|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The SemEval2015 Task12 Reviews Corpus""" |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{pontiki2015semeval, |
|
title={Semeval-2015 task 12: Aspect based sentiment analysis}, |
|
author={Pontiki, Maria and Galanis, Dimitrios and Papageorgiou, Harris and Manandhar, Suresh and Androutsopoulos, Ion}, |
|
booktitle={Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015)}, |
|
pages={486--495}, |
|
year={2015} |
|
} |
|
""" |
|
|
|
_LICENSE = """\ |
|
Please click on the homepage URL for license details. |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
A collection of SemEval2015 specifically designed to aid research in Aspect Based Sentiment Analysis. |
|
""" |
|
|
|
_CONFIG = [ |
|
|
|
"restaurants", |
|
|
|
"laptops" |
|
] |
|
|
|
_VERSION = "0.0.1" |
|
|
|
_HOMEPAGE_URL = "https://alt.qcri.org/semeval2015/task12/index.php?id=data-and-tools/" |
|
_DOWNLOAD_URL = "https://raw.githubusercontent.com/YaxinCui/ABSADataset/main/SemEval2015Task12Corrected/{split}/{domain}_{split}.xml" |
|
|
|
|
|
class SemEval2015Task12RawConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for SemEval2015Config.""" |
|
|
|
def __init__(self, _CONFIG, **kwargs): |
|
super(SemEval2015Task12RawConfig, self).__init__(version=datasets.Version(_VERSION, ""), **kwargs), |
|
self.configs = _CONFIG |
|
|
|
|
|
class SemEval2015Task12Raw(datasets.GeneratorBasedBuilder): |
|
"""The lingual Amazon Reviews Corpus""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SemEval2015Task12RawConfig( |
|
name="All", |
|
_CONFIG=_CONFIG, |
|
description="A collection of SemEval2015 specifically designed to aid research in lingual Aspect Based Sentiment Analysis.", |
|
) |
|
] + [ |
|
SemEval2015Task12RawConfig( |
|
name=config, |
|
_CONFIG=[config], |
|
description=f"{config} of SemEval2015 specifically designed to aid research in lingual Aspect Based Sentiment Analysis", |
|
) |
|
for config in _CONFIG |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = SemEval2015Task12RawConfig |
|
DEFAULT_CONFIG_NAME = "All" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{'text': datasets.Value(dtype='string'), |
|
'opinions': [ |
|
{'category': datasets.Value(dtype='string'), |
|
'from': datasets.Value(dtype='string'), |
|
'polarity': datasets.Value(dtype='string'), |
|
'target': datasets.Value(dtype='string'), |
|
'to': datasets.Value(dtype='string')} |
|
], |
|
'domain': datasets.Value(dtype='string'), |
|
'reviewId': datasets.Value(dtype='string'), |
|
'sentenceId': datasets.Value(dtype='string') |
|
} |
|
), |
|
supervised_keys=None, |
|
license=_LICENSE, |
|
homepage=_HOMEPAGE_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_urls = [_DOWNLOAD_URL.format(split="train", domain=config) for config in self.config.configs] |
|
dev_urls = [_DOWNLOAD_URL.format(split="trial", domain=config) for config in self.config.configs] |
|
test_urls = [_DOWNLOAD_URL.format(split="test", domain=config) for config in self.config.configs] |
|
|
|
train_paths = dl_manager.download_and_extract(train_urls) |
|
dev_paths = dl_manager.download_and_extract(dev_urls) |
|
test_paths = dl_manager.download_and_extract(test_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"file_paths": train_paths, "domain_list": self.config.configs}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"file_paths": dev_paths, "domain_list": self.config.configs}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"file_paths": test_paths, "domain_list": self.config.configs}), |
|
] |
|
|
|
def _generate_examples(self, file_paths, domain_list): |
|
row_count = 0 |
|
assert len(file_paths)==len(domain_list) |
|
|
|
for i in range(len(file_paths)): |
|
file_path, domain = file_paths[i], domain_list[i] |
|
semEvalDataset = SemEvalXMLDataset(file_path, domain) |
|
|
|
for example in semEvalDataset.SentenceWithOpinions: |
|
|
|
yield row_count, example |
|
row_count += 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
from xml.dom.minidom import parse |
|
|
|
class SemEvalXMLDataset(): |
|
def __init__(self, file_name, domain): |
|
|
|
|
|
self.SentenceWithOpinions = [] |
|
self.xml_path = file_name |
|
|
|
self.sentenceXmlList = parse(open(self.xml_path)).getElementsByTagName('sentence') |
|
|
|
for sentenceXml in self.sentenceXmlList: |
|
reviewId = sentenceXml.getAttribute("id").split(':')[0] |
|
sentenceId = sentenceXml.getAttribute("id") |
|
if len(sentenceXml.getElementsByTagName("text")[0].childNodes) < 1: |
|
|
|
continue |
|
text = sentenceXml.getElementsByTagName("text")[0].childNodes[0].nodeValue |
|
OpinionXmlList = sentenceXml.getElementsByTagName("Opinion") |
|
Opinions = [] |
|
for opinionXml in OpinionXmlList: |
|
|
|
target = opinionXml.getAttribute("target") |
|
category = opinionXml.getAttribute("category") |
|
polarity = opinionXml.getAttribute("polarity") |
|
from_ = opinionXml.getAttribute("from") |
|
to = opinionXml.getAttribute("to") |
|
|
|
opinionDict = { |
|
"target": target, |
|
"category": category, |
|
"polarity": polarity, |
|
"from": from_, |
|
"to": to |
|
} |
|
Opinions.append(opinionDict) |
|
|
|
self.SentenceWithOpinions.append({ |
|
"text": text, |
|
"opinions": Opinions, |
|
"domain": domain, |
|
"reviewId": reviewId, |
|
"sentenceId": sentenceId |
|
}) |
|
|