text
stringlengths 56
1.16k
|
---|
[2023-09-01 16:38:24,609::train::INFO] [train] Iter 00095 | loss 4.6081 | loss(rot) 1.6036 | loss(pos) 2.3046 | loss(seq) 0.6999 | grad 7.9380 | lr 0.0010 | time_forward 1.3400 | time_backward 1.4610 |
[2023-09-01 16:38:31,643::train::INFO] [train] Iter 00096 | loss 2.6856 | loss(rot) 0.5165 | loss(pos) 1.8955 | loss(seq) 0.2735 | grad 4.2035 | lr 0.0010 | time_forward 2.9950 | time_backward 4.0350 |
[2023-09-01 16:38:39,564::train::INFO] [train] Iter 00097 | loss 4.3603 | loss(rot) 2.2656 | loss(pos) 1.8830 | loss(seq) 0.2117 | grad 8.8334 | lr 0.0010 | time_forward 3.2290 | time_backward 4.6880 |
[2023-09-01 16:38:46,536::train::INFO] [train] Iter 00098 | loss 3.5219 | loss(rot) 2.6213 | loss(pos) 0.9006 | loss(seq) 0.0000 | grad 5.6226 | lr 0.0010 | time_forward 3.3830 | time_backward 3.5740 |
[2023-09-01 16:38:55,623::train::INFO] [train] Iter 00099 | loss 3.6715 | loss(rot) 2.7814 | loss(pos) 0.6692 | loss(seq) 0.2208 | grad 5.9815 | lr 0.0010 | time_forward 3.6570 | time_backward 5.4260 |
[2023-09-01 16:39:05,278::train::INFO] [train] Iter 00100 | loss 3.5573 | loss(rot) 1.3879 | loss(pos) 1.7946 | loss(seq) 0.3748 | grad 5.0274 | lr 0.0010 | time_forward 5.6210 | time_backward 4.0310 |
[2023-09-01 16:39:08,033::train::INFO] [train] Iter 00101 | loss 3.2231 | loss(rot) 1.6922 | loss(pos) 0.9507 | loss(seq) 0.5803 | grad 5.4744 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4550 |
[2023-09-01 16:39:15,478::train::INFO] [train] Iter 00102 | loss 2.6705 | loss(rot) 0.0926 | loss(pos) 2.5760 | loss(seq) 0.0019 | grad 4.8070 | lr 0.0010 | time_forward 2.9140 | time_backward 4.5280 |
[2023-09-01 16:39:18,200::train::INFO] [train] Iter 00103 | loss 2.9615 | loss(rot) 1.4591 | loss(pos) 1.0879 | loss(seq) 0.4145 | grad 7.0788 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4560 |
[2023-09-01 16:39:25,889::train::INFO] [train] Iter 00104 | loss 3.1119 | loss(rot) 2.1168 | loss(pos) 0.9939 | loss(seq) 0.0012 | grad 7.5257 | lr 0.0010 | time_forward 3.3050 | time_backward 4.3810 |
[2023-09-01 16:39:28,797::train::INFO] [train] Iter 00105 | loss 4.3129 | loss(rot) 1.7341 | loss(pos) 2.0872 | loss(seq) 0.4915 | grad 7.0702 | lr 0.0010 | time_forward 1.4370 | time_backward 1.4670 |
[2023-09-01 16:39:32,117::train::INFO] [train] Iter 00106 | loss 2.9755 | loss(rot) 2.4255 | loss(pos) 0.5500 | loss(seq) 0.0000 | grad 5.1757 | lr 0.0010 | time_forward 1.4590 | time_backward 1.8570 |
[2023-09-01 16:39:37,673::train::INFO] [train] Iter 00107 | loss 3.2791 | loss(rot) 2.6255 | loss(pos) 0.5704 | loss(seq) 0.0832 | grad 5.1846 | lr 0.0010 | time_forward 2.1660 | time_backward 3.3860 |
[2023-09-01 16:39:45,406::train::INFO] [train] Iter 00108 | loss 2.0983 | loss(rot) 0.2052 | loss(pos) 1.8756 | loss(seq) 0.0175 | grad 4.8540 | lr 0.0010 | time_forward 3.2930 | time_backward 4.4370 |
