are less likely to be causally related to the preceding sentence, but are more likely to express emotional reactions of story characters, compared to sentences with no event boundary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "When people read stories, they can easily detect the start of new events through changes in circumstances or in narrative development, i.e., event boundaries (Zacks et al., 2007; Bruni et al., 2014; Foster and Keane, 2015; Jafarpour et al., 2019b) . These event boundaries can be expected or surprising. For example, in the story in Figure 1 based on crowdsourced annotation, \"getting along with a dog who does not generally like new people\" marks a surprising new event, while \"their playing fetch together for a long time\" is an expected new event.",
                "cite_spans": [
                    {
                        "start": 158,
                        "end": 178,
                        "text": "(Zacks et al., 2007;",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 179,
                        "end": 198,
                        "text": "Bruni et al., 2014;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 199,
                        "end": 222,
                        "text": "Foster and Keane, 2015;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 223,
                        "end": 247,
                        "text": "Jafarpour et al., 2019b)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 333,
                        "end": 341,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We aim to study whether machines can detect these surprising or expected event boundaries, using commonsense knowledge and narrative flow features. Characterizing features that are informative in detecting event boundaries can help determine how humans apply expectations on event relationships (Schank and Abelson, 1977; Kurby and Zacks, 2009; Radvansky et al., 2014; \u00dcnal Figure 1: Example story with sentences that contain either a surprising event boundary, no event boundary or an expected event boundary respectively. The annotations of reader perception are from the Hippocorpus dataset (Sap et al., 2022) . Zacks, 2020) . Furthermore, detection of sentences with event boundaries can also be useful when generating engaging stories with a good amount of surprises. (Yao et al., 2019; Rashkin et al., 2020; Ghazarian et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 321,
                        "text": "(Schank and Abelson, 1977;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 322,
                        "end": 344,
                        "text": "Kurby and Zacks, 2009;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 345,
                        "end": 368,
                        "text": "Radvansky et al., 2014;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 369,
                        "end": 373,
                        "text": "\u00dcnal",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 594,
                        "end": 612,
                        "text": "(Sap et al., 2022)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 615,
                        "end": 627,
                        "text": "Zacks, 2020)",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 773,
                        "end": 791,
                        "text": "(Yao et al., 2019;",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 792,
                        "end": 813,
                        "text": "Rashkin et al., 2020;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 814,
                        "end": 837,
                        "text": "Ghazarian et al., 2021)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To differentiate sentences with surprising event boundaries, expected event boundaries, and no event boundaries, we train a classifier using 3925 story sentences with human annotation of event boundaries from diary-like stories about people's everyday lives (Sap et al., 2022) . We extract various commonsense and narrative features on relationships between sentences of a story, which can predict the type of event boundaries. Commonsense features include the likelihood that adjacent sentences are linked by commonsense relations from the knowledge graphs Atomic (Sap et al., 2019a) and Glucose (Mostafazadeh et al., 2020) . Narrative features include Realis (Sims et al., 2019) that identifies the number of event-related words in a sentence, Sequentiality (Radford et al., 2019; Sap et al., 2022) based on the probability of generating a sentence with varying context and SimGen (Rosset, 2020), which measures the similarity between a sentence and the sentence that is most likely to 1 be generated given the previous sentence. We then combine the prediction based on these features with the prediction from a RoBERTa classifier (Liu et al., 2019) , to form overall predictions.",
                "cite_spans": [
                    {
                        "start": 258,
                        "end": 276,
                        "text": "(Sap et al., 2022)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 565,
                        "end": 584,
                        "text": "(Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 597,
                        "end": 624,
                        "text": "(Mostafazadeh et al., 2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 661,
                        "end": 680,
                        "text": "(Sims et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 760,
                        "end": 782,
                        "text": "(Radford et al., 2019;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 783,
                        "end": 800,
                        "text": "Sap et al., 2022)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 1133,
                        "end": 1151,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We evaluate the performance of the classification model by measuring F1 of the predictions and compare various configurations of the model to a baseline RoBERTa model. We find that integrating narrative and commonsense features with RoBERTa leads to a significant improvement (+2.2% F1) over a simple RoBERTa classifier. There are also individual differences on the subjective judgment of which sentences contain a surprising or an expected event boundary, that is reflected in the detection model's performance. The performance of our model increases with increasing agreement across the human annotators. Additionally, by interpreting the trained parameters of our model, we find that the absence of causal links between sentences is a strong predictor of surprising event boundaries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To further analyze how surprising event boundaries relate to deviation from commonsense understanding, we compare the performance of the classification model on the related task of ROC Story Cloze Test (Mostafazadeh et al., 2016) . This task concerns whether the ending sentence of a story follows/violates commonsense based on earlier sentences, which can be linked to whether sentences are expected or surprising. Our model performs significantly higher on the ROC Story Cloze Test (87.9% F1 vs 78.0% F1 on our task), showing that surprising event boundaries go beyond merely violating commonsense and therefore can be seen as more challenging to detect. Together, our results suggests that while detecting surprising event boundaries remains a challenging task for machines, a promising direction lies in utilizing commonsense knowledge and narrative features to augment language models.",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 229,
                        "text": "(Mostafazadeh et al., 2016)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Events have been widely studied in Natural Language Processing. They have often been represented in highly structured formats with wordspecific triggers and arguments (Walker et al., 2006; Li et al., 2013; Chen et al., 2017; Sims et al., 2019; Mostafazadeh et al., 2020; Ahmad et al., 2021) or as Subject-Verb-Object-style (SVO) tuples extracted from syntactic parses (Chambers and Jurafsky, 2008; Martin et al., 2018; Rashkin et al., 2018; Sap et al., 2019a) . In narratives, events are represented as a continuous flow with multiple boundaries marking new events (Zacks et al., 2007; Graesser et al., 1981; Kurby and Zacks, 2008; Zacks, 2020) ; however, we lack a model to detect the boundary events that mark the meaningful segmentation of a continuous story into discrete events.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 188,
                        "text": "(Walker et al., 2006;",
                        "ref_id": null
                    },
                    {
                        "start": 189,
                        "end": 205,
                        "text": "Li et al., 2013;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 206,
                        "end": 224,
                        "text": "Chen et al., 2017;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 225,
                        "end": 243,
                        "text": "Sims et al., 2019;",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 244,
                        "end": 270,
                        "text": "Mostafazadeh et al., 2020;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 271,
                        "end": 290,
                        "text": "Ahmad et al., 2021)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 368,
                        "end": 397,
                        "text": "(Chambers and Jurafsky, 2008;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 398,
                        "end": 418,
                        "text": "Martin et al., 2018;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 419,
                        "end": 440,
                        "text": "Rashkin et al., 2018;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 441,
                        "end": 459,
                        "text": "Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 565,
                        "end": 585,
                        "text": "(Zacks et al., 2007;",
                        "ref_id": "BIBREF52"
                    },
                    {
                        "start": 586,
                        "end": 608,
                        "text": "Graesser et al., 1981;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 609,
                        "end": 631,
                        "text": "Kurby and Zacks, 2008;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 632,
                        "end": 644,
                        "text": "Zacks, 2020)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Boundary Detection Task",
                "sec_num": "2"
            },
            {
                "text": "In this work, we study stories from a cognitive angle to detect event boundaries. Such event boundaries relate to our narrative schema understanding (Schank and Abelson, 1977; Chambers and Jurafsky, 2008; Ryan, 2010) , commonsense knowledge (Sap et al., 2019a; Mostafazadeh et al., 2020) and world knowledge (Nematzadeh et al., 2018; Bisk et al., 2020) . Existing work has studied on salient (i.e. important/most report-able ) event boundaries within a story (Ouyang and McKeown, 2015; Otake et al., 2020; Wilmot and Keller, 2021) . However, missing from literature is how salient event boundary can either be surprising or expected based on the knowledge of how a flow of events should unfold. For example, events can be surprising when they deviate from commonsense in terms of what people would predict (e.g., if someone won something, they should not be sad; Sap et al., 2019a) . Surprising events can also be low likelihood events (Foster and Keane, 2015) such as seeing someone wear shorts outside in winter, or due to a rapid shift in emotional valence between events (Wilson and Gilbert, 2008 ) such as seeing a protagonist being defeated. Importantly, there are individual differences in how humans segment narratives into events (Jafarpour et al., 2019a) .",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 175,
