File size: 3,194 Bytes
b780ea1 0df702e 468f7c1 0df702e 82eb87c 3fb4313 e6c984b 3fb4313 0df702e e7d70ad 28f9673 e0c7c4e 0df702e e7d70ad b780ea1 468f7c1 634fe71 4cfb89e a416f75 4cfb89e 173b31b a1acef4 173b31b 99a2f33 a1acef4 99a2f33 468f7c1 3c937d9 8252698 78e3ee5 205fb62 78e3ee5 82eb87c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
language:
- en
license: mit
size_categories:
- 10M<n<100M
task_categories:
- feature-extraction
pretty_name: AnyPattern
tags:
- croissant
dataset_info:
features:
- name: Pattern
dtype: string
- name: Elaboration
dtype: string
- name: Demo_1
dtype: image
- name: Demo_2
dtype: image
- name: Demo_3
dtype: image
- name: Demo_4
dtype: image
splits:
- name: Base
num_bytes: 22749079.0
num_examples: 91
- name: Novel
num_bytes: 3238945.0
num_examples: 11
download_size: 25876361
dataset_size: 25988024.0
configs:
- config_name: default
data_files:
- split: Base
path: data/Base-*
- split: Novel
path: data/Novel-*
---
The dataset proposed in our paper "[AnyPattern: Towards In-context Image Copy Detection](https://arxiv.org/pdf/2404.13788.pdf)".
Please go to [Github](https://github.com/WangWenhao0716/AnyPattern) for the code about how to use this dataset.
Here, we show how to **download** this dataset.
# anypattern_v31
```
for letter in {a..z}; do
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/train/anypattern_v31_part_a$letter
done
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/train/anypattern_v31_part_ba
cat anypattern_v31_part_a{a..z} anypattern_v31_part_ba > anypattern_v31.tar
tar -xvf anypattern_v31.tar
```
# original_images
```
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/original/train_{0..19}.zip
for z in train_*.zip; do unzip $z; done
mv images/train original_images
```
# reference_images
```
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/reference/references_{0..19}.zip
for z in references_*.zip; do unzip $z; done
mv images/references reference_images
```
# query_k1_10_v2_test
```
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/query/query_k1_10_v2_test.tar
tar -xvf query_k1_10_v2_test.tar
```
# query_k1_10_v2_support_select10
```
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/query/query_k1_10_v2_support_select10.tar
tar -xvf query_k1_10_v2_support_select10.tar
```
# query_k1_10_v2_support_ori_select10
```
wget https://huggingface.co/datasets/WenhaoWang/AnyPattern/resolve/main/query/query_k1_10_v2_support_ori_select10.tar
tar -xvf query_k1_10_v2_support_ori_select10.tar
```
# After downloading and unzipping all these files, we should have such a directory:
```
/path/to/
anypattern_v31/
anypattern_v31/
0_0.jpg
0_1.jpg
...
original_images/
T000000.jpg
T000001.jpg
...
reference_images/
R000000.jpg
R000001.jpg
...
query_k1_10_v2_test/
...
query_k1_10_v2_support_select10/
...
query_k1_10_v2_support_ori_select10/
...
```
# Citation
```
@inproceedings{
wang2024AnyPattern,
title={AnyPattern: Towards In-context Image Copy Detection},
author={Wang, Wenhao and Sun, Yifan and Tan, Zhentao and Yang, Yi},
booktitle={arXiv preprint arXiv:2404.13788},
year={2024},
}
```
# Contact
If you have any questions, feel free to contact [Wenhao Wang](https://wangwenhao0716.github.io/) ([email protected]). |