[2023-09-01 16:39:48,789::train::INFO] [train] Iter 00109 | loss 2.8575 | loss(rot) 0.8369 | loss(pos) 1.5812 | loss(seq) 0.4394 | grad 5.1993 | lr 0.0010 | time_forward 1.4440 | time_backward 1.9350 |
[2023-09-01 16:39:57,209::train::INFO] [train] Iter 00110 | loss 4.6312 | loss(rot) 2.3362 | loss(pos) 1.7556 | loss(seq) 0.5394 | grad 7.0857 | lr 0.0010 | time_forward 3.5110 | time_backward 4.8950 |
[2023-09-01 16:40:04,697::train::INFO] [train] Iter 00111 | loss 3.6900 | loss(rot) 2.2726 | loss(pos) 0.8425 | loss(seq) 0.5748 | grad 4.8906 | lr 0.0010 | time_forward 3.1530 | time_backward 4.3310 |
[2023-09-01 16:40:07,434::train::INFO] [train] Iter 00112 | loss 2.7324 | loss(rot) 2.0239 | loss(pos) 0.3973 | loss(seq) 0.3111 | grad 5.4268 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4520 |
[2023-09-01 16:40:15,799::train::INFO] [train] Iter 00113 | loss 3.1330 | loss(rot) 1.9613 | loss(pos) 0.7517 | loss(seq) 0.4201 | grad 6.5145 | lr 0.0010 | time_forward 3.4610 | time_backward 4.9010 |
[2023-09-01 16:40:24,018::train::INFO] [train] Iter 00114 | loss 3.9070 | loss(rot) 3.0928 | loss(pos) 0.5558 | loss(seq) 0.2585 | grad 6.8078 | lr 0.0010 | time_forward 3.5070 | time_backward 4.7090 |
[2023-09-01 16:40:26,793::train::INFO] [train] Iter 00115 | loss 3.3713 | loss(rot) 2.1887 | loss(pos) 0.7334 | loss(seq) 0.4492 | grad 6.5924 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4660 |
[2023-09-01 16:40:35,569::train::INFO] [train] Iter 00116 | loss 3.6407 | loss(rot) 1.8956 | loss(pos) 1.3089 | loss(seq) 0.4362 | grad 6.5238 | lr 0.0010 | time_forward 3.6240 | time_backward 5.1480 |
[2023-09-01 16:40:38,286::train::INFO] [train] Iter 00117 | loss 3.8211 | loss(rot) 1.2982 | loss(pos) 1.9667 | loss(seq) 0.5562 | grad 10.6617 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4670 |
[2023-09-01 16:40:45,905::train::INFO] [train] Iter 00118 | loss 3.2422 | loss(rot) 1.9398 | loss(pos) 0.8114 | loss(seq) 0.4910 | grad 7.0322 | lr 0.0010 | time_forward 3.4440 | time_backward 4.1540 |
[2023-09-01 16:40:53,982::train::INFO] [train] Iter 00119 | loss 2.9014 | loss(rot) 2.2069 | loss(pos) 0.2776 | loss(seq) 0.4169 | grad 4.9030 | lr 0.0010 | time_forward 3.3440 | time_backward 4.7300 |
[2023-09-01 16:41:00,740::train::INFO] [train] Iter 00120 | loss 3.8223 | loss(rot) 2.7094 | loss(pos) 0.6740 | loss(seq) 0.4389 | grad 5.8452 | lr 0.0010 | time_forward 2.9360 | time_backward 3.8130 |
[2023-09-01 16:41:03,588::train::INFO] [train] Iter 00121 | loss 3.9083 | loss(rot) 2.5740 | loss(pos) 0.8680 | loss(seq) 0.4663 | grad 7.1913 | lr 0.0010 | time_forward 1.3600 | time_backward 1.4840 |
[2023-09-01 16:41:06,450::train::INFO] [train] Iter 00122 | loss 3.6929 | loss(rot) 2.7780 | loss(pos) 0.8342 | loss(seq) 0.0806 | grad 6.7503 | lr 0.0010 | time_forward 1.3770 | time_backward 1.4810 |