                        "text": "(Schank and Abelson, 1977;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 176,
                        "end": 204,
                        "text": "Chambers and Jurafsky, 2008;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 205,
                        "end": 216,
                        "text": "Ryan, 2010)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 241,
                        "end": 260,
                        "text": "(Sap et al., 2019a;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 261,
                        "end": 287,
                        "text": "Mostafazadeh et al., 2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 308,
                        "end": 333,
                        "text": "(Nematzadeh et al., 2018;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 334,
                        "end": 352,
                        "text": "Bisk et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 459,
                        "end": 485,
                        "text": "(Ouyang and McKeown, 2015;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 486,
                        "end": 505,
                        "text": "Otake et al., 2020;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 506,
                        "end": 530,
                        "text": "Wilmot and Keller, 2021)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 863,
                        "end": 881,
                        "text": "Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 1075,
                        "end": 1100,
                        "text": "(Wilson and Gilbert, 2008",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 1239,
                        "end": 1264,
                        "text": "(Jafarpour et al., 2019a)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Boundary Detection Task",
                "sec_num": "2"
            },
            {
                "text": "We tackle event boundary detection as a threeway classification task that involves distinguishing surprising but plausible event boundaries in story sentences from expected event boundaries and no event boundaries. To mirror how humans read stories, we predict the event boundary label for a sentence using all of its preceding sentences in the story, as well as the general story topic as context. Surprising event boundaries are novel events that are unexpected given their context, such as a dog getting along with someone despite not typically liking new people. Expected event boundaries are novel events that are not surprising, such as a person playing a new game with a dog for a long time given that they like each other. In contrast, sentences with no event boundary typically continue or elaborate on the preceding event, such as a person liking a dog given that they get along with the dog (Figure 1 ). 3 Event-annotated Data",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 902,
                        "end": 911,
                        "text": "(Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Event Boundary Detection Task",
                "sec_num": "2"
            },
            {
                "text": "We use the English-based Event-annotated sentences from stories in the Hippocorpus dataset to study event boundaries. This dataset contains 240 diary-like crowdsourced stories about everyday life experiences, each containing an average of 16.4 sentences and are annotated at the sentence level (Sap et al., 2022) . Stories were inspected for the absence of offensive or person-identifying content. For the annotation, eight crowdworkers were shown a story sentence by sentence and were asked to mark whether each sentence contained a new surprising or expected event boundary, or no event boundary at all, based on their subjective judgment (Sap et al., 2022) . Summarized in Table 1 , based on the majoritarian vote, most sentences (57.5%) contain no event boundaries while 16.6% and 13.0% of sentences contains expected and surprising event boundaries, respectively.",
                "cite_spans": [
                    {
                        "start": 294,
                        "end": 312,
                        "text": "(Sap et al., 2022)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 641,
                        "end": 659,
                        "text": "(Sap et al., 2022)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 676,
                        "end": 683,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Event Boundary Detection Task",
                "sec_num": "2"
            },
            {
                "text": "Due to the inherent subjectivity of the task, aggregating labels into a majority label yields low agreement (e.g., 61.7% for surprising event boundaries; Table 1 ). Therefore, at training time, we use the proportion of annotations for each event boundary type as the label instead of the majority vote, because such distributional information is a better reflection of the inherent disagreement among human judgements (Pavlick and Kwiatkowski, 2019) . At test time, we use the majority vote as a gold label, since measuring performance on distribution modelling is less intuitive to interpret, and subsequently break down performance by agreement level to take disagreements into account.",
                "cite_spans": [
                    {
                        "start": 418,
                        "end": 449,
                        "text": "(Pavlick and Kwiatkowski, 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 154,
                        "end": 161,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Event Boundary Detection Task",
                "sec_num": "2"
            },
            {
                "text": "We first describe informative commonsense and narrative features that we extract for the event boundary detection model. Then, we describe how we integrate these features with a RoBERTa classifier in our model before detailing our experimental setup. Figure 2 depicts an overview of our model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 251,
                        "end": 259,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Event Boundary Detection Model",
                "sec_num": "4"
            },
            {
                "text": "We select a collection of commonsense features (Atomic and Glucose relations) and narrative flow features (Realis, Sequentiality and SimGen). A model is trained separately from our main model for Atomic relations, Glucose relations and Realis while models for Sequentiality and SimGen are used without further training. Features of story sentences are extracted as input into the main model. Because language modelling alone might not be sufficient to learn such features (Gordon and Van Durme, 2013; Sap et al., 2019a) , we provide the extracted features to the model instead of relying on the language models to learn them implicitly.",
                "cite_spans": [
                    {
                        "start": 472,
                        "end": 500,
                        "text": "(Gordon and Van Durme, 2013;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 501,
                        "end": 519,
                        "text": "Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Atomic relations are event relations from a social commonsense knowledge graph containing numerous events that can be related to one another (Sap et al., 2019a) . The event relations in this graph consists of:",
                "cite_spans": [
                    {
                        "start": 141,
                        "end": 160,
                        "text": "(Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Emotional Reaction, The Effect of an event, Want to do after the event, What Needs to be done before an event, The Intention to do a certain event, What Attributes an event expresses. When an event affects the subject, the feature name is preceded by an x, while if it affects others, it has an o. o only applies to React, Effect and Want. For example, an xWant of a sentence PersonX pays PersonY a compliment is that PersonX will want to chat with PersonY, and an oWant is that PersonY will compliment PersonX back. We use Atomic relations because surprising event boundaries can involve breaches of commonsense understanding (Bosselut et al., 2019; Sap et al., 2019a; Mostafazadeh et al., 2020; Gabriel et al., 2021) . Furthermore, some Atomic relations (xReact and oReact) concern emotional affect and therefore can be used to capture changes in emotional valence, which can cause events to be seen as surprising (Wilson and Gilbert, 2008) . (Left) Our model involves a GRU to combine features from sentence pairs with three feature encoding modes, RoBERTa to consider story sentences and Event Boundary Detector to combine predictions made by the two components. S n and F n refer to sentence n and features n respectively, while P G and P R are predictions made by the GRU and RoBERTa. The output is a probability distribution over no event boundary, expected event boundary and surprising event boundary, which is used to update model parameters together with the label using the Kullback-Leibler Divergence loss function. (Right) Features (Atomic, Glucose, Realis, Sequentiality and SimGen) can be extracted as input into the GRU in three feature encoding modes: SEQUENTIAL (shown in Model Overview), ALLTOCURRENT and PREVIOUSONLY.",
                "cite_spans": [
                    {
                        "start": 627,
                        "end": 650,
                        "text": "(Bosselut et al., 2019;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 651,
                        "end": 669,
                        "text": "Sap et al., 2019a;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 670,
                        "end": 696,
                        "text": "Mostafazadeh et al., 2020;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 697,
                        "end": 718,
                        "text": "Gabriel et al., 2021)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 916,
                        "end": 942,
                        "text": "(Wilson and Gilbert, 2008)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "We train an Atomic relation classifier using a RoBERTa-base model (Liu et al., 2019) and the Atomic dataset to classify event-pairs into one of the nine possible relationship labels as well as a None label (to introduce negative samples). We achieved a validation F1 of 77.15%, which is high for a 10-way classification task. We describe training and other experimental details in the Appendix. When making inferences on the Event-annotated dataset, we predict the likelihood that a preceding sentence in a story will be related to the current sentence via each of the nine relationship labels. Because Atomic relations are directed relations (e.g., I ate some cake xEffect I am full is different from I am full xEffect I ate some cake), we also made the reverse inference in case commonsense relations between sentences exist in the reverse direction. Together, 9 forward atomic relation features and 9 reverse features (marked with'-r') are used.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 84,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Glucose relations are event relations from another commonsense knowledge dataset containing relations between event-pairs in 10 dimensions (Mostafazadeh et al., 2020) . Glucose relation features are used to complement Atomic relation features in its coverage of commonsense relations. Dim-1 to 5 are described below while Dim-6 to 10 are the reverse/passive form of Dim-1 to 5 respectively.",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 166,
