|
{ |
|
"paper_id": "W89-0106", |
|
"header": { |
|
"generated_with": "S2ORC 1.0.0", |
|
"date_generated": "2023-01-19T03:45:27.589082Z" |
|
}, |
|
"title": "Autom atic Indexing and Generating of Content Graphs from Unrestricted Text1", |
|
"authors": [], |
|
"year": "", |
|
"venue": null, |
|
"identifiers": {}, |
|
"abstract": "", |
|
"pdf_parse": { |
|
"paper_id": "W89-0106", |
|
"_pdf_hash": "", |
|
"abstract": [], |
|
"body_text": [ |
|
{ |
|
"text": "T h e im p e tu s b e h in d th e w o rk s ju s t m e n tio n e d is m a in ly a n eed fo r a n a ly zin g la rg e a m o u n ts o f u n re s tricte d te x t in a w a y th a t is n o t t o o resou rce-d em a n d in g , e ith e r o n tim e o r o n c o m p u tin g p o w e r. A s a s e c o n d a r y g o a l, I h ave seen th e needs o f la rg e -s ca le in fo r m a tio n retriev a l. K e e p in g m y o rig in a l su rfa ce -o rie n ta tio n , I h a v e g o n e fu rth e r fr o m th e a n a ly sis in to p a r ts -o f-s p e e c h an d co n stitu en ts and s ta r te d t o lo o k a t th e e x tr a c tio n a n d re p resen ta tio n o f so m e k in d o f ' c o n te n t' fr o m th e su rfa ce o f te x ts , w ith o u t a n y k in d o f k n ow led g e b a se s u p p o rt. T h is m ig h t se em q u ite im p o s s ib le . M a n y o f th e o th e r p a p e rs in th is v olu m e d ea l w ith h o w u n a v a ila b le in feren ces are t o th e c o m p re h e n s io n o f te x t, and o f co u rs e th e y a re rig h t. I f th e a im is t o b u ild a c o m p u te r iz e d sy ste m th a t w ill in a n y w ay sim u la te la n g u a g e u n d e rs ta n d in g , it is n ecessa ry t o h ave a large k n o w le d g e base a n d m e ch a n ism s fo r m a k in g in feren ces fr o m it, b u t th ere are a lso a p p lica tio n s w h e re th e h u m a n k n o w le d g e a n d in fe re n cin g c a p a citie s ca n b e u sed in stea d . M y a p p r o a c h in th e e x p e r im e n t t o b e r e p o r te d here has b e en t o let ea ch o n e d o * My sincere thanks to Boris Prochaska and Sten-Erik Bergner, formerly at Ericsson Tele com, who wrote the original version of the graph drawing program that I have used, and to Howard Gayle who set me in contact with them. Sune Magnberg has done a great job in trans ferring the program to a PC environment and has also written the part of the whole system that checks for collocational pairs. I also wish to thank Benny Brodda, Kari Fraurud, and Sune Magnberg for valuable comments on earlier drafts o f this article. w h a t h e /s h e /i t is g o o d at; let th e c o m p u te r s to re , s o r t, a n d fin d fa c ts , a n d let th e h um an b e in g d o th e in fe ren cin g .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "T h is is a c tu a lly th e w a y it n o rm a lly is in th e field o f in fo r m a tio n retriev a l, w h ere it is th e h um an u ser th a t (in te ra ctiv e ly , a t b e s t T h is is an in sta n ce o f w h a t is k n ow n as th e c o n flic t b e tw e e n reca ll a n d p re cisio n .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Still it is clea r th a t s im p le w o rd lists ca n b e q u ite in fo r m a tiv e , th o u g h a b it b orin g . I h a v e a lso g o n e t o th e o th e r e x tr e m e a n d trie d t o a c tu a lly g e n e ra te co h e re n t a b s tra cts a u to m a tic a lly (K \u00e4 llg re n 1 9 8 8 ). T h is w o u ld ce r ta in ly b e d esira b le, an d th o u g h it is fa r away, I d o n o t th in k it is im p o ssib le .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "W h a t I w ill re p o r t o n here is s o m e th in g in b e tw ee n . It is a w a y o f sh o w in g cen tral c o n c e p ts a n d th eir in te rre la tio n s in w h a t I h a v e ca lle d ' c o n te n t g r a p h s ' .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "It is th en u p t o th e u ser t o in terp ret th e re la tion s a n d m a k e th e in feren ces th a t are n eed ed in o rd e r t o g e t a p ic tu r e o f th e co n te n t o f th e co n c e r n e d te x t.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "In p rin cip le, it m a y b e w r o n g t o ta lk a b o u t co n te n t g ra p h s. T h e g ra p h s p ictu re ' w h a t a tex t is a b o u t ' , ra th e r th a n its c o n te n t, b u t t o ca ll th e m ' a b o u tn e s s g ra p h s' is ju s t t o o clu m sy. W h a t th ese g ra p h s a c tu a lly d o is t o g iv e a h in t a b o u t th e co n te n t o f a given t e x t, n o t a fu ll a n d tru e rep resen ta tion o f it. G iv en th ese lim ita tio n s, th e g ra p h s still h ave th e ir ju s tific a t io n . T h e d eriv a (1) T he ALGORITHM:", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "1. Eliminate all form words.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "2. Lemmatize the remaining words, i. e. disregard differences at the end of words that either belong to the sets o f derivational and inflectional endings or are admissible combinations o f those.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "3. Rank the lemmas in order of frequency.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "4. Decide on a lowest frequency o f lemmas and exclude the lemmas below that level. The level is dependent on the length of the text and the degree of recall wanted. The lemmas above the frequency threshold form the set of INDEX words.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "5. Decide on a SPAN length. The length of the span is not dependent on text length or wanted recall, but might be language dependent.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "6. Find all instances where two words from the index set appear within the same span. These are the COLLOCATION AL PAIRS.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "7. Find all pairs that are identical, disregarding order, as the pairs in themselves are unordered.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "8. Rank the collocational pairs in order of frequency.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "9. Decide on a lowest frequency of collocational pairs, based on the same principles as for the lemma frequency. Pick out all pairs above that frequency.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "10. Construct ADJACENCY LISTS, i. e., for each lemma, list all other lemmas with which it forms a pair.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "11. Use the adjacency lists as input to the GRAPH-drawing program.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "A lte r n a tiv e v ersion w ith g ra p h s d ra w n b y h a n d :", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "10' Try to find optimal orderings of the pairs, look for central concepts that occur in many pairs.