{ "paper_id": "W98-0136", "header": { "generated_with": "S2ORC 1.0.0", "date_generated": "2023-01-19T06:04:33.608503Z" }, "title": "On Defining TALs with Logical Constraints", "authors": [ { "first": "James", "middle": [], "last": "Rogers", "suffix": "", "affiliation": { "laboratory": "", "institution": "Univ. of Central Florida", "location": {} }, "email": "" } ], "year": "", "venue": null, "identifiers": {}, "abstract": "", "pdf_parse": { "paper_id": "W98-0136", "_pdf_hash": "", "abstract": [], "body_text": [ { "text": "\u2022rn Rogers (1997b) we introduced a new dass of models, three-dimensional tree manifolds (3-TM), that can serve as both thc derived and clerivation structures for TAGs in the same way that trees serve as both clerived and derivation structures for CFGs. The1->e tree-manifolds are higher-dimensional analogs of trees; in a 3-Tl'v! the children of a node form an o~\u2022dinary (two-dimensional) tree just as in ordinary tree1-> the children of a node form a string. From t.his point of view the elementary struct.ures of a TAG can bc interpretcd as labeled local 3-Tl\\faa root node and it.s set of children (a pyramidal structure)-analogous to the interpretation of the rewrite rules of a CFG as local trees. Adjunction in TAGs and substitntion in CFGs both rcduce to a form of concatcnation, of local trees in CFGs, of local 3-TMs in TAGs. In Figure 1 , for examplc, the local 3-Tl\\'1s corresponding to the elementary trees o 1 aud \u00df 1 are concatenated to form the 3-TM corresponding to the result of adjoining \u00df 1 into 0:1. The two-dimcnsional yicld of this structure is the corresponding derivcd tree and its onc-dimensional yield is the derived string. This analogy can be extended downward to encompass the regular languagcs and upward generating thc control lnnguage hierarchy of Vijay-Shanker et al. (1987 ), \\Veir (1988 , Weir (1992) . And it turns out. to be quite deep . Thc ordinary finite-state aut.omata (over strings-the one-dimensional level) atcepting the regular languages become, at the twodimensional levcl, the tree-aut.omata accepting the rec:ognizable sct.s of trees. The corresponding automata ovcr 3-TM turn out to accept exactly the sets of t.rec manifolds that. are gcneratcd by TAGs (with adjoining constraints) modulo a relaxation of the usual requircment that the root. and foot of an aux-i1iary Lr~e be labeled identically to euch other and to the ~1ode at which it adjoins. {\\Ve rcfer to these sets as thc recognizable sets of three-dimensional tree manifolds.) l\\foreover, essentially all of the familiar ant.omat.a-t.heoret.ic proofs of properties of regular languages lift dire.ctly to automata O\\'er treemanifolds of arbitran-dimension-the dimensionalit.\u2022 of t.he st.ruct.urcs 0 is simply a paramct.er of the proof and plays no essential role.", "cite_spans": [ { "start": 4, "end": 18, "text": "Rogers (1997b)", "ref_id": "BIBREF6" }, { "start": 1280, "end": 1306, "text": "Vijay-Shanker et al. (1987", "ref_id": "BIBREF10" }, { "start": 1307, "end": 1321, "text": "), \\Veir (1988", "ref_id": null }, { "start": 1324, "end": 1335, "text": "Weir (1992)", "ref_id": null } ], "ref_spans": [ { "start": 838, "end": 846, "text": "Figure 1", "ref_id": null } ], "eq_spans": [], "section": "", "sec_num": null }, { "text": "In Rogers (1998) we exploit. this regularit.y to obtain results analogous t.o B\u00fcchi's characterization of the regular languages in terms of definability in wSlS (the weak monadic ser:ond-order t.hcory of the natural numbers with successor) (B\u00fcchi, 1960) and Doner's (1970) and Thatcher and Wright's (1968) characterizations of the recognizable sets (of trecs) in terms of definability in wSnS (the weak monadic second-order theory of 11 successor functions-the complete n-branching tree). Thc recognizable sets of 3-TM are cxactly t.he finite 3-TM definable in the weak monadic second-order t.heory of t.he complete n-branching three-dimensional tree manifold, which wc i:efer t.o as wSnT3. This raises t.he prospect of defining TALs through the medium of collcctions of logical constraints expresscd in the signature of wSnT3 rather than with explicit TAGs . In this paper, we introduce this approach and begin t.o cxplore some of its ramifications in t.he contcxt. of TAGs for natural languages.", "cite_spans": [ { "start": 3, "end": 16, "text": "Rogers (1998)", "ref_id": "BIBREF7" }, { "start": 240, "end": 253, "text": "(B\u00fcchi, 1960)", "ref_id": null }, { "start": 258, "end": 272, "text": "Doner's (1970)", "ref_id": null }, { "start": 277, "end": 305, "text": "Thatcher and Wright's (1968)", "ref_id": "BIBREF8" } ], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "Rat.her than work in wSnT3 dircctly, we work with an equivalent class of struct.ures t.hat is linguistically more natural. A Labcled Headed Finite 3-TM is a structure:", "cite_spans": [], "ref_spans": [], "eq_spans": [], "section": "", "sec_num": null }, { "text": "where T is a rooted, connected, finite subset. of the complete n-branching 3-TM (for somc n); <1; is immediate domination, s t.lw linguist.ic thcory being expressed from thc 11wchanical det.ails of the grammar formalism exprnssing it.