                        "text": "(Mostafazadeh et al., 2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Dim-1: Event that causes/enables Dim-2: Emotion/human drive that motivates Dim-3: Change in location that enables Dim-4: State of possession that enables Dim-5: Other attribute that enables Glucose relation classifier was trained on a RoBERTa-base model to classify event-pairs from the Glucose dataset into one of ten possible relation labels as well as a None label. We used the specific version of Glucose events represented in natural language. As a result, we achieved a validation F1 of 80.94%. Training and other experimental details are in the Appendix. During inference on the Event-annotated dataset, we predict and use as features the likelihood that the current sentence will be related to a preceding sentence via each relation label.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Realis events are words that serve as triggers (i.e., head words) for structured event representations (Sims et al., 2019) . Realis event words denote concrete events that actually happened, meaning that a higher number of Realis event words suggests greater likelihood of the sentence containing a new event boundary (expected or surprising). We trained a BERT-base model (Devlin et al., 2019) on an annotated corpus of literary novel extracts (Sims et al., 2019) . We achieved a validation F1 of 81.85%, inspired by and on par with Sap et al. (2020) . Then, we use the trained model to make inference on story sentences in the Event-annotated dataset. Finally, we used the number of Realis words in each sentence as a feature. Training and other experimental details are in the Appendix.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 122,
                        "text": "(Sims et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 373,
                        "end": 394,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 445,
                        "end": 464,
                        "text": "(Sims et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 534,
                        "end": 551,
                        "text": "Sap et al. (2020)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "Sequentiality is a measure of the difference in conditional negative log-likelihood of generating a sentence given the previous sentence or otherwise (Sap et al., 2020 (Sap et al., , 2022 . Sequentiality can be a predictor for unlikely events, which can cause surprise (Foster and Keane, 2015). We use GPT-2 (Radford et al., 2019) to measure this negative loglikelihood since it is a Left-to-Right model, which matches the order in which annotators were shown sentences in a story. NLL of each sentence was obtained in two different contexts. NLL_topic is based on the sentence alone with only the topic as prior context, while NLL_topic+prev uses the previous sentence as additional context to study the link between adjacent sentences. Finally, Sequentiality is obtained by taking their difference. Experimental details are in the Appendix.",
                "cite_spans": [
                    {
                        "start": 150,
                        "end": 167,
                        "text": "(Sap et al., 2020",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 168,
                        "end": 187,
                        "text": "(Sap et al., , 2022",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 308,
                        "end": 330,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "N LL topic = \u2212 1 |s i | log p LM (s i | T opic) N LL topic+prev = \u2212 1 |s i | log p LM (s i | T opic, s i\u22121 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "SimGen is computed as the cosine similarity between each sentence and the most likely generated sentence given the previous sentence, under a large Left-to-Right language model (specifically, Turing-NLG; Rosset, 2020). Then, we separately converted the original sentence and generated sentence into sentence embeddings using a pre-trained MPnet-base model (Song et al., 2020) . Finally, the generated embeddings and the original embeddings are compared for cosine similarity, which is used as a feature. Experimental details are in the Appendix.",
                "cite_spans": [
                    {
                        "start": 356,
                        "end": 375,
                        "text": "(Song et al., 2020)",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "4.1"
            },
            {
                "text": "We propose a model to integrate feature-based prediction with language-based prediction of event boundaries, illustrated in Figure 2 (left) . The predictions are independently made with extracted features using a gated recurrent unit (GRU) and with language (i.e., story sentences) using RoBERTa. Then these predictions are combined into a final predicted distribution for the three types of event boundaries. Our model is then trained using the Kullback-Leibler Divergence loss.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 124,
                        "end": 139,
                        "text": "Figure 2 (left)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "GRU is used to combine features relating the current sentence i to prior sentences in a story. It sequentially considers information concerning prior sentences, which mimics the annotator's procedure of identifying event boundaries as they read one sentence at the time. As seen in Figure 2 (right), we use three feature encoding modes to determine the features that are used as input into the GRU, as inspired by literature on event segmentation (Pettijohn and Radvansky, 2016; Baldassano et al., 2018; Zacks, 2020) . These three modes represent different ways of facilitating information flow between sentences, which can have distinct effects on identifying event boundaries. The first mode, SEQUENTIAL, encodes features from all previous sentences in the story in a recurrent way (1 to 2, 2 to 3 ... i \u2212 1 to i) up until the current sentence i. The second mode, ALL-TOCURRENT, uses features from each of the previous sentences to the current sentence i (1 to i, 2 to i ... i \u2212 1 to i). The third mode, PREVIOUSONLY, (i \u2212 1 to i) only feeds into the GRU the features relating to the previous sentence. For all modes, the dimension of each time step input is K G , representing the total number of distinct features. We then project the final output of the GRU, h G \u2208 R K G , into a 3-dimensional vector space representing the unnormalized probability distribution over event boundary types.",
                "cite_spans": [
                    {
                        "start": 479,
                        "end": 503,
                        "text": "Baldassano et al., 2018;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 504,
                        "end": 516,
                        "text": "Zacks, 2020)",
                        "ref_id": "BIBREF51"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 282,
                        "end": 290,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "RoBERTa is used to make predictions based on text in story sentences. We use all story sentences up to sentence i inclusive. We then project the hidden state of the first token (also known as CLS token), h R \u2208 R K R , into a 3-dimensional space representing the unnormalized probability distribution over event boundary types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "Combining predictions We combine predictions made by the GRU (P G ) and RoBERTa (P R ) by concatenating their predictions and multiplying it with a linear classifier of size (6, 3) to output logits of size (3). The logits are then normalized using Softmax to give a distribution of the three types of event boundaries (P ). The weights of the linear classifier are initialized by concatenating two identity matrix of size 3 (I 3 ), which serves to perform elementwise addition between the predictions of the GRU and RoBERTa at early stages of the training process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "W := [I 3 ; I 3 ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P := Sof tmax(W ([P G ; P R ]))",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "Loss function We use the Kullback-Leibler Divergence loss function to train the model. We use it over the standard Cross Entropy loss function because our training targets are in the form: proportion of annotations for each type of event boundary (e.g., 0.75, 0.125, 0.125 for no event, expected and surprising respectively). Including such distributional information in our training targets over using the majority annotation only can reflect the inherent disagreement among human judgements (Pavlick and Kwiatkowski, 2019) , which is important to capture for event boundaries given that they are subjective judgements.",
                "cite_spans": [
                    {
                        "start": 493,
                        "end": 524,
                        "text": "(Pavlick and Kwiatkowski, 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "We seek to predict the event-boundary annotation for each Hippocorpus story sentence, using preceding sentences in the story as context, as shown in Figure 2 . Additional training and experimental details are available in the Appendix.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 149,
                        "end": 157,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "4.3"
            },
            {
                "text": "K-fold Cross-validation Because of the limited size of the dataset (n=3925), we split the dataset in k-folds (k=10), using one fold (n=392) for validation and nine other folds combined for training. From each of the 10 models, we obtained the prediction for the validation set. Together, the validation sets for the 10 models combine to form predictions for the entire dataset, which we use to conduct significance testing in order to compare the performance of models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "4.3"
            },
            {
                "text": "GRU was accessed from PyTorch, with K G set to 33 and a hidden dimension of 33.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "4.3"
            },
            {
                "text": "RoBERTa RoBERTa-base-uncased with 12layer, 768-hidden (K R ), 12-heads, 110M parameters, 0.1 dropout was used, accessed from Hug-gingFace Transformers library (Wolf et al., 2020) . When more than 10 prior sentences are available in a story, we use only the most recent 10 sentences due to RoBERTa input sequence length limitations.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 178,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF49"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "4.3"
            },
            {
                "text": "Evaluation Metrics While capturing distributional information of subjective judgement labels (Pavlick and Kwiatkowski, 2019) is important for training, it can also be difficult to interpret for evaluation. Therefore, we decided to predict for the most likely label during evaluation and compare it against the majority label for each sample. Some 511 (13.0%) samples do not have a single majority label (e.g., equal number of expected and surprising annotations) and these samples were excluded. We use micro-averaged F1 as the metric. ",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 124,