[2023-09-01 16:41:09,299::train::INFO] [train] Iter 00123 | loss 3.4635 | loss(rot) 2.8625 | loss(pos) 0.4193 | loss(seq) 0.1817 | grad 4.4612 | lr 0.0010 | time_forward 1.3160 | time_backward 1.5290 |
[2023-09-01 16:41:12,298::train::INFO] [train] Iter 00124 | loss 2.5615 | loss(rot) 0.2582 | loss(pos) 2.2289 | loss(seq) 0.0744 | grad 4.2386 | lr 0.0010 | time_forward 1.3560 | time_backward 1.6390 |
[2023-09-01 16:41:15,252::train::INFO] [train] Iter 00125 | loss 2.8568 | loss(rot) 1.8436 | loss(pos) 0.5989 | loss(seq) 0.4143 | grad 4.9994 | lr 0.0010 | time_forward 1.3980 | time_backward 1.5510 |
[2023-09-01 16:41:18,831::train::INFO] [train] Iter 00126 | loss 3.2433 | loss(rot) 2.7816 | loss(pos) 0.4272 | loss(seq) 0.0345 | grad 3.9527 | lr 0.0010 | time_forward 1.5900 | time_backward 1.9830 |
[2023-09-01 16:41:28,026::train::INFO] [train] Iter 00127 | loss 3.7274 | loss(rot) 2.0308 | loss(pos) 1.3492 | loss(seq) 0.3474 | grad 6.4560 | lr 0.0010 | time_forward 3.7880 | time_backward 5.3910 |
[2023-09-01 16:41:30,876::train::INFO] [train] Iter 00128 | loss 3.7673 | loss(rot) 1.8291 | loss(pos) 1.4514 | loss(seq) 0.4867 | grad 5.8954 | lr 0.0010 | time_forward 1.3070 | time_backward 1.5390 |
[2023-09-01 16:41:39,519::train::INFO] [train] Iter 00129 | loss 3.9211 | loss(rot) 2.0236 | loss(pos) 1.2621 | loss(seq) 0.6353 | grad 7.1588 | lr 0.0010 | time_forward 3.3840 | time_backward 5.2560 |
[2023-09-01 16:41:48,388::train::INFO] [train] Iter 00130 | loss 3.6708 | loss(rot) 0.0997 | loss(pos) 3.5623 | loss(seq) 0.0088 | grad 8.0145 | lr 0.0010 | time_forward 3.3740 | time_backward 5.4860 |
[2023-09-01 16:41:57,211::train::INFO] [train] Iter 00131 | loss 7.5025 | loss(rot) 0.1166 | loss(pos) 7.3788 | loss(seq) 0.0071 | grad 18.1658 | lr 0.0010 | time_forward 3.4570 | time_backward 5.3620 |
[2023-09-01 16:42:05,291::train::INFO] [train] Iter 00132 | loss 3.5412 | loss(rot) 0.1413 | loss(pos) 3.3900 | loss(seq) 0.0098 | grad 6.0336 | lr 0.0010 | time_forward 3.4850 | time_backward 4.5910 |
[2023-09-01 16:42:12,773::train::INFO] [train] Iter 00133 | loss 3.4434 | loss(rot) 0.7244 | loss(pos) 2.6189 | loss(seq) 0.1001 | grad 12.1873 | lr 0.0010 | time_forward 3.1850 | time_backward 4.2950 |
[2023-09-01 16:42:15,469::train::INFO] [train] Iter 00134 | loss 4.4206 | loss(rot) 2.5949 | loss(pos) 1.6126 | loss(seq) 0.2132 | grad 10.9465 | lr 0.0010 | time_forward 1.2970 | time_backward 1.3950 |
[2023-09-01 16:42:24,204::train::INFO] [train] Iter 00135 | loss 4.0062 | loss(rot) 2.6100 | loss(pos) 1.3078 | loss(seq) 0.0883 | grad 8.6993 | lr 0.0010 | time_forward 3.3300 | time_backward 5.3630 |
[2023-09-01 16:42:31,413::train::INFO] [train] Iter 00136 | loss 2.5241 | loss(rot) 0.6309 | loss(pos) 1.6995 | loss(seq) 0.1937 | grad 4.0220 | lr 0.0010 | time_forward 3.0750 | time_backward 4.1300 |
[2023-09-01 16:42:34,040::train::INFO] [train] Iter 00137 | loss 3.1905 | loss(rot) 2.6985 | loss(pos) 0.4920 | loss(seq) 0.0000 | grad 4.3306 | lr 0.0010 | time_forward 1.3330 | time_backward 1.2920 |