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "11' Draw the GRAPH. w ill h ow ever u se an E n g lish te x t w h ere th e le m m a tiz in g has b e e n d o n e m a n u ally.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Introduction", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "T h e fu ll E n glish te x t is g iv e n in A p p e n d ix In th e sa m p le a p p lic a tio n , th e sp a n len g th is se ttle W it h o u t c h a n g in g th e g iv e n fr e q u e n c y levels fo r lem m a s a n d c o llo c a tio n a l p a irs, w e ca n d e riv e th e fo llo w in g sets o f c o n c e p ts a n d rela tio n s b etw ee n co n c e p ts : T h e resu lt o f all th is is a g r a p h ic re p re se n ta tio n o f th e le m m a s a n d re la tio n s th a t have a h igh fre q u e n cy in a g iv en te x t a n d , fo r th a t rea son , ca n b e a ssu m ed Det \u00e4r ocks\u00e5 viktigt att du f\u00e5r r\u00e4tt sorts batteri och inte ett som \u00e4r avsett f\u00f6r fotoar tiklar eller h\u00f6rapparater. D\u00e5 g\u00e4ller inte garantin som de flesta tillverkare av urbatterier ger.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Implementation", |
|
"sec_num": "4" |
|
}, |
|
{ |
|
"text": "P\u00e5 de flesta klockor m\u00e5ste boetten \u00f6ppnas vid batteribyte. D\u00e5 fordras specialverktyg och stor f\u00f6rsiktighet f\u00f6r att inte elektroniken ska ta skada. Och det \u00e4r viktigt att boetten sluter ordentligt t\u00e4tt efter batteribytet.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Implementation", |
|
"sec_num": "4" |
|
}, |
|
{ |
|
"text": "Det \u00e4r ett axbete du ska \u00f6verl\u00e5ta till en fackman.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Implementation", |
|
"sec_num": "4" |
|
}, |
|
{ |
|
"text": "T e x t 1 T e x t2", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "C Conceptual Graphs of the Swedish Texts", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Proceedings of NODALIDA 1989", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "The AlgorithmT h e m e t h o d c a n n o w b e p re sen ted in th e fo r m o f an a lg o rith m , w h ich I w ill p r o c e e d t o d e s c r ib e a n d e x e m p lify .", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "", |
|
"sec_num": null |
|
} |
|
], |
|
"back_matter": [ |
|
{ |
|
"text": "Thirty years ago, growing up in New Zealand, I often sliced into a brown berry that looked like a duck's egg in a bristly hair skirt. Repulsive? Not really, for I knew a secret: The berry's odd ap]>earance disguised an equally exotic interior, a sunburst of neat white streaks radiating from a creamcolored core, past tiny black seeds and into shimmering green flesh (above). Sweet-tart in taste, it seemed a succulent blend of strawberry, banana, melon, and pineapple flavors. Delicious! I loved the kiwifruit.I stiU do, and today this peculiar product of a woody vine is captivating palates outside New Zealand at an extraordinary pace. In 1986 more than a billion kiwifruit, once called Chinese gooseberries, were tucked into trays and shipped to at least 30 nations. Thousands of acres axe newly planted each yecir in a dozen or more countries, including the United States, France, Japan, and Italy, the leading producers after New Zealand.This universal success has uniquely New Zealand roots. The kiwifruit's conversion to a commercial crop occurred in New Zealand, and its name-coined in the 1950s as a marketing tactic-conjures up both that likable country and its whimsical, flightless native bird, renowned for oversize eggs and hairlike brown feathers. Moreover, exports of the fuzzy, four-ounce berry are increasingly important to New Zealand's economy and the creator o f more millionaires than anything else in my homeleind's history.The only fruit with such bright green flesh, the kiwifruit is one of just a handful of food plants domesticated within the past thousand years. Originating in the Yangtze Valley, it has long been a favorite of the Chinese, glorified in poetry as early as the eight century. Chinese peasants stiU gather the wild fruit for sale in rural markets.The transformation of a small, hard, and wild Chinese berry into fleshier, tastier ki wifruit began about 1904, when a traveler returned from a China visit with seeds for Alexander Allison, a nurseryman on New Zealand's North Island. In the following three decades he and other gardeners developed superior kiwifruit vines through careful se lection, pruning, and grafting. Most of these early fcinciers were as much interested in the vine's showy white blossoms and attractive fan-shaped leaves as in its berries.Kiwifruit farming got its commercial start in the 1930s, most successfully at Te Puke on the North Island's east coast. The late James MacLoughlin became the father of the modern kiwifruit-and ultimately a millionaire-by chance.After he lost his job as a shipping clerk during the Great Depression, Jim's wife's aunt invited them to stay on her lemon orchard at Te Puke. \"Later the bottom fell out of the lemon market,\" he told me, \" but a neighbor sold the kiwifruit from a single plant for five pounds (then worth about $20 U.S.). To me that was a lot o f money, so I risked putting in half an acre o f them.\"Luckily for MacLoughlin, the warm, wet climate and volcanic soil at Te Puke favored his vines. Neighbors soon launched their own commercial orchards, which further expanded during World War II when GIs stationed in New Zealand developed a taste for kiwifruit.Then chance intervened again. In 1952 an English fruit importer ordered a shipment of New Zealand lemons. \"To fill spare space in the ship, we included ten cases of kiwifruit,\" Jim MacLoughlin explained. \"A dock strike delayed the ship five weeks and the lemons arrived rotten, but the kiwifruit were in perfect shape.\" They sold well, and New Zealanders suddenly realized that they'd opened a world market.