                        "text": "(Pavlick and Kwiatkowski, 2019)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental setup",
                "sec_num": "4.3"
            },
            {
                "text": "We first quantify the performance of our model in detecting event boundaries, using a coarse-grained performance measure on F1 with respect to majority vote. Then, we investigate how the performance varies based on annotation subjectivity. Finally, we inspect the model parameters to identify commonsense and narrative features that are most informative in detecting event boundaries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Improving prediction of event boundaries As seen in Table 2 , RoBERTa alone performs fairly well in predicting event boundaries (F1 = 75.8%, within 2.2% F1 of our best performing model), but can be further supported by our commonsense and narrative features to improve its performance. In contrast, the commonsense and narrative features alone do not perform as well. 1 Overall, our best performing set-up is the Event Detector (PREVIOUSONLY) with F1 = 78.0%, which is significantly different from RoBERTa alone based on McNemar's test (p <0.05). 2 Its overall strong performance is largely contributed by its strong performance in detecting no event boundaries and expected event boundaries. F1 for no event boundary is higher than both surprising and expected event boundaries, likely because there are more sentences with no event boundaries as seen in Table 1 . The PREVIOUSONLY configuration performs best for 1 We also increased learning rate to 1e-3 for better performance given the absence of RoBERTa predictions in this ablation set-up.",
                "cite_spans": [
                    {
                        "start": 915,
                        "end": 916,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 52,
                        "end": 59,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 856,
                        "end": 863,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "2 McNemar's test is used to determine whether samples that have been predicted accurately (or not) by one model overlap with those that have predicted accurately (or not) by another model. no event boundaries and expected event boundaries likely because determining whether the current sentence continues an expected event (or not) requires retaining the latest information in working memory (Jafarpour et al., 2019a) . However, the SEQUEN-TIAL configuration seems to perform the best in predicting surprising event boundaries. Compared to no/expected event boundaries, we hypothesize that predicting surprising event boundaries requires taking into account how the story developed prior to the previous sentence in setting up the context for the current sentence. This finding echoes results by Townsend (2018) that showed that surprising sentences take a long time to read because it requires changing our mental model formed from previous sentences.",
                "cite_spans": [
                    {
                        "start": 392,
                        "end": 417,
                        "text": "(Jafarpour et al., 2019a)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 796,
                        "end": 811,
                        "text": "Townsend (2018)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "F1 varies with majority agreement Since the annotations were subjective and did not always agree, we further examine our best model's performance (PREVIOUSONLY) with respect to annotation agreement. As shown in Figure 3 , F1 increases with majority label agreement (Pearson's r = 0.953, p < 0.05). Such positive correlations are observed across all event boundary labels (Pearson's r = 0.869-0.994) and is especially strong for surprising event boundaries (Pearson's r = 0.994, p < 0.001). This means that most errors are made on samples that have low agreement among annotators. For example to show this contrast, after \"She and I are very close so it was great to see her marrying someone she loves,\" 7 out of 8 annotators indicated that \"The most memorable moment was when I spilled champagne on my dress before the wedding\" was surprising. On the other hand, after \"It was a hot day in July that our community decided to paint a mural on an intersection for public art,\" only 4 out of 8 annotators indicated that \"I had decided to volunteer to help paint.\" was surprising. The results suggest that our model performance reflects the variability and agreements in human annotations of event boundaries. We hypothesize that the event boundaries with more agreement are based on features that are shared across the annotators, such as commonsense knowledge; therefore, the model performs well in detecting those. Whereas, our model struggles with detecting event boundaries that are more subjective.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 211,
                        "end": 219,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Predictive features By integrating a separate feature-based classifier, the Event Boudary Detector model allows us to examine the model parameters and determine features that are associated with surprising, expected or no event boundaries. First, we take the average of the GRU classifier weights for each of the 10 cross-validated models. Then, we plot these weights for each label in Figure 4 , and summarize the findings below.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 386,
                        "end": 394,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Features that relate to commonsense relations: oEffect, xEffect and Glucose Dim-6 (caused by) are most predictive of expected event boundaries. This can indicate that events that are an effect of/caused by a prior event can be expected by annotators, as also noted by Graesser et al. (1981) . An example of an expected event boundary is \"I told her we could go for coffee sometime.\", as an effect of \"We had a good time together.\" xNeed is least indicative of surprising event boundaries. This is likely because xNeed refers to what the subject needs to do before an activity, which is procedural and unlikely to cause surprise. An example is \"I was grocery shopping a few weeks ago.\" which is needed before \"I had purchased my items and was leaving the store.\"",
                "cite_spans": [
                    {
                        "start": 268,
                        "end": 290,
                        "text": "Graesser et al. (1981)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Features that explain unlikely events Realis is highest for surprising event boundaries, suggesting that surprising event boundaries tend to contain the most concrete event-words. Surprising event boundaries also have the highest likelihood when conditioned on the story topic (NLL_topic) while expected events are highest when conditioned based on the topic and the previous sentence (NLL_topic+prev). This suggests that surprising events are often inline with the story topic but not with the previous sentence. Therefore, the low likelihood of transitioning between the previous and current sentence is a strong predictor of surprising event boundaries, in line with findings by Foster and Keane (2015) on how the difficulty of linking two adjacent events is an important factor in causing surprise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Features that explain changes in emotional valence Compared to sentences that contain no event boundaries, sentences that contain either expected or surprising event boundaries have higher xReact and oReact, which are emotional responses either by the subject or by others to an event. For example, this is the case for the surprising and emotional event boundary \"I remember it was like the 3rd or 4th game when something bad happened..\" This suggests that event boundaries are more likely when a sentence is more emotionally charged, echoing work by Dunsmoor et al. (2018) on how event segmentation is particularly frequent when the emotion of fear is triggered.",
                "cite_spans": [
                    {
                        "start": 552,
                        "end": 574,
                        "text": "Dunsmoor et al. (2018)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "To better understand how surprising event boundaries relate to deviation from commonsense reasoning, we compare our Event Boundary Detection Task to the ROC Story Cloze Test (Mostafazadeh et al., 2016) . This test involves identifying whether a candidate ending sentence follows commonsense (commonsense ending) or deviates from commonsense (nonsense ending) given the first four sentences of a English short story. The ROC Story Cloze Test dataset contains 3142 samples with 1571 commonsense endings and 1571 nonsense endings. 3 We train a separate Event Boundary De-tector model on the ROC Story Cloze Test, using the same experimental setup as for event boundary detection, except the loss function; we use the cross-entropy loss since only one label is available for each sample. 4 overall nonsense commonsense F1 ending F1 ending F1 Table 3 . This indicates that detecting whether a story ending follows commonsense can be effectively approached using RoBERTa alone, setting this task might not be closely related to the Event Boundary Detection Task.",
                "cite_spans": [
                    {
                        "start": 174,
                        "end": 201,
                        "text": "(Mostafazadeh et al., 2016)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 528,
                        "end": 529,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 784,
                        "end": 785,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 838,
                        "end": 845,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison with Story Cloze Test",
                "sec_num": "6"
            },
            {
                "text": "We tackle the task of identifying event boundaries in stories. We propose a model that combines predictions made using commonsense and narrative features with a RoBERTa classifier. We found that integrating commonsense and narrative features can significantly improve the prediction of surprising event boundaries through detecting violations to commonsense relations (especially relating to the absence of causality), low likelihood events, and changes in emotional valence. Our model is capable in detecting event boundaries with high annotator agreement but limited in detecting those with lower agreement. Compared to identifying commonsense and nonsense story endings in Story Cloze Test, our task is found to be only tagentially related. Our results suggest that considering commonsense knowledge and narrative features can be a promising direction towards characterizing and detecting event boundaries in stories.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "train our model on the dev portion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "We use the Winter 2018 version, which contains a dev and a test set. As in previous work(Schwartz et al., 2017), we",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Training takes 20 minutes on an Nvidia P100 GPU.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We used the train/dev/test splits from the original Atomic dataset (Sap et al., 2019a) . Negative samples are created by matching a Atomic event node to a corresponding tail event node from another sample based on the relationship involved. Sepcifically, negative sampling was performed on groups (['xWant', 'oWant', 'xNeed', ' xIntent'], ['xReact', 'oReact', ' xAttr'], ['xEffect', 'oEffect']) given that the tail event nodes in each group are more similar, creating more discriminating negative samples, as inspired by Sap et al. (2019b) . One negative sample is introduced every nine positive samples, since there are nine labels. We used a learning rate of 1e-4, batch size of 64, 8 epochs and AdamW optimizer. Training took 18 hours on a Nvidia P100 GPU.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 86,