-in t.his rcspect. there is a strong par-allcript.ivc charnct.crizatiou of trec-adjoining language!i", "authors": [ { "first": "James", "middle": [], "last": "Rogers", "suffix": "" } ], "year": 1998, "venue": "To Appr.m\u2022: COLING-A CL '98. Project. Note", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "James Rogers. 1998. A cle:->cript.ivc charnct.crizatiou of trec-adjoining language!i. In To Appr.m\u2022: COLING- A CL '98. Project. Note .", "links": null }, "BIBREF8": { "ref_id": "b8", "title": "Geueralized finite automata theory with an application t.o a decision problem of sccond-ordcr !ogic", "authors": [ { "first": "\u2022", "middle": [ "J W" ], "last": "Thatcher", "suffix": "" }, { "first": "J", "middle": [ "B" ], "last": "Wright", "suffix": "" } ], "year": 1968, "venue": "Mathcmatical Systems Theory", "volume": "2", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "\u2022 J. W. Thatcher and J. B. Wright. 1968. Geueralized fi- nite automata theory with an application t.o a decision problem of sccond-ordcr !ogic. Mathcmatical Systems Theory, 2.", "links": null }, "BIBREF9": { "ref_id": "b9", "title": "St.ructure sharing in lexicalizcd t.ree-adjoining grammars", "authors": [ { "first": "K", "middle": [], "last": "Vi", "suffix": "" }, { "first": "Yve", "middle": [], "last": "Ia.V-Shanker", "suffix": "" }, { "first": "", "middle": [], "last": "Schabes", "suffix": "" } ], "year": 1992, "venue": "Proceedings COLING '92", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "K. Vi.ia.v-Shanker and Yve.~ Schabes. 1992. St.ructure sharing in lexicalizcd t.ree-adjoining grammars. In Proceedings COLING '92.", "links": null }, "BIBREF10": { "ref_id": "b10", "title": "On the progression from context-free t.o the tree adjoining lauguages", "authors": [ { "first": "K", "middle": [], "last": "Vijay-Shanker", "suffix": "" }, { "first": "David", "middle": [ "J" ], "last": "Wcir", "suffix": "" }, { "first": "Arnvincl", "middle": [ "K" ], "last": "Joshi", "suffix": "" } ], "year": 1987, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "K Vijay-Shanker, David .J . Wcir, and Arnvincl K. Joshi. 1987. On the progression from context-free t.o the tree adjoining lauguages. In A. l\\'Iana.~t. r.r-Rarner, editor, Ma.thematics of Languagr. . . lohn Benjamins.", "links": null }, "BIBREF11": { "ref_id": "b11", "title": "l!J88. Cltarncte1izi11. 'l Mildly Cnntext\u2022 Sensitive Grammar Fon11nlisms. Ph.D. t.he.~is, University of Pennsylvania", "authors": [ { "first": "David", "middle": [ "J" ], "last": "Weir", "suffix": "" } ], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "David J. Weir. l!J88. Cltarncte1izi11. 'l Mildly Cnntext\u2022 Sensitive Grammar Fon11nlisms. Ph.D. t.he.~is, Uni- versity of Pennsylvania.", "links": null }, "BIBREF12": { "ref_id": "b12", "title": "A geomct.ric hierarchy bcyond context-frec languages", "authors": [ { "first": "David", "middle": [ "J" ], "last": "Wcir", "suffix": "" } ], "year": 1992, "venue": "The01-e.tical Cnm1mte.r Science", "volume": "104", "issue": "", "pages": "235--261", "other_ids": {}, "num": null, "urls": [], "raw_text": "David J. Wcir. 1992. A geomct.ric hierarchy bcyond context-frec languages. The01-e.tical Cnm1mte.r Sci- ence, 104:235-261.", "links": null }, "BIBREF13": { "ref_id": "b13", "title": "of the theoretical approach ma.v hc t.hought of as a c:ompiler technology issue", "authors": [], "year": null, "venue": "", "volume": "", "issue": "", "pages": "", "other_ids": {}, "num": null, "urls": [], "raw_text": "of the theoretical approach ma.v hc t.hought of as a c:ompiler technology issue.", "links": null } }, "ref_entries": { "FIGREF0": { "uris": null, "type_str": "figure", "text": "can add the re-entrancy tags: (b : assign-case = t : assign-case)(11p, 11)/\\ (b : assign-case = t : assign-case)(s\", \u2022up)/\\ (b: assign-case = t.: casc)(8ri np 0 )/\\ (t. = t)(s,sr).", "num": null }, "FIGREF1": { "uris": null, "type_str": "figure", "text": "Case assignment. in XTAG.", "num": null }, "FIGREF2": { "uris": null, "type_str": "figure", "text": "Governs(:1:, y) = (a:-;sig11-rn:;~) (:1:)/\\ (3z )(z