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "A The Captivating Kiwifruit", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Rudi och Renate hyr en liten stuga ovanf\u00f6r sj\u00f6n, fast de h2ir visst aldrig r\u00e5d att betala den. D\u00e4r finns ett rum och k\u00f6k.N\u00e4r Malin och jag kommer dit, s\u00e4tter vi oss p\u00e5 golvet och jag tar av mig skorna ocks\u00e5, jag vill vara som hon. Rudi spelar Mozart p\u00e5 en grammofon, som han l\u00e5nat hem \"p\u00e5 prov\" . Det \u00e4r alldeles l\u00f6r dyrt att k\u00f6pa egna grammofoner.Solen skiner rakt in i k\u00f6ket. Rudi visar sina bilder, Malin r\u00f6ker pipa och ler s\u00e5 gott n\u00e4r hon ser tavlorna och Rudi pratax s\u00e5 mycket att jag slipper. Nordens h\u00f6gsta hotell, en kongresshall med plats f\u00f6r 10 000 \u00e5sk\u00e5dare och Europas l\u00e4ngsta g\u00e5gata under tak \u00e4r n\u00e5gra av de projekt som redan \u00e4r i full g\u00e5ng.Det har skett en snabb utveckling de senaste \u00e5ren. Oslo blir alltmer en metropol. Vad g\u00e4ller nattliv och restauranger kan staden konkurrera med b\u00e5de Stockholm och K\u00f6penhamn. Den sista sammanr\u00e4kningen visade 90 nattklubbar och kafeer som h\u00f6ll \u00f6ppet mellan tv\u00e5 och fyra p\u00e5 natten.Aker Brygge med sin kombination av butiker, restauranger, teater och kontor i l\u00e4ckra omgivningar vid hamnen har blivit n\u00e5got som Osloborna stolt visar upp f\u00f6r tillresande. En b\u00e4rande tanke har varit att \u00f6ppna staden mot fjorden igen. Biltrafiken ska l\u00e4ggas s\u00e5 mycket som m\u00f6jligt i tunnlar. (DN 1987-12-05) T e x t 31 O m b atterier och batterib yte L\u00e5t inte ett kvartsur som stannat bli liggande. Batteriet kan b\u00f6rja l\u00e4cka och skada din klocka.", |
|
"cite_spans": [ |
|
{ |
|
"start": 1221, |
|
"end": 1236, |
|
"text": "(DN 1987-12-05)", |
|
"ref_id": null |
|
} |
|
], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "B Swedish Texts T e x t 1", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "N\u00e5gra f\u00e5 klockor har ett s\u00e4rskilt batterifack med lock, se bruksanvisningen. D\u00e5 \u00e4r det m\u00f6jligt att sj\u00e4lv byta batteri, men eftersom det kan vara sv\u00e5rt att f\u00e5 locket t\u00e4ttslutande igen efter bytet, \u00e4r det klokt att \u00e4nd\u00e5 cinlita f\u00e9ickmannen.", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "V\u00e5gax man d\u00e5 byta batteri sj\u00e4lv?", |
|
"sec_num": null |
|
}, |
|
{ |
|
"text": "Stockholm University S-106 91 Stockholm Sweden", |
|
"cite_spans": [], |
|
"ref_spans": [], |
|
"eq_spans": [], |
|
"section": "Department of Linguistics", |
|
"sec_num": null |
|
} |
|
], |
|
"bib_entries": { |
|
"BIBREF0": { |
|
"ref_id": "b0", |
|
"title": "Grammar Development for Speech Recognition", |
|
"authors": [ |
|
{ |
|
"first": "E", |
|
"middle": [], |
|
"last": "Black", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "Proc. from ELS Con ference on Computational Linguistics, IBM Norway", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Black, E., 1988. Grammar Development for Speech Recognition. Proc. from ELS Con ference on Computational Linguistics, IBM Norway.", |
|
"links": null |
|
}, |
|
"BIBREF1": { |
|
"ref_id": "b1", |
|
"title": "A Stochastic Parts Program and Noun Phrase Parser for Unre stricted Text", |
|
"authors": [ |
|
{ |
|
"first": "K", |
|
"middle": [ |
|
"W" |
|
], |
|
"last": "Church", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "ACL Second Conference on Applied Natural Language Processing", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Church, K. W ., 1988. A Stochastic Parts Program and Noun Phrase Parser for Unre stricted Text. ACL Second Conference on Applied Natural Language Processing, Austin, Texas.", |
|
"links": null |
|
}, |
|
"BIBREF2": { |
|
"ref_id": "b2", |
|
"title": "Grammatical Category Disambiguation by Statistical Optimiza tion", |
|
"authors": [ |
|
{ |
|
"first": "S", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Derose", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "Computational Linguistics", |
|
"volume": "", |
|
"issue": "l", |
|
"pages": "31--39", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "DeRose, S. J., 1988. Grammatical Category Disambiguation by Statistical Optimiza tion. Computational Linguistics, 14(l);31-39.", |
|
"links": null |
|
}, |
|
"BIBREF3": { |
|
"ref_id": "b3", |
|
"title": "Automatisk rotlemmatisering -et lingvistisk hjelpe middel for teksts\u00f6king", |
|
"authors": [ |
|
{ |
|
"first": "T", |
|
"middle": [], |
|
"last": "Fjeldvig", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "A", |
|
"middle": [], |
|
"last": "Golden", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1984, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Fjeldvig, T. Si Golden, A., 1984. Automatisk rotlemmatisering -et lingvistisk hjelpe middel for teksts\u00f6king. CompLex no. 9/84. Universitetsforlaget, Oslo.", |
|
"links": null |
|
}, |
|
"BIBREF4": { |
|
"ref_id": "b4", |
|
"title": "The UCREL probabilistic parsing system", |
|
"authors": [ |
|
{ |
|
"first": "R", |
|
"middle": [ |
|
"Si" |
|
], |
|
"last": "Garside", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "F", |
|
"middle": [], |
|
"last": "Leech", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1987, |
|
"venue": "Garside, R. et al. The Computational Analysis o f English. Longman", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Garside, R. Si Leech, F., 1987. The UCREL probabilistic parsing system. In Garside, R. et al. The Computational Analysis o f English. Longman, London.", |
|
"links": null |
|
}, |
|
"BIBREF5": { |
|
"ref_id": "b5", |
|
"title": "HP-systemet som genv\u00e4g vid syntaktisk m\u00e4rkning av texter", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1984, |
|
"venue": "Svenskans beskrivning I 4", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "39--45", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G., 1984a. HP-systemet som genv\u00e4g vid syntaktisk m\u00e4rkning av texter. In Svenskans beskrivning I 4, p. 39-45. Lunds universitet.", |
|
"links": null |
|
}, |
|
"BIBREF6": { |
|
"ref_id": "b6", |
|
"title": "HP -A Heuristic Finite State Parser Based on Morphology", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1983, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "155--162", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G., 1984b. HP -A Heuristic Finite State Parser Based on Morphology. In S\u00e5gvaU-Hein, Anna (ed.) De nordiska datalingvistikdagama 1983, p. 155-162. Uppsala universitet.", |
|
"links": null |
|
}, |
|
"BIBREF7": { |
|
"ref_id": "b7", |
|
"title": "Automatisk excerpering av substantiv ur l\u00f6pande text", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1984, |
|
"venue": "Ett m\u00f6jligt hj\u00e4lpmedel vid automatisk indexering? IRI-rapport 1984:1. Institutet f\u00f6r R\u00e4ttsinformatik, Stockholms universitet", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G. 1984c. Automatisk excerpering av substantiv ur l\u00f6pande text. Ett m\u00f6jligt hj\u00e4lpmedel vid automatisk indexering? IRI-rapport 1984:1. Institutet f\u00f6r R\u00e4tts- informatik, Stockholms universitet.", |