                        "text": "(Sap et al., 2019a)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 297,
                        "end": 327,
                        "text": "(['xWant', 'oWant', 'xNeed', '",
                        "ref_id": null
                    },
                    {
                        "start": 339,
                        "end": 361,
                        "text": "['xReact', 'oReact', '",
                        "ref_id": null
                    },
                    {
                        "start": 371,
                        "end": 394,
                        "text": "['xEffect', 'oEffect'])",
                        "ref_id": null
                    },
                    {
                        "start": 521,
                        "end": 539,
                        "text": "Sap et al. (2019b)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Atomic relations training details",
                "sec_num": null
            },
            {
                "text": "Because the Glucose dataset (Mostafazadeh et al., 2020) was not split initially, we randomly split the dataset into train/dev/test splits based on a 80/10/10 ratio. For each sample in Glucose, annotations share similar head event nodes in Dim-1 to 5 and similar tail event nodes in Dim-6 to 10. Therefore, our negative sampling strategy for Dim-1 to 5 involves randomly choosing a tail node from Dim-6 to 10 and vice-versa. As a result, one negative sample is introduced every five samples. During training, we used a learning rate of 1e-4, batch size of 64, 8 epochs and AdamW optimizer. Training took 15 hours on a Nvidia P100 GPU.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 55,
                        "text": "(Mostafazadeh et al., 2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2 Glucose relations training details",
                "sec_num": null
            },
            {
                "text": "We used the train/dev/test split from the Realis dataset (Sims et al., 2019) . During training, we used the AdamW optimizer, a learning rate of 2e-5, 3 epochs and batch size of 4, as inspired by (Sap et al., 2020) . Training took 1 hour on a Nvidia P100 GPU.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 76,
                        "text": "(Sims et al., 2019)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 195,
                        "end": 213,
                        "text": "(Sap et al., 2020)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.3 Realis training details",
                "sec_num": null
            },
            {
                "text": "GPT2-small was accessed from HuggingFace Transformers library and used without further finetuning. It has 125M parameters, a context window of 1024, hidden state dimension of 768, 12 heads and dropout of 0.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.4 Sequentiality experimental details",
                "sec_num": null
            },
            {
                "text": "We used the Turing-NLG model without further fine-tuning. The model has 17B and we used it with top-p sampling (top-p=0.85), temperature=1.0 and max sequence length of 64 tokens. MPnetbase model was accessed from the Sentence-BERT library (Reimers and Gurevych, 2019) and used without further fine-tuning.",
                "cite_spans": [
                    {
                        "start": 239,
                        "end": 267,
                        "text": "(Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.5 SimGen experimental details",
                "sec_num": null
            },
            {
                "text": "AdamW optimizer was used with \u03b1 = 5 * 10 \u22126 , following a uniform search using F1 as the criterion at intervals of {2.5, 5, 7.5, 10} * 10 n ; \u22126 \u2264 n \u2264 \u22123.Learning rate was linearly decayed (8 epochs) with 100 warm-up steps. Batch size of 16 was used. Validation was done every 0.25 epochs during training.Training each model took around 30 minutes on an Nvidia P100 GPU.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.6 Event Boundary Detection Model training details",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Gate: Graph attention transformer encoder for cross-lingual relation and event extraction",
                "authors": [
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Wasi Uddin Ahmad",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wasi Uddin Ahmad, Nanyun Peng, and Kai-Wei Chang. 2021. Gate: Graph attention transformer en- coder for cross-lingual relation and event extraction.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Representation of real-world event schemas during narrative perception",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Baldassano",
                        "suffix": ""
                    },
                    {
                        "first": "Uri",
                        "middle": [],
                        "last": "Hasson",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [
                            "A"
                        ],
                        "last": "Norman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The Journal of Neuroscience",
                "volume": "38",
                "issue": "45",
                "pages": "9689--9699",
                "other_ids": {
                    "DOI": [
                        "10.1523/jneurosci.0251-18.2018"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christopher Baldassano, Uri Hasson, and Kenneth A. Norman. 2018. Representation of real-world event schemas during narrative perception. The Journal of Neuroscience, 38(45):9689-9699.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Experience grounds language",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Holtzman",
                        "suffix": ""
                    },
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Thomason",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Andreas",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Joyce",
                        "middle": [],
                        "last": "Chai",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    },
                    {
                        "first": "Angeliki",
                        "middle": [],
                        "last": "Lazaridou",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "Aleksandr",
                        "middle": [],
                        "last": "Nisnevich",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Pinto",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Turian",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "8718--8735",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.703"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap- ata, Angeliki Lazaridou, Jonathan May, Aleksandr Nisnevich, Nicolas Pinto, and Joseph Turian. 2020. Experience grounds language. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 8718-8735, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Comet: Commonsense transformers for automatic knowledge graph construction",
                "authors": [
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bosselut",
                        "suffix": ""
                    },
                    {
                        "first": "Hannah",
                        "middle": [],
                        "last": "Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Chaitanya",
                        "middle": [],
                        "last": "Malaviya",
                        "suffix": ""
                    },
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "\u00c7elikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai- tanya Malaviya, Asli \u00c7elikyilmaz, and Yejin Choi. 2019. Comet: Commonsense transformers for au- tomatic knowledge graph construction. In Proceed- ings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Narrative cognition in interactive systems: Suspense-surprise and the p300 erp component",
                "authors": [
                    {
                        "first": "Luis",
                        "middle": [
                            "Emilio"
                        ],
                        "last": "Bruni",
                        "suffix": ""
                    },
                    {
                        "first": "Sarune",
                        "middle": [],
                        "last": "Baceviciute",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Arief",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Interactive Storytelling",
                "volume": "",
                "issue": "",
                "pages": "164--175",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luis Emilio Bruni, Sarune Baceviciute, and Mo- hammed Arief. 2014. Narrative cognition in inter- active systems: Suspense-surprise and the p300 erp component. In Interactive Storytelling, pages 164- 175, Cham. Springer International Publishing.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Unsupervised learning of narrative event chains",
                "authors": [
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "789--797",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nathanael Chambers and Dan Jurafsky. 2008. Unsuper- vised learning of narrative event chains. In Proceed- ings of ACL-08: HLT, pages 789-797, Columbus, Ohio. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Automatically labeled data generation for large scale event extraction",
                "authors": [
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Shulin",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "409--419",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1038"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao. 2017. Automatically labeled data genera- tion for large scale event extraction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 409-419, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Event segmentation protects emotional memories from competing experiences encoded close in time",
                "authors": [
                    {
                        "first": "Joseph",
                        "middle": [
                            "E"
                        ],
                        "last": "Dunsmoor",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "W"
                        ],
                        "last": "Marijn",
                        "suffix": ""
                    },
                    {
                        "first": "Caroline",
                        "middle": [
                            "M"
                        ],
                        "last": "Kroes",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "D"
                        ],
                        "last": "Moscatelli",
                        "suffix": ""
                    },
                    {
                        "first": "Lila",
                        "middle": [],
                        "last": "Evans",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [
                            "A"
                        ],
                        "last": "Davachi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Phelps",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Nature Human Behaviour",
                "volume": "2",
                "issue": "4",
                "pages": "291--299",
                "other_ids": {
                    "DOI": [