[2023-09-01 16:42:42,737::train::INFO] [train] Iter 00138 | loss 4.1040 | loss(rot) 0.2292 | loss(pos) 3.8411 | loss(seq) 0.0338 | grad 6.4769 | lr 0.0010 | time_forward 3.7460 | time_backward 4.9450 |
[2023-09-01 16:42:50,376::train::INFO] [train] Iter 00139 | loss 3.3642 | loss(rot) 2.2727 | loss(pos) 0.7032 | loss(seq) 0.3883 | grad 4.0476 | lr 0.0010 | time_forward 3.2460 | time_backward 4.3540 |
[2023-09-01 16:42:58,358::train::INFO] [train] Iter 00140 | loss 3.3506 | loss(rot) 1.5405 | loss(pos) 1.3589 | loss(seq) 0.4512 | grad 5.1535 | lr 0.0010 | time_forward 3.4180 | time_backward 4.5610 |
[2023-09-01 16:43:01,278::train::INFO] [train] Iter 00141 | loss 3.0233 | loss(rot) 1.7220 | loss(pos) 0.8302 | loss(seq) 0.4711 | grad 4.3872 | lr 0.0010 | time_forward 1.4920 | time_backward 1.4250 |
[2023-09-01 16:43:09,028::train::INFO] [train] Iter 00142 | loss 3.7074 | loss(rot) 2.5071 | loss(pos) 0.8829 | loss(seq) 0.3173 | grad 5.4391 | lr 0.0010 | time_forward 3.3680 | time_backward 4.3780 |
[2023-09-01 16:43:11,664::train::INFO] [train] Iter 00143 | loss 3.3478 | loss(rot) 1.8257 | loss(pos) 1.0821 | loss(seq) 0.4401 | grad 4.1817 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3910 |
[2023-09-01 16:43:20,593::train::INFO] [train] Iter 00144 | loss 3.5494 | loss(rot) 2.8027 | loss(pos) 0.7460 | loss(seq) 0.0007 | grad 5.4201 | lr 0.0010 | time_forward 3.7160 | time_backward 5.2070 |
[2023-09-01 16:43:29,276::train::INFO] [train] Iter 00145 | loss 3.5059 | loss(rot) 1.5259 | loss(pos) 1.3160 | loss(seq) 0.6640 | grad 5.6267 | lr 0.0010 | time_forward 3.6570 | time_backward 5.0130 |
[2023-09-01 16:43:36,282::train::INFO] [train] Iter 00146 | loss 3.8465 | loss(rot) 2.4287 | loss(pos) 0.8323 | loss(seq) 0.5855 | grad 3.9304 | lr 0.0010 | time_forward 3.0560 | time_backward 3.9480 |
[2023-09-01 16:43:44,641::train::INFO] [train] Iter 00147 | loss 4.6625 | loss(rot) 2.8308 | loss(pos) 1.5461 | loss(seq) 0.2855 | grad 9.1611 | lr 0.0010 | time_forward 3.4620 | time_backward 4.8920 |
[2023-09-01 16:43:51,697::train::INFO] [train] Iter 00148 | loss 2.9719 | loss(rot) 0.6281 | loss(pos) 2.0809 | loss(seq) 0.2629 | grad 6.4193 | lr 0.0010 | time_forward 3.0830 | time_backward 3.9690 |
[2023-09-01 16:44:00,323::train::INFO] [train] Iter 00149 | loss 4.3841 | loss(rot) 2.8713 | loss(pos) 0.9859 | loss(seq) 0.5270 | grad 7.8624 | lr 0.0010 | time_forward 3.3830 | time_backward 5.2400 |
[2023-09-01 16:44:02,997::train::INFO] [train] Iter 00150 | loss 4.0313 | loss(rot) 2.5153 | loss(pos) 0.9273 | loss(seq) 0.5887 | grad 7.3340 | lr 0.0010 | time_forward 1.2720 | time_backward 1.3990 |
[2023-09-01 16:44:10,340::train::INFO] [train] Iter 00151 | loss 3.2237 | loss(rot) 0.4223 | loss(pos) 2.7575 | loss(seq) 0.0438 | grad 8.5048 | lr 0.0010 | time_forward 2.9970 | time_backward 4.3430 |