|
"links": null |
|
}, |
|
"BIBREF8": { |
|
"ref_id": "b8", |
|
"title": "A Pattern Matching Parser", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1985, |
|
"venue": "Papers from the Eighth Scandinavian Conference o f Linguistics", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G. 1985. A Pattern Matching Parser. In Togeby, Ole (ed.) Papers from the Eighth Scandinavian Conference o f Linguistics. Copenhagen University.", |
|
"links": null |
|
}, |
|
"BIBREF9": { |
|
"ref_id": "b9", |
|
"title": "W hat G ood is Syntactic Information in the Lexicon o f a Syntac tic Parser?", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1987, |
|
"venue": "Nordiske Datalingvistikdage 1987", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G., 1987. W hat G ood is Syntactic Information in the Lexicon o f a Syntac tic Parser? In Nordiske Datalingvistikdage 1987, Lambda, 7. Copenhagen, Han delsh\u00f8jskolen.", |
|
"links": null |
|
}, |
|
"BIBREF10": { |
|
"ref_id": "b10", |
|
"title": "Automatic Abstracting of Content in Text", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "K\u00e4llgren", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "Nordic Journal o f Lin guistics", |
|
"volume": "11", |
|
"issue": "1-2", |
|
"pages": "89--110", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "K\u00e4llgren, G. 1988. Automatic Abstracting of Content in Text, Nordic Journal o f Lin guistics, Vol. 11(1-2): 89-110.", |
|
"links": null |
|
}, |
|
"BIBREF11": { |
|
"ref_id": "b11", |
|
"title": "Aspects o f Text Structure", |
|
"authors": [ |
|
{ |
|
"first": "M", |
|
"middle": [], |
|
"last": "Phillips", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1985, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Phillips, M., 1985. Aspects o f Text Structure. North-HoUand, Amsterdam.", |
|
"links": null |
|
}, |
|
"BIBREF12": { |
|
"ref_id": "b12", |
|
"title": "Automatisk uppritning av grafer. Examination paper. Royal In stitute o f Technology", |
|
"authors": [ |
|
{ |
|
"first": "B", |
|
"middle": [], |
|
"last": "Prochaska", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1988, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Prochaska, B., 1988. Automatisk uppritning av grafer. Examination paper. Royal In stitute o f Technology, Stockholm.", |
|
"links": null |
|
}, |
|
"BIBREF13": { |
|
"ref_id": "b13", |
|
"title": "Introduction to M odem Information Retrieval", |
|
"authors": [ |
|
{ |
|
"first": "G", |
|
"middle": [], |
|
"last": "Salton", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "M", |
|
"middle": [ |
|
"J" |
|
], |
|
"last": "Mcgill", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1983, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Salton, G. & McGill, M. J., 1983. Introduction to M odem Information Retrieval. McGraw-Hill, New York.", |
|
"links": null |
|
}, |
|
"BIBREF14": { |
|
"ref_id": "b14", |
|
"title": "English Lexical Studies: Report to OSTI on Project C /L P /0 8", |
|
"authors": [ |
|
{ |
|
"first": "J", |
|
"middle": [], |
|
"last": "Sinclair", |
|
"suffix": "" |
|
}, |
|
{ |
|
"first": "", |
|
"middle": [], |
|
"last": "Mch", |
|
"suffix": "" |
|
} |
|
], |
|
"year": 1970, |
|
"venue": "", |
|
"volume": "", |
|
"issue": "", |
|
"pages": "", |
|
"other_ids": {}, |
|
"num": null, |
|
"urls": [], |
|
"raw_text": "Sinclair, J. McH. et al., 1970. English Lexical Studies: Report to OSTI on Project C /L P /0 8 , Dept o f English, University o f Birmingham.", |
|
"links": null |
|
} |
|
}, |
|
"ref_entries": { |
|
"FIGREF0": { |
|
"text": "o r q u ite s o m e tim e , I h a v e b e e n e x p lo r in g th e su rfa ce signals o f la n g u a g e, an d tr y in g t o p u t th e m t o as m u ch use as p o s s ib le , p rim a rily in m o r p h o lo g y -b a s e d p a r t-o f-s p e e c h a ssign m en t (K \u00e4 llg r e n 1 9 8 4 a ,b ,c, 1985) an d p a tte rn -b a s e d s y n ta c tic a n a ly sis (K \u00e4 llg r e n 1 9 8 7 ). T h is k in d o f la rg e -sca le , p r o b a b ilis tic p a rsin g o n th e b a sis o f m o r p h o lo g ic a l a n d s y n ta c tic p a tte rn s has la tely c o m e t o u se in several p r o je c t s . S o m e m o d e ls th a t h a v e b e e n d o c u m e n te d axe th e U C R E L parser in E n g la n d fo r th e B r o w n a n d L O B c o r p o r a (G a rs id e & L eech 1 9 8 7 ), th e V O L -S U N G A p a rser in th e U S A fo r th e B r o w n c o r p u s (D e R o s e 1 9 8 8 ), K e n C h u r c h ' s s to c h a s tic m o d e ls (C h u r c h 1 9 8 8 ), as w ell as o th e r w ork in th e U S (B la c k 1 988), b u t I a m su re w o rk a lo n g th e se lin es is g o in g on in several p la ces.", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF1": { |
|
"text": ") d e c id e s w h e th e r s h e /h e has g o t th e d esired m a teria l. T h e p r o b le m is th en to p r o d u c e an o p tim a l b a sis fo r th a t d e cision . I h a v e s o fa r b een testin g a u to m a t ic in d e x in g o f te x ts , i. e. t o find cen tra l c o n c e p ts in te x ts a u to m a tic a lly (K \u00e4 llg r e n 1 9 8 4 c). T h is is n o t all th a t diflBcult, b u t n o t all th a t e ffe ctiv e eith er. In o r d e r t o b e c o v e r in g , th e in d e x lists w ill ea sily g ro w t o o lo n g ; i f sh o rte n e d , im p o r ta n t d e s c r ip to r s m a y d is a p p e a r.", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF2": { |
|
"text": "tion o f th em fro m te x ts is an in terestin g ta sk , fo r a set o f rea son s: T h e p r o c e s s ca n b e fu lly a u to m a tiz e d . It ca n b e ru n o n u n re s tricte d te x t w ith o u t m a n u a l p re p rocessin g . T h e o u tp u t ca n o fte n b e strik in g ly a c c u r a te . It a lso seem s t o h ave s o m e in terestin g p s y ch o lin g u is tic im p lica tio n s .", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF3": { |
|