                        "10.1038/s41562-018-0317-4"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Joseph E. Dunsmoor, Marijn C. W. Kroes, Caroline M. Moscatelli, Michael D. Evans, Lila Davachi, and Elizabeth A. Phelps. 2018. Event segmentation pro- tects emotional memories from competing experi- ences encoded close in time. Nature Human Be- haviour, 2(4):291-299.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Predicting surprise judgments from explanation graphs",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Meadhbh",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [
                            "T"
                        ],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Keane",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Meadhbh I. Foster and Mark T. Keane. 2015. Predict- ing surprise judgments from explanation graphs.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Paragraph-level commonsense transformers with recurrent memory",
                "authors": [
                    {
                        "first": "Saadia",
                        "middle": [],
                        "last": "Gabriel",
                        "suffix": ""
                    },
                    {
                        "first": "Chandra",
                        "middle": [],
                        "last": "Bhagavatula",
                        "suffix": ""
                    },
                    {
                        "first": "Vered",
                        "middle": [],
                        "last": "Shwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Ronan",
                        "suffix": ""
                    },
                    {
                        "first": "Maxwell",
                        "middle": [],
                        "last": "Bras",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Forbes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "35",
                "issue": "",
                "pages": "12857--12865",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell Forbes, and Yejin Choi. 2021. Paragraph-level commonsense transformers with recurrent memory. Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12857- 12865.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Plot-guided adversarial example construction for evaluating open-domain story generation",
                "authors": [
                    {
                        "first": "Zixi",
                        "middle": [],
                        "last": "Sarik Ghazarian",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "S M",
                        "middle": [],
                        "last": "Akash",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    },
                    {
                        "first": "Aram",
                        "middle": [],
                        "last": "Galstyan",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "4334--4344",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.naacl-main.343"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sarik Ghazarian, Zixi Liu, Akash S M, Ralph Weischedel, Aram Galstyan, and Nanyun Peng. 2021. Plot-guided adversarial example construction for evaluating open-domain story generation. In Pro- ceedings of the 2021 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 4334-4344, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Reporting bias and knowledge acquisition",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Gordon",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC '13",
                "volume": "",
                "issue": "",
                "pages": "25--30",
                "other_ids": {
                    "DOI": [
                        "10.1145/2509558.2509563"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Gordon and Benjamin Van Durme. 2013. Re- porting bias and knowledge acquisition. In Proceed- ings of the 2013 Workshop on Automated Knowledge Base Construction, AKBC '13, page 25-30, New York, NY, USA. Association for Computing Machin- ery.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Incorporating inferences in narrative representations: A study of how and why. Cognitive Psychology",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Arthur",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Graesser",
                        "suffix": ""
                    },
                    {
                        "first": "Patricia",
                        "middle": [
                            "A"
                        ],
                        "last": "Scott P Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "",
                "volume": "13",
                "issue": "",
                "pages": "1--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arthur C Graesser, Scott P Robertson, and Patricia A Anderson. 1981. Incorporating inferences in narra- tive representations: A study of how and why. Cog- nitive Psychology, 13(1):1-26.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Event segmentation reveals working memory forgetting rate",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Jafarpour",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [
                            "A"
                        ],
                        "last": "Buffalo",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Anne Ge",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anna Jafarpour, Elizabeth A Buffalo, Robert T Knight, and Anne GE Collins. 2019a. Event segmentation reveals working memory forgetting rate. Available at SSRN 3614120.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Medial orbitofrontal cortex, dorsolateral prefrontal cortex, and hippocampus differentially represent the event saliency",
                "authors": [
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Jafarpour",
                        "suffix": ""
                    },
                    {
                        "first": "Sandon",
                        "middle": [],
                        "last": "Griffin",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Jack",
                        "suffix": ""
                    },
                    {
                        "first": "Robert T",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Journal of cognitive neuroscience",
                "volume": "31",
                "issue": "6",
                "pages": "874--884",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anna Jafarpour, Sandon Griffin, Jack J Lin, and Robert T Knight. 2019b. Medial orbitofrontal cor- tex, dorsolateral prefrontal cortex, and hippocampus differentially represent the event saliency. Journal of cognitive neuroscience, 31(6):874-884.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Segmentation in the perception and memory of events",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "A"
                        ],
                        "last": "Kurby",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zacks",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Trends in cognitive sciences",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "CA Kurby and JM Zacks. 2009. Segmentation in the perception and memory of events. Trends in cogni- tive sciences.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Segmentation in the perception and memory of events",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [
                            "M"
                        ],
                        "last": "Kurby",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zacks",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Trends in cognitive sciences",
                "volume": "12",
                "issue": "2",
                "pages": "72--79",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher A Kurby and Jeffrey M Zacks. 2008. Seg- mentation in the perception and memory of events. Trends in cognitive sciences, 12(2):72-79.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Joint event extraction via structured prediction with global features",
                "authors": [
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Heng",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "73--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qi Li, Heng Ji, and Liang Huang. 2013. Joint event extraction via structured prediction with global fea- tures. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 73-82, Sofia, Bulgaria. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Event representations for automated story generation with deep neural nets",
                "authors": [
                    {
                        "first": "Lara",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "Prithviraj",
                        "middle": [],
                        "last": "Ammanabrolu",
                        "suffix": ""
                    },
                    {
                        "first": "Xinyu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Hancock",
                        "suffix": ""
                    },
                    {
                        "first": "Shruti",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Brent",
                        "middle": [],
                        "last": "Harrison",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Riedl",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "32",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lara Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti Singh, Brent Harrison, and Mark Riedl. 2018. Event representations for auto- mated story generation with deep neural nets. Pro- ceedings of the AAAI Conference on Artificial Intel- ligence, 32(1).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Note on the sampling error of the difference between correlated proportions or percentages",
                "authors": [
                    {
                        "first": "Quinn",
                        "middle": [],
                        "last": "Mcnemar",
                        "suffix": ""
                    }
                ],
                "year": 1947,
                "venue": "Psychometrika",
                "volume": "12",
                "issue": "2",
                "pages": "153--157",
                "other_ids": {
                    "DOI": [
                        "10.1007/bf02295996"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Quinn McNemar. 1947. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika, 12(2):153-157.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A corpus and cloze evaluation for deeper understanding of commonsense stories",
                "authors": [
                    {
                        "first": "Nasrin",
                        "middle": [],
                        "last": "Mostafazadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Dhruv",
                        "middle": [],
                        "last": "Batra",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Vanderwende",
                        "suffix": ""
                    },
                    {
                        "first": "Pushmeet",
                        "middle": [],
                        "last": "Kohli",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Allen",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "839--849",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1098"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A cor- pus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 839-849, San Diego, California. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "GLUCOSE: GeneraLized and COntextualized story explanations",
                "authors": [
                    {
                        "first": "Nasrin",
                        "middle": [],
                        "last": "Mostafazadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Kalyanpur",
                        "suffix": ""
                    },
