File size: 6,779 Bytes
1433dbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import random
import math

class SimplePolygon:
    pow2 = None

    def __init__(self, file_name, depth_name, tags_name,resolution=(512, 512), init_color=(255, 255, 255)):
        self.file_name = file_name
        self.depth_name = depth_name
        self.tags_name = tags_name
        self.width = resolution[0]
        self.height = resolution[1]
        self.components= [set([(wi, hi) for wi in range(512) for hi in range(512)])]
        self.img1 = np.full((self.width, self.height, 3), np.random.randint(0, 256, size=(3,), dtype=np.uint8), dtype=np.uint8)
        self.img2 = np.zeros([self.width, self.height, 3], dtype=np.uint8)
        self.count = 0
        if self.pow2 is None:
            self.pow2 = [x**2 for x in range(max(resolution[0],resolution[1])+1)]
    def component_check(self, comp):
        retv = set()
        for wi, hi in comp:
            if 0<=wi<self.width and 0<=hi<self.height:
                retv.add((wi, hi))
        return retv
    def components_check(self, components):
        retv = []
        for i in range(len(components)):
            is_contain = False
            for j in range(i+1, len(components)):
                if components[i] <= components[j]:
                    is_contain = True
                    break
            if not is_contain:
                retv.append(self.components[i])
        return retv
    def generate(self):
        # 別の図形に含まれている図形は削除
        self.components = self.components_check(self.components)
        # 画像外の座標は除去
        for i in range(len(self.components)):
            self.components[i]=self.component_check(self.components[i])

        layer = np.zeros_like(self.components, dtype=np.uint16)
        noise = np.zeros(3, dtype=np.int16)
        if random.randint(1, 5)==1:
            noise = np.random.randint(-10, 10, size=(3,), dtype=np.int16)
        for i in range(len(self.components)):
            # ↓に重なってる図形の層+1 のmax
            for j in range(i-1, -1, -1):
                if not self.components[i].isdisjoint(self.components[j]):
                    layer[i]=max(layer[i], layer[j]+1)
            # 色付ける
            color = np.random.randint(0, 255, size=(3,), dtype=np.int16)
            vec = np.random.randint(0, 255, size=(3,), dtype=np.int16)
            ep = np.random.normal(0, 2, size=(2,))
            for wi, hi in self.components[i]:
                self.img1[wi][hi] = np.abs((color + vec * (ep[0] * wi / self.width + ep[1] * hi / self.height)+noise) % 512 - 256).astype(np.uint8)
        # depth画像生成
        self.layer_max = np.max(layer)
        normalized_layer = ( (255 * layer) // self.layer_max).astype(np.uint8)
        for wi in range(self.width):
            for hi in range(self.height):
                for i in range(len(self.components)-1, -1, -1):
                    if (wi,hi) in self.components[i]:
                        self.img2[wi][hi][0] = normalized_layer[i]          
                        self.img2[wi][hi][1] = normalized_layer[i]          
                        self.img2[wi][hi][2] = normalized_layer[i]          
                        break

    def add_rect(self):
        left_top = [random.randint(0, self.width//10*9), random.randint(0, self.height//10*9)]
        poly_width = random.randint(60, self.width//2)
        poly_height = random.randint(60, self.height//2)
        poly = set()
        for wi in range(left_top[0], min(left_top[0]+poly_width, self.width)):
            for hi in range(left_top[1], min(left_top[1]+poly_height, self.height)):
                poly.add((wi, hi))
        self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
        return poly

    def add_ellipse(self):
        center = [random.randint(self.width//10, self.width//10*9), random.randint(self.height//10, self.height//10*9)]
        radius_width = random.randint(60, self.width//4)
        radius_height = random.randint(60, self.height//4)
        poly = set()
        r = radius_width**2 * radius_height**2
        h2 = radius_height**2
        w2 = radius_width**2
        for wi in range(self.width):
            xx = h2 * self.pow2[abs(wi-center[0])]
            if xx > r:
                continue
            for hi in range(self.height):
                if xx + w2 * self.pow2[abs(hi-center[1])] <= r:
                    poly.add((wi, hi))
        self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
        return poly
    def rotate_component(self, comp, rad):
        retv = set()
        for wi, hi in comp:
            new_wi = math.cos(rad)*(wi-self.width/2)-math.sin(rad)*(hi-self.height/2)+self.width/2
            new_hi = math.sin(rad)*(wi-self.width/2)+math.cos(rad)*(hi-self.height/2)+self.height/2
            new_wi = round(new_wi)
            new_hi = round(new_hi)
            for i in range(-1, 2): # -1,0,1
                for j in range(-1, 2):
                    retv.add((new_wi+i, new_hi+j))
        return retv
    def save(self):
        Image.fromarray(self.img1).filter(filter=ImageFilter.GaussianBlur(random.randint(0, 1))).save(self.file_name)
        Image.fromarray(self.img2).save(self.depth_name)
        with open(self.tags_name, "w") as file:
            if self.layer_max is None:
                file.write("")
            else:
                file.write(f"{self.layer_max+1}depth")

    
import uuid
import concurrent.futures
from tqdm import tqdm
import os
import threading



def process_polygon():
    random_uuid = str(uuid.uuid4())
    polygon = SimplePolygon(f"conditioning_images/{random_uuid}.png", f"images/{random_uuid}.png", f"conditioning_images/{random_uuid}.txt")
    for _ in range(random.randint(4, 20)):
        if random.randint(0,1)==0:
            polygon.add_ellipse()
        else:
            polygon.add_rect()
    polygon.generate()
    polygon.save()

def main():
    if not os.path.exists("conditioning_images"):
        os.makedirs("conditioning_images")
    if not os.path.exists("images"):
        os.makedirs("images")
    num_processes = 24 
    total_runs = 21037

    with tqdm(total=total_runs, ncols=80) as pbar:
        with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
            futures = [executor.submit(process_polygon) for _ in range(total_runs)]
            for future in concurrent.futures.as_completed(futures):
                try:
                    result = future.result()
                    pbar.update(1)
                except Exception as e:
                    print(f"Error occurred: {e}")
                    pbar.update(1)

if __name__ == "__main__":
    main()