"text": "Surface-Oriented Indexing and Information RetrievalO f co u rse , differen t k in d s o f su rfa ce -o rie n te d m e th o d s h a v e b e e n u sed e x te n sively th ro u g h th e y ea rs in research o n a u to m a t ic in fo r m a tio n retrieva l. S a lto n & M c G ill (1 9 8 3 ) g iv e a b r o a d o v e rv ie w o f th e field a n d a ls o r e p o r t in te re st in g d a ta o n th e n o to r io u s ly diflScult ev a lu a tio n o f in fo r m a tio n retriev a l sy stem s. M a n y o f th e sy stem s d e s c r ib e d m ake u se o f a d ja c e n c y a n d te rm fr e q u e n c y fe a tures in d ifferen t c o m b in a tio n s , an d s o m e sy ste m s tak e in to a c c o u n t n o t o n ly term s th a t are im m e d ia te ly 2uljacent b u t a ls o term s th a t a p p e a r w ith in a lim ited d ista n ce o f each o th e r (ib id . p. 3 3 ). S o p h is tica te d m e th o d s fo r c o m p u tin g fre q u en cy a n d re la tiv e w eig h t o f term s o c c u r in g in d o c u m e n ts are a lso d e s c r ib e d . F req u en cy o f im m e d ia te ly a d ja ce n t term s is u sed as a m ea n s o f fin d in g c o m p le x term s (su ch as ' in fo rm a tio n re trie v a l' ), b u t th e a u th o rs d o n o t r e p o r t a n y w ork d ea lin g w ith fre q u e n cy o f m o re lo o s e ly co n n e c te d term s. T h e resu lts o f th eir e x p e rim e n ta tion is e n c o u r a g in g in th a t th e y sh o w th a t w e ll-c o n s tr u c te d a u to m a t ic in d e x in g s y ste m s m a y p e r fo r m q u ite as w ell as m an u al in d ex in g , an d a lso th a t sim p le s u r fa c e -b a s e d p r o c e d u r e s ca n b e as g o o d as o r b e tte r th an m o re refined m e t h o d s (ib id . p . 102 ). T h e o r ig in a l in s p ira tio n fo r th is w o rk c o m e s fr o m P h illip s (1 9 8 5 ) w h ich relates t o s o m e v e ry e a r ly w o rk w ith in c o m p u ta tio n a l lin gu istics (e .g . S in clair et al. 1 9 7 0 ). M a n y o f th e id ea s s u g g e ste d a t th a t tim e w o u ld d eserv e a ren ew ed interest to d a y , w h en c o m p u ta tio n a l p o w e r as w ell as lin gu istic k n o w le d g e has in creased (t h e fo rm e r c o n s id e r a b ly m o r e th a n th e la tte r, h ow ev er). A g o o d o ld id e a th a t tu rn s u p e v e ry n ow a n d th en is th e c o n c e p t o f c o llo c a tio n . C o llo c a t io n s are w ord s th a t a p p e a r to g e th e r c o n s id e r a b ly m o r e o fte n th a n w ou ld b e e x p e c te d on p u rely s ta tis tic a l g r o u n d s . T h e y c a n e ith e r b e im m e d ia te ly a d ja ce n t o r a p p e a r w ith in a lim ite d d is ta n ce fr o m ea ch o th e r. T h is d ista n ce , in term s o f n u m b e r o f w ord s, 6an b e ca lle d a sp a n . ' C o llo c a t io n ' a n d ' s p a n ' are ba sic c o n c e p ts in m y m e th o d fo r g e n e ra tin g g ra p h s. T o sea rch fo r c o llo c a t io n s c a n b e a w a y o f fin d in g th e id io m s o f a lan gu age, b o t h th o s e th a t a re e n tirely fix e d , like ' red t a p e ' , an d th o se th a t c o n ta in slots, like ' pu ll s o m e o n e 's le g ' . It ca n a lso b e a w a y o f fin d in g rela tion s b etw een w ord s. In th e k in d o f c o n te n t a n a ly sis th a t is ca rrie d o u t in th e so cia l scien ce s, c o o c c u r ren ces b e tw e e n p re d e sig n e d p a irs o r sets o f w o rd s h ave som etim es b e e n in v esti g a te d . M y tre a tm e n t o f th e c o llo c a tio n s is rela ted to b o th uses; to th e fo rm e r in re g a rd in g a ll w o r d s in a te x t as lia b le t o en ter c o llo c a tiv e rela tion s, to th e la tte r in a ssign in g s o m e k in d o f s e m a n tic lo a d t o th e rela tion s. T h is a m o u n ts t o sa y in g th a t th e fa c t th a t tw o w o r d s c o o c c u r s u s p icio u s ly o fte n carries s o m e m ea n in g in itself. T h e r e is, h ow e v er, o n e lim ita tio n o n w h a t w o rd s ca n fo rm c o llo c a tio n s in m y s y s te m . T o a v o id u n in terestin g c o llo c a tio n s , su ch as a rticle plu s n o u n e tc ., I o n ly ta k e co n te n t w o r d s in to re g a rd , n o t fo r m w o rd s. T h e d is tin c tio n b etw een con ten t w o r d s a n d fo r m w o r d s is o f c o u r s e n o t to t a lly clea r (w h ich lin g u istic d istin ctio n s a r e ? ), b u t cle a r e n o u g h t o b e o p e r a tio n a liz a b le . T h e r e a re s o m e rare in sta n ces o f h o m o g r a p h y , as w h en ' o u t ' ca n b e a n o u n in c o n n e c tio n w ith b a seb a ll, and s o m e a d v e r b s ca n b e felt t o b e ' co n te n t h e a v y ' . D isre g a rd in g th is, fo rm w o rd s ca n b e g iv e n as lists o f w o r d s fr o m th e clo s e d c a te g o rie s; p ro n o u n s , p rep ositio n s, a d v e r b s , a u x ilia ry v e rb s, a rticle s, p a rticle s, a n d c o n ju n c tio n s . R e m o v in g such w o rd s fr o m ru n n in g t e x t, o r p la c in g th e m o n s o -c a lle d ' s to p lists' , is a m u ch u sed p r a c tic e in a u to m a t ic in d e x in g , a n d it is e stim a te d th a t a b o u t 250 c o m m o n w o rd s c o v e r 4 0 -5 0 p e rce n t o f an a v era g e E n g lish te x t (S a lto n k . M c G ill p. 7 1 ).L e m m a tiz a tio n a n d ra n k o rd e r in g , as d e s c r ib e d in step s 2 a n d 3 in th e a lg o rith m b e lo w , are a ls o w e ll-e sta b lish e d tech n iq u es.", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF4": { |
|
"text": "T h e sy ste m has b een te ste d fo r S w edish , an d th e p r o g r a m s fo r re m o v in g fo r m w o rd s a n d le m m a tizin g co n te n t w o rd s s o fa r o n ly e x ist in S w ed ish v ersion s. T h e y are a set o f L isp p ro ce d u re s ru n n in g o n P C s . F o r th e p u r p o s e o f d e m o n s tr a tio n , I", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF5": { |
|
"text": "A a n d all e x a m p le s b e lo w are taken fro m th a t te x t. A p p e n d ix B co n ta in s th ree s h o rte r S w edish te x ts a n d A p p e n d ix C th eir resp e ctiv e g ra p h s. T h e s e h a v e b e e n p r o d u c e d in a w h o lly a u to m a tic a l w a y as sp ecifie d in th e a lg o rith m . T h e rem ov a l o f fo r m w o rd s is, as sta te d a b o v e , s im p ly d o n e b y r e m o v in g all w ord s o n a p re -sp e cified list fr o m th e te x t. L e m m a tiz a tio n is n o r m a lly a fa r fr o m triviaJ p r o c e s s , b u t ca n in th is c o n n e c tio n b e d o n e in a sim p lified m a n n er. T h e te x t, d e v o id o f its fo r m w o rd s, is tre a te d as a w o r d list a n d s o rted a lp h a b e t ica lly . W o r d s th a t sta rt in a sim ila r w a y a re c o m p a r e d as t o th eir en d in g s. I f tw o w o rd s axe id e n tic a l a ll th e w ay, th e y cle a rly b e lo n g to g e th e r. I f th e p arts w h e re th e y d iffer b e lo n g t o th e p re -d e fin e d set o f en d in g s, th e y are a lso regarded as b e lo n g in g to g e th e r . T h is m a tc h in g ca n b e d o n e in m o r e o r less so p h istica te d w a y s. E ith e r th e p a irs o f m a tc h e d en d in g s m u st sign al th e sa m e p a rt-o f-sp e e ch a n d b e m o r p h o lo g ic a lly c o n n e c te d , as w h en b erry a n d b erries fo r m a lem m a b err w