[2023-09-01 16:44:19,183::train::INFO] [train] Iter 00152 | loss 3.6595 | loss(rot) 0.2248 | loss(pos) 3.4092 | loss(seq) 0.0255 | grad 12.4150 | lr 0.0010 | time_forward 3.5560 | time_backward 5.2830 |
[2023-09-01 16:44:26,611::train::INFO] [train] Iter 00153 | loss 3.1329 | loss(rot) 2.2294 | loss(pos) 0.3711 | loss(seq) 0.5324 | grad 3.9792 | lr 0.0010 | time_forward 3.1970 | time_backward 4.2290 |
[2023-09-01 16:44:33,733::train::INFO] [train] Iter 00154 | loss 2.6812 | loss(rot) 2.1574 | loss(pos) 0.3885 | loss(seq) 0.1354 | grad 5.1317 | lr 0.0010 | time_forward 3.1800 | time_backward 3.9380 |
[2023-09-01 16:44:41,206::train::INFO] [train] Iter 00155 | loss 3.2735 | loss(rot) 1.6723 | loss(pos) 0.9792 | loss(seq) 0.6221 | grad 5.6595 | lr 0.0010 | time_forward 3.1490 | time_backward 4.3210 |
[2023-09-01 16:44:47,376::train::INFO] [train] Iter 00156 | loss 3.1814 | loss(rot) 0.1336 | loss(pos) 3.0478 | loss(seq) 0.0000 | grad 7.5739 | lr 0.0010 | time_forward 2.4010 | time_backward 3.7660 |
[2023-09-01 16:44:50,096::train::INFO] [train] Iter 00157 | loss 3.2644 | loss(rot) 2.6361 | loss(pos) 0.3781 | loss(seq) 0.2502 | grad 3.8730 | lr 0.0010 | time_forward 1.3190 | time_backward 1.3970 |
[2023-09-01 16:44:58,970::train::INFO] [train] Iter 00158 | loss 2.6468 | loss(rot) 1.3063 | loss(pos) 0.8514 | loss(seq) 0.4891 | grad 4.0172 | lr 0.0010 | time_forward 3.5560 | time_backward 5.0270 |
[2023-09-01 16:45:01,847::train::INFO] [train] Iter 00159 | loss 3.8517 | loss(rot) 1.3599 | loss(pos) 1.9360 | loss(seq) 0.5558 | grad 4.3496 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5320 |
[2023-09-01 16:45:04,957::train::INFO] [train] Iter 00160 | loss 2.6793 | loss(rot) 0.9491 | loss(pos) 1.1834 | loss(seq) 0.5469 | grad 8.5506 | lr 0.0010 | time_forward 1.5750 | time_backward 1.5310 |
[2023-09-01 16:45:13,233::train::INFO] [train] Iter 00161 | loss 2.9526 | loss(rot) 2.2403 | loss(pos) 0.6476 | loss(seq) 0.0646 | grad 4.5712 | lr 0.0010 | time_forward 3.7620 | time_backward 4.5110 |
[2023-09-01 16:45:16,130::train::INFO] [train] Iter 00162 | loss 3.4899 | loss(rot) 0.1488 | loss(pos) 3.3331 | loss(seq) 0.0080 | grad 8.3620 | lr 0.0010 | time_forward 1.4510 | time_backward 1.4380 |
[2023-09-01 16:45:22,619::train::INFO] [train] Iter 00163 | loss 2.7114 | loss(rot) 0.0614 | loss(pos) 2.3096 | loss(seq) 0.3404 | grad 5.0729 | lr 0.0010 | time_forward 2.7960 | time_backward 3.6560 |
[2023-09-01 16:45:25,363::train::INFO] [train] Iter 00164 | loss 3.0965 | loss(rot) 0.8028 | loss(pos) 1.8190 | loss(seq) 0.4747 | grad 14.4895 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4350 |
[2023-09-01 16:45:28,180::train::INFO] [train] Iter 00165 | loss 2.2734 | loss(rot) 0.4151 | loss(pos) 1.8220 | loss(seq) 0.0364 | grad 5.7448 | lr 0.0010 | time_forward 1.3420 | time_backward 1.4720 |