                    {
                        "first": "Lori",
                        "middle": [],
                        "last": "Moon",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Buchanan",
                        "suffix": ""
                    },
                    {
                        "first": "Lauren",
                        "middle": [],
                        "last": "Berkowitz",
                        "suffix": ""
                    },
                    {
                        "first": "Or",
                        "middle": [],
                        "last": "Biran",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Chu-Carroll",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4569--4586",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.370"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nasrin Mostafazadeh, Aditya Kalyanpur, Lori Moon, David Buchanan, Lauren Berkowitz, Or Biran, and Jennifer Chu-Carroll. 2020. GLUCOSE: GeneraL- ized and COntextualized story explanations. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4569-4586, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Evaluating theory of mind in question answering",
                "authors": [
                    {
                        "first": "Aida",
                        "middle": [],
                        "last": "Nematzadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Kaylee",
                        "middle": [],
                        "last": "Burns",
                        "suffix": ""
                    },
                    {
                        "first": "Erin",
                        "middle": [],
                        "last": "Grant",
                        "suffix": ""
                    },
                    {
                        "first": "Alison",
                        "middle": [],
                        "last": "Gopnik",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Griffiths",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2392--2400",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1261"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Aida Nematzadeh, Kaylee Burns, Erin Grant, Alison Gopnik, and Tom Griffiths. 2018. Evaluating theory of mind in question answering. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing, pages 2392-2400, Brus- sels, Belgium. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Modeling event salience in narratives via barthes' cardinal functions",
                "authors": [
                    {
                        "first": "Takaki",
                        "middle": [],
                        "last": "Otake",
                        "suffix": ""
                    },
                    {
                        "first": "Sho",
                        "middle": [],
                        "last": "Yokoi",
                        "suffix": ""
                    },
                    {
                        "first": "Naoya",
                        "middle": [],
                        "last": "Inoue",
                        "suffix": ""
                    },
                    {
                        "first": "Ryo",
                        "middle": [],
                        "last": "Takahashi",
                        "suffix": ""
                    },
                    {
                        "first": "Tatsuki",
                        "middle": [],
                        "last": "Kuribayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Inui",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1784--1794",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.coling-main.160"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Takaki Otake, Sho Yokoi, Naoya Inoue, Ryo Takahashi, Tatsuki Kuribayashi, and Kentaro Inui. 2020. Mod- eling event salience in narratives via barthes' car- dinal functions. In Proceedings of the 28th Inter- national Conference on Computational Linguistics, pages 1784-1794, Barcelona, Spain (Online). Inter- national Committee on Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Modeling reportable events as turning points in narrative",
                "authors": [
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Ouyang",
                        "suffix": ""
                    },
                    {
                        "first": "Kathleen",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2149--2158",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1257"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jessica Ouyang and Kathleen McKeown. 2015. Mod- eling reportable events as turning points in narrative. In Proceedings of the 2015 Conference on Empiri- cal Methods in Natural Language Processing, pages 2149-2158, Lisbon, Portugal. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Inherent disagreements in human textual inferences",
                "authors": [
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "677--694",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00293"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent disagreements in human textual inferences. Transac- tions of the Association for Computational Linguis- tics, 7:677-694.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Narrative event boundaries, reading times, and expectation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Kyle",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel",
                        "middle": [
                            "A"
                        ],
                        "last": "Pettijohn",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Radvansky",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Memory & Cognition",
                "volume": "44",
                "issue": "7",
                "pages": "1064--1075",
                "other_ids": {
                    "DOI": [
                        "10.3758/s13421-016-0619-6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kyle A. Pettijohn and Gabriel A. Radvansky. 2016. Narrative event boundaries, reading times, and ex- pectation. Memory & Cognition, 44(7):1064-1075.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Different kinds of causality in event cognition",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gabriel",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [
                            "K"
                        ],
                        "last": "Radvansky",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Tamplin",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [
                            "N"
                        ],
                        "last": "Armendarez",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Thompson",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Discourse Processes",
                "volume": "51",
                "issue": "7",
                "pages": "601--618",
                "other_ids": {
                    "DOI": [
                        "10.1080/0163853X.2014.903366"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Gabriel A. Radvansky, Andrea K. Tamplin, Joseph Ar- mendarez, and Alexis N. Thompson. 2014. Differ- ent kinds of causality in event cognition. Discourse Processes, 51(7):601-618.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "PlotMachines: Outlineconditioned generation with dynamic plot state tracking",
                "authors": [
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Hannah Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4274--4295",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.349"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. 2020. PlotMachines: Outline- conditioned generation with dynamic plot state tracking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 4274-4295, Online. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Event2mind: Commonsense inference on events, intents, and reactions",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Hannah Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Allaway",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hannah Rashkin, Maarten Sap, Emily Allaway, Noah A. Smith, and Yejin Choi. 2018. Event2mind: Commonsense inference on events, intents, and re- actions. In ACL.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Sentencebert: Sentence embeddings using siamese bertnetworks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- bert: Sentence embeddings using siamese bert- networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Turing-nlg: A 17-billionparameter language model by microsoft",
                "authors": [
                    {
                        "first": "Corby",
                        "middle": [],
                        "last": "Rosset",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Corby Rosset. 2020. Turing-nlg: A 17-billion- parameter language model by microsoft.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Narratology and cognitive science: A problematic relation",
                "authors": [
                    {
                        "first": "Marie-Laure",
                        "middle": [],
                        "last": "Ryan",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Style",
                "volume": "44",
                "issue": "4",
                "pages": "469--495",
                "other_ids": {
                    "DOI": [
                        "http://www.jstor.org/stable/10.5325/style.44.4.469"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Marie-Laure Ryan. 2010. Narratology and cognitive science: A problematic relation. Style, 44(4):469- 495.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Recollection versus imagination: Exploring human memory and cognition via neural language models",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Horvitz",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Noah",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "W"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pennebaker",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maarten Sap, Eric Horvitz, Yejin Choi, Noah A Smith, and James W Pennebaker. 2020. Recollection ver- sus imagination: Exploring human memory and cog- nition via neural language models. In ACL.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Computational lens on cognition: Study of autobiographical versus imagined stories with largescale language models",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Jafarpour",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "W"
                        ],
                        "last": "Pennebaker",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Horvitz",
                        "suffix": ""
                    }
                ],
                "year": 2022,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maarten Sap, Anna Jafarpour, Yejin Choi, Noah A. Smith, James W. Pennebaker, and Eric Horvitz. 2022. Computational lens on cognition: Study of autobiographical versus imagined stories with large- scale language models.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Atomic: An atlas of machine commonsense for if-then reasoning",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Ronan Le Bras",
                        "suffix": ""
                    },
                    {
                        "first": "Chandra",
                        "middle": [],
                        "last": "Allaway",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Bhagavatula",
                        "suffix": ""
                    },
                    {
                        "first": "Hannah",
                        "middle": [],
                        "last": "Lourie",
                        "suffix": ""
                    },
                    {
                        "first": "Brendan",