ith m a tc h in g e n d in g s y -ie s . O th erw ise, a n y th in g ' e n d in g lik e' w ill d o, as w h e n fa v o r it e , fa v o r e d a n d fa v ora b le are m a tch e d . A c tu a lly , I th in k th e la tter a lte rn a tiv e , le m m a tiz in g a c r o s s p a r t-o f-s p e e c h b o u n d a rie s, s h o u ld b e p referred , as w e a re p r im a r ily lo o k in g fo r s e m a n tic rela tion s, regardless o f h o w th e y are e x p re sse d . In th is w ay, th e tr u n c a te d stem s (see b e lo w ) th a t rep resen t e 2w:h lem m a c o m e t o refer t o a c o n c e p t m o r e th a n ju s t a w o rd . T h is k in d o f lem m a tiza tio n h as b e e n ca lle d ' r o o t le m m a tiz a tio n ' a n d a lin gu istica lly s o p h is tic a te d w a y o f d o in g it is d e s c r ib e d in F je ld v ig -G o ld e n (1 9 8 4 ). S e m a n tica lly e rro n e o u s le m m a tiz a tio n c a u o f co u rse n o t b e a v o id e d , as w hen la te , w h ich in th e te x t is u sed in th e sen se o f deceased, is le m m a tize d w ith a te m p o r a l la tely. T h is is h o w e v e r n o t su ch a b ig p r o b le m as o n e m ig h t s u s p e ct, as su ch in fe licitio u s p a irin g s ra re ly reeich a fr e q u e n c y w h ere th e y w ill in flu en ce th e o u t c o m e o f th e en tire p r o c e s s . T o s o lv e th e p ro b le m , on th e o th e r h a n d , w o u ld d e m a u d a v e ry la rg e a p p a ra tu s b a se d o n n o t o n ly sem a n tic b u t a lso p ra g m a tic k n o w le d g e . W h a t is left w h en p o s s ib le en d in g s h a v e b e e n rem ov ed is a tru n c a te d stem , w h e re th e tr u n c a tio n p r o c e s s h as so m e tim e s b e e n q u ite b ru ta l. T h e tru n ca te d ste m s ca n n o w b e s o r te d a c c o r d in g t o fr e q u e n c y a n d th o s e b e lo w a certa in level a re re m o v e d . F o r th e sh o rt sa m p le te x t o f tw o ty p e d p a g es, a fre q u e n cy level o f tw o w as s e ttle d . T h is is o f c o u r s e th e m in im a l fre q u e n cy . A fre q u e n cy o f o n e has n o d is c r im in a to r y e ffe ct w h a ts o e v e r , as th o s e lem m a s ca n n ev er o c c u r in m o re th a n o n e p a ir. T h e le m m a s w ith a fr e q u e n c y o f tw o o r m o r e in th e sa m p le te x t axe g iv e n in (2 ). T h e y a re ca lle d in d e x w ords a n d axe sa v ed o n a sepaxate file t o b e m a tc h e d a g a in st th e fu ll te x t in th e n e x t ste p o f th e p ro ce ss. F or a lon g er t e x t, a h ig h e r fr e q u e n c y lev el m ig h t h a v e b e e n p referre d in o rd e r t o lim it th e set o f in d e x w o r d s . T h is is a ty p ic a l in s ta n ce o f b a la n cin g reca ll an d p re cisio n to rea ch a resu lt th a t is fe lt t o b e a d eq u a te.(2) Index words. (Lemmas with frequency > = 2t, a span len g th has to b e se ttle d . T h is d o e s n o t, h o w e v er, seem t o b e c o n n e cte d t o reca ll a n d p re cisio n in th e sa m e w a y as th e fr e q u e n c y lim its. R a th e r , th ere seem s t o b e an o p tim a l sp a n len g th . In cre a sin g o r d e cre a sin g th e sp a n len gth in re la tion t o th e o p tim a l le n g th w ill in c r e a s e /d e c r e a s e reca ll in th e w a y th a t w ou ld b e e x p e c te d , w h ile b o t h in cre a se a n d d e cre a se o f sp a n le n g th , in ter estin g ly e n o u g h , seem t o re d u ce p re cis io n . A n in cre a se in sp a n le n g th w ill g iv e m o re o f a ccid e n ta l a n d th e re b y u n in terestin g c o llo c a t io n s a n d a lso a h ig h er rel a tiv e freq u en cy o f su ch u n in terestin g c o llo c a t io n s a m o n g all c o llo c a t io n s a b o v e th e c r itica l th resh old th a t is t o b e set in ste p 9 o f th e a lg o rith m . A t th e sa m e tim e, in crea sed sp a n le n g th seem s t o g iv e su rp risin g ly fe w n ew ' h its ' , wh ile th e o ld h its ru n a risk o f b e in g o u tn u m b e r e d b y th e n ew a c c id e n ta l c o llo c a tio n s . A d e crea se in spcin le n g th w ill rem ov e m a n y w a n ted c o llo c a tio n s , w h ile th e re la tiv e p r o p o r tio n o f h its a m o n g th e rem a in in g c o llo c a tio n s w ill n o t in crea se. A n y v ari a tion o f th e sp a n le n g th th u s seem s t o g iv e a r e d u ce d p r o p o r tio n o f se m a n tica lly sign ifican t c o llo c a tio n s . T h is is, h ow ev er, o n ly s u b je c tiv e im p ressio n s fr o m sm a llsca le tests w ith v a ry in g sp a n len g th . S im ila r resu lts h a v e b e e n re a ch ed b y o th e rs (S in cla ir e t al. 1970, referred in P h illip s 1 9 8 5 ), a n d h a v e led t o e sta b lish in g a span len g th o f fo u r o r th o g r a p h ic w o rd s as o p tim a l. T h is is a p o in t th a t w o u ld deserve a m o re th o r o u g h in v e stig a tio n . It p r o b a b ly has so m e th in g t o d o w ith th e n o rm a l size o f c o m m o n c o n s tr u c tio n s : m o d ifie r a n d n ou n w ill a lm o st a lw a y s a p p e a r w ith in less th a n fo u r w o r d s d is ta n ce , as w ill m o s tly s u b je c t -v e rb a n d v e rb -o b je c t , w h ile e. g. m o re p erip h e ra l a d v erb ia ls w ill n o t o c c u r th a t clo se t o th e n ex u s p a rt o f th e sen ten ce.", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF6": { |
|
"text": "d t o th e o p tim a l 4. T h e o rig in a l te x t, in clu d in g fo r m w o rd s, is sea rch e d fo r o c c u r e n c e s o f th e (t r u n c a te d ) stem s o f th e in d e x w ord s. W h e n e v e r a w o r d c o n ta in in g su ch a stem is fo u n d , a span o f fo u r w o rd s is sca n n e d fo r m o r e o c c u r e n c e s o f (ste m s o f ) in d e x w o rd s. I f a n y are fo u n d , th e re su ltin g p a irs are s to r e d a n d th e search g o e s on . In (3 ) a cla u s e fr o m th e te x t is g iv en w ith all in d e x w o rd s ca p ita liz e d . (3 ) T H O U S A N D S OF A C R E S ARE N E W l y P L A N T E D EACH Y E A R IN A DOZEN OR MORE C O U N T R I E S , . . . H ere, th ou sa n d c o llo c a t e s w ith a cre a n d n e w , b u t n o t w ith p la n t. A c r e c o l lo c a t e s w ith n ew a n d p la n t, n ew w ith p la n t an d y e a r , emd p la n t w ith yea r. C o u n tr h as n o c o llo c a t io n s in th is in sta n ce . T h e in tern a l o r d e r o f th e c o llo c a tio n a l p a irs is o f n o im p o r ta n c e , s o th e stem s w ith in e a ch p a ir ^lre s tored in a lp h a b e tic a l o r d e r . T h e p a irs a re th en s o r te d a lp h a b e tic a lly a n d th e freq u en cy o f e a ch c o llo c a