[2023-09-01 16:45:36,938::train::INFO] [train] Iter 00166 | loss 2.7773 | loss(rot) 0.1157 | loss(pos) 2.5142 | loss(seq) 0.1474 | grad 4.1816 | lr 0.0010 | time_forward 3.5720 | time_backward 5.1490 |
[2023-09-01 16:45:39,508::train::INFO] [train] Iter 00167 | loss 2.7957 | loss(rot) 0.1238 | loss(pos) 2.6563 | loss(seq) 0.0155 | grad 8.9078 | lr 0.0010 | time_forward 1.2260 | time_backward 1.3310 |
[2023-09-01 16:45:46,553::train::INFO] [train] Iter 00168 | loss 4.4533 | loss(rot) 3.2341 | loss(pos) 1.2191 | loss(seq) 0.0000 | grad 5.7395 | lr 0.0010 | time_forward 3.0460 | time_backward 3.9650 |
[2023-09-01 16:45:49,338::train::INFO] [train] Iter 00169 | loss 4.2160 | loss(rot) 2.1038 | loss(pos) 1.6296 | loss(seq) 0.4826 | grad 7.3602 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4870 |
[2023-09-01 16:45:55,812::train::INFO] [train] Iter 00170 | loss 4.7981 | loss(rot) 1.6087 | loss(pos) 2.6440 | loss(seq) 0.5454 | grad 7.4593 | lr 0.0010 | time_forward 2.7470 | time_backward 3.7230 |
[2023-09-01 16:46:03,808::train::INFO] [train] Iter 00171 | loss 3.6798 | loss(rot) 3.0815 | loss(pos) 0.5894 | loss(seq) 0.0090 | grad 5.8617 | lr 0.0010 | time_forward 3.5030 | time_backward 4.4910 |
[2023-09-01 16:46:12,029::train::INFO] [train] Iter 00172 | loss 2.9780 | loss(rot) 1.4185 | loss(pos) 1.1312 | loss(seq) 0.4283 | grad 4.4701 | lr 0.0010 | time_forward 3.3740 | time_backward 4.8320 |
[2023-09-01 16:46:20,739::train::INFO] [train] Iter 00173 | loss 4.1471 | loss(rot) 0.4239 | loss(pos) 3.6907 | loss(seq) 0.0325 | grad 8.2036 | lr 0.0010 | time_forward 3.2680 | time_backward 5.4380 |
[2023-09-01 16:46:28,632::train::INFO] [train] Iter 00174 | loss 3.1648 | loss(rot) 1.0247 | loss(pos) 1.6360 | loss(seq) 0.5041 | grad 4.3079 | lr 0.0010 | time_forward 3.4150 | time_backward 4.4630 |
[2023-09-01 16:46:37,002::train::INFO] [train] Iter 00175 | loss 4.4788 | loss(rot) 2.8397 | loss(pos) 1.2338 | loss(seq) 0.4053 | grad 6.8956 | lr 0.0010 | time_forward 3.4250 | time_backward 4.9420 |
[2023-09-01 16:46:44,064::train::INFO] [train] Iter 00176 | loss 3.2186 | loss(rot) 2.4817 | loss(pos) 0.4371 | loss(seq) 0.2998 | grad 3.8056 | lr 0.0010 | time_forward 3.0280 | time_backward 4.0300 |
[2023-09-01 16:46:51,048::train::INFO] [train] Iter 00177 | loss 4.1760 | loss(rot) 2.2501 | loss(pos) 1.3579 | loss(seq) 0.5680 | grad 6.9173 | lr 0.0010 | time_forward 3.0120 | time_backward 3.9680 |
[2023-09-01 16:46:58,915::train::INFO] [train] Iter 00178 | loss 3.6959 | loss(rot) 3.3960 | loss(pos) 0.2998 | loss(seq) 0.0001 | grad 4.4766 | lr 0.0010 | time_forward 3.4080 | time_backward 4.4560 |
[2023-09-01 16:47:07,512::train::INFO] [train] Iter 00179 | loss 2.6738 | loss(rot) 1.6226 | loss(pos) 0.5803 | loss(seq) 0.4710 | grad 3.3294 | lr 0.0010 | time_forward 3.5530 | time_backward 5.0410 |
[2023-09-01 16:47:14,967::train::INFO] [train] Iter 00180 | loss 2.4461 | loss(rot) 0.3036 | loss(pos) 2.1245 | loss(seq) 0.0179 | grad 7.9920 | lr 0.0010 | time_forward 3.1350 | time_backward 4.3040 |
