--- license: mit task_categories: - time-series-forecasting language: - en size_categories: - n<1K --- # Timeseries Data Processing This repository contains a script for loading and processing timeseries data using the `datasets` library and converting it to a pandas DataFrame for further analysis. ## Dataset The dataset used in this example is `Weijie1996/load_timeseries`, which contains timeseries data with the following features: - `id` - `datetime` - `target` - `category` ## Requirements - Python 3.6+ - `datasets` library - `pandas` library You can install the required libraries using pip: ```sh pip install datasets pandas ``` ## Usage The following example demonstrates how to load the dataset and convert it to a pandas DataFrame. ```python import datasets import pandas as pd # Load the dataset ds = datasets.load_dataset("Weijie1996/load_timeseries", split="train") # Convert the dataset to a pandas DataFrame df = ds.to_pandas() # Display the first few rows of the DataFrame print(df.head()) # Optional: Display basic info about the DataFrame print(df.info()) print(df.describe()) ``` ## Output ``` data id datetime target category 0 NL_1 2013-01-01 00:00:00 0.117475 60m 1 NL_1 2013-01-01 01:00:00 0.104347 60m 2 NL_1 2013-01-01 02:00:00 0.103173 60m 3 NL_1 2013-01-01 03:00:00 0.101686 60m 4 NL_1 2013-01-01 04:00:00 0.099632 60m ```