t io n a l p a ir is ca lc u la te d . T h e n e x t s te p is a g a in t o d e c id e o n a low est freq u en cy , th is tim e o f c o llo c a tio n a l pa irs. T h is d e cis io n g o v e rn s w h ich p a irs, an d c o n s e q u e n tly w h ich lem m as, a re t o b e re g a rd e d as rep re se n ta tiv e o f th e co n te n t o f th e te x t. A s th is has such g r e a t im p a c t o n th e o u t p u t , it m a y w ell b e th a t it sh o u ld b e p o s s ib le to vary th e fr e q u e n c y th r e s h o ld fo r c o llo c a t io n a l p a irs in tera ctiv ely , in o r d e r t o fa cilita te clo s e r in s p e c tio n o f in tere stin g fin d in g s. A w a y o f m a k in g exp^lnsions o f th e sets o f le m m a s a n d re la tio n s w ill b e d e s c r ib e d b e lo w . In (4 ) , all c o llo c a tio n a l p a irs w ith a fre q u e n cy eq u a l t o o r a b o v e 2 in th e s a m p le te x t axe g iv e n in a lp h a b e tic a l o rd e r. id e a is th a t th is c a n g iv e a m o r e o r less a c c u r a te p ictu re o f c o n c e p ts a n d re la tio n s th a t a re ce n tra l t o th e te x t, a t lea st in th e sen se th a t th e y sh ow a h ig h freq u en cy . M o s tly , th is is su flicien t t o p r o v id e a h in t a b o u t w h a t th e te x t is a b o u t. In s o m e ca se s th e re m a y h o w e v e r b e a n eed fo r en la rg in g th e b a sis o f th e r e p re se n ta tio n . T h is c a n b e d o n e b y s e ttin g a lo w e r m in im a l fre q u e n cy level fo r lem m a s o r c o llo c a t io n a l p a irs o r b o t h , b u t th is m ea n s re d oin g p a rts o f th e p r o c e s s in g . A b e tt e r w a y c a n b e t o u se a set o f e x p a n s io n o p e r a tio n s as defin ed b e lo w .", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF7": { |
|
"text": "Expansions P r i m a r y c o n c e p t s : th e lem m a s o c c u r in g in th e p a irs o rig in a lly p ick ed o u t b y th e a lg o r ith m .F i r s t e x p a n s i o n : all c o llo c a t io n s b etw e en p rim a ry c o n c e p ts . S e c o n d e x p a n s i o n : all o th e r lem m a s c o llo c a t in g w ith p r im a r y c o n c e p ts . T h is g ives th e set o f s e c o n d a r y co n c e p ts . T h i r d e x p a n s i o n : all c o llo c a t io n s b e tw e e n s e c o n d a r y c o n c e p ts .F o u r t h e x p a n s i o n : a ll le m m a s c o llo c a t in g w ith s e c o n d a r y c o n c e p ts . E t c .T h e s e c o n d a n d fo u r th (g e n e ra lly : all e v e n ) e x p a n sio n s are ' o p e n in g ' e x p a n sion s, as th e y b r in g in n ew c o n c e p ts . T h e first a n d th ird(^lnd all o d d ) e x p a n sio n s are ' c lo s in g ' , as th e y e sta b lish rela tio n s b etw ee n e x is tin g c o n c e p ts a n d m a k e th e c o r r e s p o n d in g g ra p h m o re clo s e ly k n it. In (6 ) b e lo w , w e see fo r ea ch o f th e p rim a ry c o n c e p ts th e c o llo c a tio n s it en ters: a ) w ith o th e r p rim a ry c o n c e p ts a n d w ith a fr e q u e n c y a b o v e th e m in im a l level; b ) w ith o th e r p rim a ry c o n c e p ts b u t w ith a fr e q u e n c y b e lo w th e m in im a l level (first e x p a n s io n ); c ) all c o llo c a tio n s b etw e en p rim a ry c o n c e p ts a n d o th e r le m m a s fro m th e set o f in d e x w o rd s (s e c o n d e x p a n s io n ). T o c o n s tr u c t all in te rrela tion s betw een all th o s e item s w o u ld in its tu rn g iv e th e th ird e x p a n sio n . F rom (6 ) w e ca n a lso see th a t a n o th e r ch a r a c te r is tic o f th e c o llo c a tio n s is th eir a b ility t o d e lim it th e in te rp re ta tio n o f p o ly s e m o u s w o rd s. T h e p a irs th a t a w o rd ca n en ter w ill o fte n sign al th e s p e c ific m e a n in g in w h ich th e w o r d is u sed in a p a rticu la r te x t. T h is is n o t s o strik in g in th is te x t as in s o m e o th e rs, b u t lo o k in g a t e g g reen w e w ill see th a t w e h a v e t o d o w ith th e gre en o f fru it, n o t th a t o f g reen p a in t, a n d co m m e r c ia l d o e s n o t d ir e c t ly refer t o e. g. b a n k in g , b u t t o co m m e rcia l a sp e cts o f g ro w in g fru it. (6 ) C o l l o c a t i o n a l p a i r s w i t h f r e q u e n c i e s : a ) p r i m a r y c o n c e p t s , b ) FIRST EXPANSION, C ) SECOND EXPANSION", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF8": { |
|
"text": "B o t h (4 ) a n d (6 ) c a n , as sa id b e fo r e , g iv e hin ts a b o u t th e co n te n t o f te x ts if th e lists a re in te r p r e te d b y a n o r m a lly in v e n tiv e h u m an b e in g . A g ra p h ic repre se n ta tio n o f th e sa m e fa c ts seem s, h ow ev er, t o b e m o re strik in g a n d t o fa cilita te in feren ce m a k in g .T o p r o c e e d t o th is, a set o f a d ja c e n c y lists is c o n s tr u c te d o n th e basis o f (4 ). T h e a d ja c e n c y lists fo r m th e in p u t t o th e g ra p h -d r a w in g p r o g r a m , w h ere eaeh le m m a w ill c o r r e s p o n d t o a n o d e in th e g ra p h . In a n a d ja c e n c y list, eaeh lem m a , i. e. each n o d e , is g iv e n a list o f all its im m e d ia te ly a d ja ce n t n o d e s. T h is w ay, each c o llo c a tio n a l p a ir w ill b e rep resen ted tw ice , c o r r e s p o n d in g t o th e tw o p o ssib le d ire ctio n s o f th e a rc b etw een th e n o d e s. T h e g ra p h s resu ltin g fr o m this sy ste m are h ow e v er u n d ire cte d . It w o u ld b e p o s s ib le to h a v e w eig h ted a rcs in th e g ra p h , c o r r e s p o n d in g t o th e freq u en cies o f c o llo c a tio n a l p a irs, b u t th is has n o t been im p le m e n te d in th e p resen t sy ste m . T h e a d ja c e n c y lists d e riv e d fr o m (4 ) are sh ow n in (7 ). (7) A djacency lists k iw ifru it(I, b err, co m m e r c ia l, d e v e lo p ) b e rr(k iw ifru it) co m m e r c ia l(k iw ifr u it) d e v e lo p (k iw ifru it) last step in th e a lg o rith m is th e d ra w in g o f a g ra p h . A u t o m a t ic d ra w in g o f g ra p h s b y m ean s o f a c o m p u te r is a d e m a n d in g ta sk , e s p e c ia lly i f th e w o rk , as in th e presen t ca se, is to b e d o n e o n a P C . W e h ave, h ow ev e r, b e e n a b le t o fin d a s a tis fa c to r y solu tion . T h e p ro g ra m co n sists o f tw o m a in p a rts. T h e first o n e fin d s th e areas an d su b a rea s th a t to g e th e r b u ild u p th e g ra p h . It tries t o a v o id cro s s in g a rcs, b u t if th a t is n o t p o s s ib le , th e p ro g ra m fin d s th e b e s t p la ce s t o a d d ' p s e u d o -n