                        "middle": [],
                        "last": "Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Roof",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "3027--3035",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v33i01.33013027"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maarten Sap, Ronan Le Bras, Emily Allaway, Chan- dra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, and Yejin Choi. 2019a. Atomic: An atlas of machine common- sense for if-then reasoning. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):3027- 3035.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Social IQa: Commonsense reasoning about social interactions",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Hannah",
                        "middle": [],
                        "last": "Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Derek",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Ronan Le Bras",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "4463--4473",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1454"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. 2019b. Social IQa: Com- monsense reasoning about social interactions. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4463- 4473, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Scripts, Plans, Goals, and Understanding",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Schank",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Abelson",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R.C. Schank and R. Abelson. 1977. Scripts, Plans, Goals, and Understanding. Hillsdale, NJ: Earlbaum Assoc.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "The effect of different writing tasks on linguistic style: A case study of the roc story cloze task",
                "authors": [
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Sap",
                        "suffix": ""
                    },
                    {
                        "first": "Ioannis",
                        "middle": [],
                        "last": "Konstas",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Zilles",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Noah A",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roy Schwartz, Maarten Sap, Ioannis Konstas, Li Zilles, Yejin Choi, and Noah A Smith. 2017. The effect of different writing tasks on linguistic style: A case study of the roc story cloze task. In CoNLL.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Literary event detection",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Sims",
                        "suffix": ""
                    },
                    {
                        "first": "Jong",
                        "middle": [
                            "Ho"
                        ],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Bamman",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3623--3634",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1353"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Sims, Jong Ho Park, and David Bamman. 2019. Literary event detection. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics, pages 3623-3634, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Mpnet: Masked and permuted pretraining for language understanding",
                "authors": [
                    {
                        "first": "Kaitao",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.09297"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2020. Mpnet: Masked and permuted pre- training for language understanding. arXiv preprint arXiv:2004.09297.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Stage salience and situational likelihood in the formation of situation models during sentence comprehension",
                "authors": [
                    {
                        "first": "David",
                        "middle": [
                            "J"
                        ],
                        "last": "Townsend",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Lingua",
                "volume": "206",
                "issue": "",
                "pages": "1--20",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.lingua.2018.01.002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "David J. Townsend. 2018. Stage salience and situa- tional likelihood in the formation of situation models during sentence comprehension. Lingua, 206:1-20.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "From event representation to linguistic meaning",
                "authors": [
                    {
                        "first": "Ercenur",
                        "middle": [],
                        "last": "\u00dcnal",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Papafragou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Topics in Cognitive Science",
                "volume": "13",
                "issue": "1",
                "pages": "224--242",
                "other_ids": {
                    "DOI": [
                        "10.1111/tops.12475"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ercenur \u00dcnal, Yue Ji, and Anna Papafragou. 2019. From event representation to linguistic meaning. Topics in Cognitive Science, 13(1):224-242.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Memory and knowledge augmented language models for inferring salience in long-form stories",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Wilmot",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Keller",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "851--865",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.emnlp-main.65"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "David Wilmot and Frank Keller. 2021. Memory and knowledge augmented language models for infer- ring salience in long-form stories. In Proceedings of the 2021 Conference on Empirical Methods in Nat- ural Language Processing, pages 851-865, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Explaining away: A model of affective adaptation",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [
                            "D"
                        ],
                        "last": "Wilson",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "T"
                        ],
                        "last": "Gilbert",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Perspectives on Psychological Science",
                "volume": "3",
                "issue": "5",
                "pages": "370--386",
                "other_ids": {
                    "DOI": [
                        "10.1111/j.1745-6924.2008.00085.x"
                    ],
                    "PMID": [
                        "26158955"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Timothy D. Wilson and Daniel T. Gilbert. 2008. Ex- plaining away: A model of affective adaptation. Per- spectives on Psychological Science, 3(5):370-386. PMID: 26158955.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. Transformers: State-of-the-art natural language pro- cessing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Planand-write: Towards better automatic storytelling",
                "authors": [
                    {
                        "first": "Lili",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Weischedel",
                        "middle": [],
                        "last": "Ralph",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lili Yao, Nanyun Peng, Weischedel Ralph, Kevin Knight, Dongyan Zhao, and Rui Yan. 2019. Plan- and-write: Towards better automatic storytelling. In The Thirty-Third AAAI Conference on Artificial In- telligence (AAAI-19).",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Event perception and memory",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [
                            "M"
                        ],
                        "last": "Zacks",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Annual Review of Psychology",
                "volume": "71",
                "issue": "1",
                "pages": "165--191",
                "other_ids": {
                    "DOI": [
                        "10.1146/annurev-psych-010419-051101"
                    ],
                    "PMID": [
                        "31905113"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey M. Zacks. 2020. Event perception and mem- ory. Annual Review of Psychology, 71(1):165-191. PMID: 31905113.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Event perception: a mind-brain perspective",
                "authors": [
                    {
                        "first": "Nicole",
                        "middle": [
                            "K"
                        ],
                        "last": "Jeffrey M Zacks",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Speer",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Khena",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Swallow",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Todd",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremy",
                        "middle": [
                            "R"
                        ],
                        "last": "Braver",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Reynolds",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Psychological bulletin",
                "volume": "133",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. 2007. Event perception: a mind-brain perspective. Psychologi- cal bulletin, 133(2):273.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "Figure 2: (Left) Our model involves a GRU to combine features from sentence pairs with three feature encoding modes, RoBERTa to consider story sentences and Event Boundary Detector to combine predictions made by the two components. S n and F n refer to sentence n and features n respectively, while P G and P R are predictions made by the GRU and RoBERTa. The output is a probability distribution over no event boundary, expected event boundary and surprising event boundary, which is used to update model parameters together with the label using the Kullback-Leibler Divergence loss function. (Right) Features (Atomic, Glucose, Realis, Sequentiality and SimGen) can be extracted as input into the GRU in three feature encoding modes: SEQUENTIAL (shown in Model Overview), ALLTOCURRENT and PREVIOUSONLY.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "F1 by Event Detector (PREVIOUSONLY) against majority agreement, on all 10 folds. * means that Pearson's r is significant at p < 0.05 and ** at p < 0.001.",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "Feature weights towards each label in GRU component of Event Detector (PREVIOUSONLY)",
                "type_str": "figure"
            },
            "TABREF1": {
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Descriptive Statistics for Event-annotated sen-tences. Majority label refers to the most common an-notation of a sample from 8 independent annotators. If there is a tie between 2 labels, it is categorized as tied. Majority agreement is the proportion of sample annota-tions for the majority label.</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null,
                "content": "<table><tr><td>: Event detection task: Performance of Event Detector compared to baseline model. *: overall F1 sig-nificant different from RoBERTa based on McNemar's test (p &lt;0.05) (McNemar, 1947)</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "num": null,
                "text": "ROC Story Cloze Test Performance of Event Detector on ROC Story Cloze Test Our commonsense and narrative features do not seem to significantly improve upon RoBERTa's performance in the ROC Story Cloze Test (+0.2% F1), as observed in",
                "html": null,
                "content": "<table/>"
            }
        }
    }
}