[2023-09-01 16:47:22,030::train::INFO] [train] Iter 00181 | loss 2.2549 | loss(rot) 1.2119 | loss(pos) 0.9132 | loss(seq) 0.1298 | grad 4.1498 | lr 0.0010 | time_forward 3.0800 | time_backward 3.9790 |
[2023-09-01 16:47:29,629::train::INFO] [train] Iter 00182 | loss 3.7488 | loss(rot) 0.3241 | loss(pos) 3.4162 | loss(seq) 0.0085 | grad 5.3075 | lr 0.0010 | time_forward 3.3590 | time_backward 4.2370 |
[2023-09-01 16:47:35,877::train::INFO] [train] Iter 00183 | loss 3.5131 | loss(rot) 3.0310 | loss(pos) 0.4790 | loss(seq) 0.0031 | grad 4.4033 | lr 0.0010 | time_forward 2.5750 | time_backward 3.6690 |
[2023-09-01 16:47:43,894::train::INFO] [train] Iter 00184 | loss 3.4365 | loss(rot) 3.0336 | loss(pos) 0.4029 | loss(seq) 0.0000 | grad 3.9385 | lr 0.0010 | time_forward 3.3290 | time_backward 4.6840 |
[2023-09-01 16:47:51,082::train::INFO] [train] Iter 00185 | loss 2.8641 | loss(rot) 2.3962 | loss(pos) 0.2904 | loss(seq) 0.1775 | grad 2.8648 | lr 0.0010 | time_forward 3.0550 | time_backward 4.1290 |
[2023-09-01 16:47:58,230::train::INFO] [train] Iter 00186 | loss 3.0038 | loss(rot) 2.1402 | loss(pos) 0.4946 | loss(seq) 0.3690 | grad 3.9435 | lr 0.0010 | time_forward 3.1330 | time_backward 4.0120 |
[2023-09-01 16:48:06,204::train::INFO] [train] Iter 00187 | loss 3.2567 | loss(rot) 1.8984 | loss(pos) 0.8469 | loss(seq) 0.5113 | grad 4.6861 | lr 0.0010 | time_forward 3.0890 | time_backward 4.8820 |
[2023-09-01 16:48:14,358::train::INFO] [train] Iter 00188 | loss 3.8566 | loss(rot) 1.6983 | loss(pos) 1.7385 | loss(seq) 0.4198 | grad 10.1074 | lr 0.0010 | time_forward 3.2920 | time_backward 4.8580 |
[2023-09-01 16:48:16,791::train::INFO] [train] Iter 00189 | loss 4.4020 | loss(rot) 3.5585 | loss(pos) 0.7289 | loss(seq) 0.1146 | grad 5.5326 | lr 0.0010 | time_forward 1.1490 | time_backward 1.2810 |
[2023-09-01 16:48:24,287::train::INFO] [train] Iter 00190 | loss 3.6925 | loss(rot) 2.0797 | loss(pos) 1.1057 | loss(seq) 0.5071 | grad 3.5364 | lr 0.0010 | time_forward 3.1700 | time_backward 4.3220 |
[2023-09-01 16:48:27,069::train::INFO] [train] Iter 00191 | loss 2.7804 | loss(rot) 0.7412 | loss(pos) 1.6701 | loss(seq) 0.3691 | grad 4.8273 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4450 |
[2023-09-01 16:48:29,789::train::INFO] [train] Iter 00192 | loss 3.1676 | loss(rot) 1.9913 | loss(pos) 1.1743 | loss(seq) 0.0020 | grad 6.7902 | lr 0.0010 | time_forward 1.4180 | time_backward 1.2790 |
[2023-09-01 16:48:38,309::train::INFO] [train] Iter 00193 | loss 3.0001 | loss(rot) 2.0056 | loss(pos) 0.5451 | loss(seq) 0.4493 | grad 4.4887 | lr 0.0010 | time_forward 3.3870 | time_backward 5.1290 |
[2023-09-01 16:48:46,657::train::INFO] [train] Iter 00194 | loss 3.0594 | loss(rot) 0.0260 | loss(pos) 3.0305 | loss(seq) 0.0029 | grad 5.7148 | lr 0.0010 | time_forward 3.3870 | time_backward 4.9490 |