o d e s ' , i. e. crossin g s. Its o u tp u t is a ' ro a d d e s c r ip t io n ' o f th e g ra p h . T h e s e c o n d p a rt o f th e p ro g ra m p e rfo rm s th e c o m p u ta tio n a lly h e a v y ta sk o f a c tu a lly d ra w in g th e g ra p h , la y in g it o u t n ice ly o n th e screen o r in a file th a t ca n b e s to r e d o r p rin te d o u t o n p a p er. T h e first p a rt o f th e p r o g r a m w as o rig in a lly w ritte n b y B o r is P r o c h a s k a as a p a rt o f his e x a m in a tio n a t th e R o y a l In stitu te o f T e c h n o lo g y in S to c k h o lm (P ro ch a sk a 1 9 8 8 ), a n d th e s e c o n d p a rt w as w ritte n b y S te n -E rik B e rg n e r, w h o w as B o r is ' su p e rv iso r d u rin g his e x a m in a tio n j o b at E ricsso n T e le c o m . T h e ir v ersion o f th e p ro g ra m is w ritte n in P S L -L is p a n d h a d to b e re w ritte n in G C -L isp , a su b set o f C o m m o n L isp , fo r use o n P C s . T h is n o n -tr iv ia l j o b has b ee n u nd erta ken b y S une M a g n b e r g , w h o se p r o g r a m m in g skills, earlier k n o w le d g e o f g ra p h th eory, a n d g e n era l c o m b in a tio n o f in ven tiven ess a n d p a tie n ce , m a d e th e j o b o f tr a n s p o r tin g th e ' p o r t a b le ' L isp p o ssib le .", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
}, |
|
"FIGREF9": { |
|
"text": "Linguistics -Reykjav(k 1989 t o h a v e s tr o n g c o n n e c tio n s t o w h a t th e te x t is a b o u t. T h e g ra p h th a t, b y m eans o f th e d e s c r ib e d s y s te m , ca n b e a u to m a tic a lly d eriv e d fr o m th e te x t in A p p e n d ix A is sh o w n in (8 ) , w h ile (9 ) is th e first e x p a n sio n o f th a t g ra p h (c f. (5 )). s e g ra p h s s u p p o r t in p r in cip le th e sa m e in fe ren ce s as d id th e lists o f p a irs, b u t in a n ea ter way. T h e k in d o f re la tio n s th a t are sig n a lled b y th e a rcs varies co n sid e ra b ly a n d is left t o th e h u m an u ser t o gu ess-a t th e risk o f m a k in g m istakes. A v e ry n a tu ra l q u e s tio n t o ask is w h eth er all th is a p p a ra tu s giv es a n y th in g m o re th a n w o u ld a sim p le list o f h ig h -fr e q u e n c y w o rd s.M y im p re ssio n is th a t it d o e s. B e lo w is a list o f th e 9 m o st freq u en t le m m a tiz e d c o n te n t w o r d s in th e te x t, all lem m a s w ith a fr e q u e n c y o f 4 o r h ig h er. T h e list s h o u ld b e c o m p a r e d to th e w o rd s o f th e a d ja c e n c y lists, (7 ), a n d t o th e fu ll te x t in A p p e n d ix A . (10) Content words from K iwi-t e x t , lemmatized and sorted ac cording it, N ew .Z ea la n d , b erry / ies, a n d / are a lso rep resen ted a m o n g th e eigh t lem m a s p ick ed o u t b y th e g r a p h -c o n s tr u c tin g a lg o rith m a n d th e g ra p h clea rly sh ow s th eir cen tra lity . T h e g ra p h a lso sh o w s c o m m e r c ia l a n d d e v e lo p m e n t as h ig h ly ce n tra l, w h ile th e d e s c r ip tio n s g reen a n d fle s h are sh ow n t o b e s o m e w h a t less cen tra l. T h e p u re fre q u e n cy sta tis tics , h ow ev e r, has it th a t sh ip / p in g, C h in e s e , a n d lem o n are q u ite as im p o r ta n t as m a r k e t a n d v in e . B u t th e a rticle (in A p p e n d ix A ) is c e rta in ly n o t a b o u t th e s h ip p in g o f C h in ese le m o n s, it is a s u b je c tiv e ly c o lo r e d b o a s tin g a b o u t th e c o m m e r c ia l su cce ss o f k iw ifru it a n d all th a t th is h as m ea n t t o N e w Z e a la n d , in te rsp erse d w ith ly r ic b u rsts a b o u t th e lo o k a n d ta ste o f th e berry . T h e r e is n o d o u b t th a t th is is m o r e c le a rly sig n a lle d b y th e g ra p h th a n b y th e fre q u e n cy list, a lth o u g h b o t h r e p re se n ta tio n s n eed a g o o d d ea l o f h u m an in feren ce m a k in g t o b e a d d e d . T h e resu lts h a v e n o t y e t b e e n in d e p e n d e n tly e v a lu a ted , b u t th e m e t h o d has b een a p p lie d t o several S w edish tex ts . T h r e e sh o rt S w edish te x ts a re sh o w n in A p p e n d ix B a n d th eir c o r r e s p o n d in g g ra p h s in A p p e n d ix C . O n e v e r y in tere stin g fin d in g is th a t th e m e t h o d seem s t o b e u tte rly im p o s s ib le o n lite r a r y te x ts , b u t o k e y o n oth e rs. W h y th is is s o is s o m e th in g th a t has t o b e in v e stig a te d m o re closely. It m ust a lso b e in v estig a ted fo r w h ich te x t ty p e s th e m e t h o d is b e s t su ite d an d u n d er w h a t circu m s ta n c e s it ru n s a risk o f b e in g serio u sly m islea d in g . A n o th e r step w o u ld b e t o try th e m e th o d u n d er rea listic cir c u m s ta n c e s in c o n n e c tio n w ith in fo rm a tio n retrieval. T h e id e a is s o m e th in g like th is: T h e u ser sits a t a term in a l a n d ty p e s in a sea rch q u e s tio n , eith e r in n a tu ra l la n g u a g e , in w h ich ca se it has t o b e p a rsed , o r as a set o f k ey w o rd s w ith o r w ith o u t B o o le a n o p e r a to r s . T h e k ey w o rd s are th en m a tch e d a g a in st g ra p h s th a t h ave b e e n p re v io u s ly d e riv e d fr o m th e te x ts in th e d a ta b a se to b e search ed. I f th e se a rch q u e stio n w as in n a tu ra l la n g u a g e, th e p resen ce o f in terrela tion s b etw een k e y w o r d s ca n a ls o b e ch e ck e d . A m ea su re fo r w h en a g ra p h is ' sa tisfa ctorily s im ila r' t o th e in fo r m a tio n d e riv e d fr o m th e search q u e stio n m ust b e defined. N e x t, o n e se le cte d g ra p h a t a tim e w ill b e sh o w n o n th e screen a n d th e user can c h o o s e i f s h e /h e w a n ts t o h a v e th e fu ll te x t. In d o u b tfu l ca se s it m a y b e p ossib le t o g e t o n e o r m o r e o f th e e x p a n sio n s in o r d e r t o g et a b r o a d e r basis fo r decision s. T h e sea rch c a n a ls o b e c a rrie d o u t in su ch a w a y th a t g ra p h s th a t are ju d g e d as relevan t c a n b e u sed fo r d e r iv in g n ew , c o n jo in e d gra p h s. I f th e se id e a s ca n b e d e v e lo p e d t o w o rk w ell, th e p r a c tic a l usefulness o f the c o n te n t g ra p h s is clea r, b u t a m o n g th e m o st th rillin g q u e stion s are w h y th e m e t h o d w o rk s w h en it w ork s, a n d w h y it d o e s n 't w ork w h en it d o e s n 't. T h is is as y e t fa r fr o m clea r.", |
|
"uris": null, |
|
"num": null, |
|
"type_str": "figure" |
|
} |
|
} |
|
} |
|
} |